Fruit and Vegetable By-Products to Fortify Spreadable Cheese
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Chemicals
2.3. Cheese Manufacture
2.4. Extraction and Determination of Total Phenolic Compounds and Total Flavonoids
2.5. Antioxidant Activity
2.6. Moisture Content and pH
2.7. Sensory Characterization
2.8. Statistical Analysis
3. Results and Discussion
3.1. Chemical Quality
3.2. Moisture Content and pH
3.3. Sensory Quality
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Schieber, A.; Stintzing, F.C.; Carle, R. By-products of plant food processing as a source of functional compounds—Recent developments. Trends Food Sci. Technol. 2001, 12, 401–413. [Google Scholar] [CrossRef]
- Ajila, C.M.; Aalami, M.; Leelavathi, K.; Prasada Rao, U.J.S. Mango peel powder: A potential source of antioxidant and dietary fiber in macaroni preparations. Innov. Food Sci. Emerg. Technol. 2010, 11, 219–224. [Google Scholar] [CrossRef]
- Sudha, M.L.; Baskaran, V.; Leelavathi, K. Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chem. 2007, 104, 686–692. [Google Scholar] [CrossRef]
- Marinelli, V.; Padalino, L.; Nardiello, D.; Del Nobile, M.A.; Conte, A. New Approach to Enrich Pasta with Polyphenols from Grape Marc. J. Chem. 2015. [Google Scholar] [CrossRef]
- Boubaker, M.; Omri, A.E.L.; Blecker, C.; Bouzouita, N. Fibre concentrate from artichoke (Cynara scolymus L.) stem by-products: Characterization and application as a bakery product ingredient. Food Sci. Technol. Int. 2016, 22, 759–768. [Google Scholar] [CrossRef] [PubMed]
- Drabinska, N.; Ciska, E.; Szmatowicz, B.; Krupa-Kozak, U. Broccoli by-products improve the nutraceutical potential of gluten-free mini sponge cakes. Food Chem. 2017. [Google Scholar] [CrossRef]
- Tseng, A.; Zhao, Y. Wine grape pomace as antioxidant dietary fibre for enhancing nutritional value and improving storability of yogurt and salad dressing. Food Chem. 2013, 138, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-Y.; Shyu, Y.-S.; Hsu, C.-K. Grape wine lees improves the rheological and adds antioxidant properties to ice cream. LWT 2009, 42, 312–318. [Google Scholar] [CrossRef]
- Bertolino, M.; Belviso, S.; Dal Bello, B.; Ghirardello, D.; Giordano, M.; Rolle, L.; Gerbi, V.; Zeppa, G. Influence of the addition of different hazelnut skins on the physicochemical, antioxidant, polyphenol and sensory properties of yogurt. LWT 2015, 63, 1145–1154. [Google Scholar] [CrossRef]
- Marchiani, R.; Bertolino, M.; Ghirardello, D.; McSweeney, P.L.H.; Zeppa, G. Physicochemical and nutritional qualities of grape pomace powder-fortified semi-hard cheeses. J. Food Sci. Technol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Abd Elhamid, A.M. Physicochemical, rheological and sensory properties of Egyptian Kariesh cheese containing wheat bran. Int. J. Dairy Technol. 2016. [Google Scholar] [CrossRef]
- Rashidinejad, A.; Birch, E.J.; Sun-Waterhouse, D.; Everett, D.W. Effects of catechin on the phenolic content and antioxidant properties of low-fat cheese. Int. J. Food Sci. Technol. 2013, 48, 2448–2455. [Google Scholar] [CrossRef]
- Spinelli, S.; Conte, A.; Lecce, L.; Incoronato, A.L.; Del Nobile, M.A. Microencapsulated propolis to enhance the antioxidant properties of fresh fish burgers. J. Food Process Eng. 2015, 38, 527–535. [Google Scholar] [CrossRef]
- Huang, Y.-S.; Ho, S.-C. Polymethoxy flavones are responsible for the anti-inflammatory activity of citrus fruit peel. Food Chem. 2010, 119, 868–873. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Niro, S.; Fratianni, A.; Tremonte, P.; Sorrentino, E.; Tipaldi, L.; Panfili, G.; Coppola, R. Innovative Caciocavallo cheeses made from a mixture of cow milk with ewe or goat milk. J. Dairy Sci. 2014, 97, 1296–1304. [Google Scholar] [CrossRef] [PubMed]
- Gonzàlez-Centeno, M.R.; Jourdes, M.; Femenia, A.; Simal, S.; Rosselló, C.; Teissedre, P.-L. Proanthocyanidin Composition and Antioxidant Potential of the Stem Winemaking By-products from 10 Different Grape Varieties (Vitis vinifera L.). J. Agric. Food Chem. 2012, 60, 11850–11858. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.M.; Guillèn, D.A.; Barroso, C.G.; Puertas, B.; Garcìa, A. Determination of antioxidant activity of wine by products and its correlation with polyphenolic content. J. Agric. Food Chem. 2002, 50, 5832–5836. [Google Scholar] [CrossRef] [PubMed]
- Rashidinejad, A.; Birch, E.J.; Everett, D.W. A novel functional full-fat hard cheese containing liposomal nanoencapsulated green tea catechins: Manufacture and recovery following simulated digestion. Food Funct. 2016, 7, 3283–3294. [Google Scholar] [CrossRef] [PubMed]
- Safaa, M.A.F. Evaluation of Yogurt and Soft Cheese Fortified with Chia Seeds. World J. Dairy Food Sci. 2017, 12, 1–12. [Google Scholar]
- Arunkumar, H. Effect of soy flour and soy oil on the composition and sensory characteristics of paneer spread. J. Res. Agric. Anim. Sci. 2014, 6, 1–5. [Google Scholar]
- El-Aziz, M.A.; Mohamed, S.H.S.; Seleet, F.T. Production and Evaluation of Soft Cheese Fortified with Ginger Extract as a Functional Dairy Food. Pol. J. Food Nutr. Sci. 2012, 62, 77–83. [Google Scholar] [CrossRef]
- Nasser, A.M.A.G. Phytochemical Study of Cynara scolymus L. (Artichoke) (Asteraceae) Cultivated in Iraq, Detection and Identification of Phenolic Acid Compounds Cynarin and Chlorogenic Acid. Iraqi J. Pharm Sci. 2012, 21, 6–13. [Google Scholar]
- Ky, I.; Crozier, A.; Cros, G.; Teissedre, P.-L. Polyphenols composition of wine and grape sub-products and potential effects on chronic diseases. Nutr. Aging 2014, 2, 165–177. [Google Scholar]
- Savadkoohi, S.; Hoogenkamp, H.; Shamsi, K.; Farahnaky, A. Colour, sensory and textural attributes of beef frankfurter, beef ham and meat-free sausage containing tomato pomace. Meat Sci. 2014, 97, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Özvural, E.B.; Vural, H. Grape seed flour is a viable ingredient to improve the nutritional profile and reduce lipid oxidation of frankfurters. Meat Sci. 2011, 88, 179–183. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, N.; Arendt, E.; Gallagher, E. Dietary fibre and phytochemical characteristics of fruit and vegetable by-products and their recent applications as novel ingredients in food products. Innov. Food Sci. Emerg. Technol. 2012, 16, 1–10. [Google Scholar] [CrossRef]
TPC (mg GAEs/g dw) | TFC (mg QEs/g dw) | ABTS (mg TEs/g dw) | FRAP (µMol FeSO4·7H2O/g dw) | |
---|---|---|---|---|
Broccoli by-products | 14.59 ± 0.14 b | 5.55 ± 0.16 c | 23.70 ± 1.29 d | 212.40 ± 12.60 b |
Corn Bran | 5.01 ± 0.08 a | 3.71 ± 0.02 b | 7.73 ± 0.30 b | 64.50 ± 2.68 a |
Artichokes by-products | 21.15 ± 0.24 c | 9.83 ± 0.14 e | 16.76 ± 0.16 c | 267.20 ± 2.29 b |
Tomato peel | 4.90 ± 0.48 a | 2.21 ± 0.02 a | 4.21 ± 0.27 a | 23.30 ± 0.63 a |
Red grape pomace | 107.40 ± 2.08 e | 12.99 ± 0.39 f | 127.36 ± 2.89 f | 1886.00 ± 156.70 d |
White grape pomace | 90.51 ± 0.36 d | 8.84 ± 0.10 d | 110.13 ± 2.90 e | 1619.00 ± 85.30 c |
TPC (mg GAEs/g dw) | TFC (mg QEs/g dw) | ABTS (mg TEs/g dw) | FRAP (µMol FeSO4·7H2O/g dw) | |
---|---|---|---|---|
CNT | 0.66 ± 0.06 a | 0.47 ± 0.00 a | 0.96 ± 0.08 a | 1.52 ± 0.05 a |
Br-SC | 1.78 ± 0.02 d | 0.79 ± 0.07 c | 2.09 ± 0.06 d | 6.65 ± 0.20 d |
CB-SC | 0.90 ± 0.04 b | 0.49 ± 0.03 a | 1.71 ± 0.09 c | 4.53 ± 0.47 c |
Art-SC | 1.20 ± 0.22 c | 0.06 ± 0.03 b | 1.71 ± 0.20 c | 4.74 ± 0.13 c |
TP-SC | 0.72 ± 0.02 a | 0.47 ± 0.00 a | 1.51 ± 0.07 b | 2.58 ± 0.12 b |
RGP-SC | 2.34 ± 0.15 e | 0.86 ± 0.08 d | 3.95 ± 0.19 e | 26.17 ± 0.72 e |
WGP-SC | 2.74 ± 0.04 f | 0.89 ± 0.03 d | 4.00 ± 0.06 e | 26.45 ± 0.25 e |
Flavour Attributes (0–7) | ||||||||
---|---|---|---|---|---|---|---|---|
Samples | Overall Intensity | Sweetness | Salty | Acid | Bitter | Astringent | Aftertaste Intensity | Aftertaste Persistence |
CNT | 6.0 ± 0.3 b | 1.2 ± 0.4 a | 1.0 ± 0.0 a.b | 4.6 ± 0.4 b | n.d. | n.d. | 6.0 ± 0.0 b | 6.0 ± 0.0 c |
Br-SC | 7.0 ± 0.0 c | n.d. | 1.4 ± 0.4 b | 5.1 ± 0.2 b | n.d. | 1.2 ± 0.4 a | 7.0 ± 0.2 c | 6.7 ± 0.4 d |
CB-SC | 5.6 ± 0.3 a | 2.0 ± 0.0 b | 0.7 ± 0.3 a | 4.0 ± 0.2 a | n.d. | 2.0 ± 0.0 b | 5.6 ± 0.3 b | 5.4 ± 0.2 b |
Art-SC | 6.9 ± 0.2 c | n.d. | 1.6 ± 0.4 b | 4.9 ± 0.4 b | 6.0 ± 0.0 | 0.8 ± 0.4 a | 6.6 ± 0.4 c | 6.2 ± 0.3 c |
TP-SC | 5.5 ± 0.3 a | n.d. | 0.5 ± 0.5 a | 6.0 ± 0.0 c | n.d. | 0.9 ± 0.4 a | 5.0 ± 0.3 a | 4.1 ± 0.2 a |
RGP-SC | 7.0 ± 0.0 c | n.d. | n.d. | 7.0 ± 0.0 d | n.d. | 3.0 ± 0.0 c | 7.0 ± 0.0 d | 7.0 ± 0.0 d |
WGP-SC | 6.9 ± 0.2 c | n.d. | n.d. | 6.9 ± 0.2 d | n.d. | 3.0 ± 0.3 c | 7.0 ± 0.2 d | 6.2 ± 0.3 c |
Textural Attributes (0–7) | ||||||
---|---|---|---|---|---|---|
Samples | Spreadability | Fibrous | Adhesiveness | Graininess | Solubility | Juiciness |
CNT | 7.0 ± 0.0 d | n.d. | 4.0 ± 0.0 a | n.d. | 6.0 ± 0.3 d | 6.0 ± 0.0 c |
Br-SC | 4.5 ± 0.4 a | 6.0 ± 0.0 b | 5.5 ± 0.3 d | 5.1 ± 0.2 b | 3.0 ± 0.3 a | 3.9 ± 0.2 a |
CB-SC | 6.3 ± 0.2 c | 4.5 ± 0.4 a | 4.5 ± 0.4 b | 3.9 ± 0.2 a | 5.0 ± 0.3 c | 4.5 ± 0.4 b |
Art-SC | 5.5 ± 0.3 b | 6.3 ± 0.2 c | 5.5 ± 0.0 d | 5.5 ± 0.0 c | 3.9 ± 0.2 b | 4.0 ± 0.0 a |
TP-SC | 6.0 ± 0.0 c | 6.5 ± 0.0 c | 5.1 ± 0.2 c | 5.1 ± 0.2 b | 4.0 ± 0.0 b | 4.0 ± 0.3 a |
RGP-SC | 5.3 ± 0.2 b | 7.0 ± 0.2 d | 5.0 ± 0.0 c | 6.0 ± 0.0 d | 4.5 ± 0.4 c | 4.0 ± 0.3 a |
WGP-SC | 5.1 ± 0.2 b | 7.0 ± 0.0 d | 5.1 ± 0.2 c | 6.0 ± 0.3 d | 4.6 ± 0.4 c | 4.0 ± 0.3 a |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucera, A.; Costa, C.; Marinelli, V.; Saccotelli, M.A.; Del Nobile, M.A.; Conte, A. Fruit and Vegetable By-Products to Fortify Spreadable Cheese. Antioxidants 2018, 7, 61. https://doi.org/10.3390/antiox7050061
Lucera A, Costa C, Marinelli V, Saccotelli MA, Del Nobile MA, Conte A. Fruit and Vegetable By-Products to Fortify Spreadable Cheese. Antioxidants. 2018; 7(5):61. https://doi.org/10.3390/antiox7050061
Chicago/Turabian StyleLucera, Annalisa, Cristina Costa, Valeria Marinelli, Maria Antonietta Saccotelli, Matteo Alessandro Del Nobile, and Amalia Conte. 2018. "Fruit and Vegetable By-Products to Fortify Spreadable Cheese" Antioxidants 7, no. 5: 61. https://doi.org/10.3390/antiox7050061
APA StyleLucera, A., Costa, C., Marinelli, V., Saccotelli, M. A., Del Nobile, M. A., & Conte, A. (2018). Fruit and Vegetable By-Products to Fortify Spreadable Cheese. Antioxidants, 7(5), 61. https://doi.org/10.3390/antiox7050061