Antioxidant and Anti-Inflammatory Properties of Nigella sativa Oil in Human Pre-Adipocytes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. SEO and FEO Production
2.3. Quantitative Determination of Thymoquinone in SEO and FEO
2.4. Antioxidant Assays
2.5. Anti-Inflammatory Property
2.6. Statistical Analysis
3. Results
3.1. Antioxidant Assays
3.2. Cytotoxycity of synFEO
3.3. Anti-Inflammatory Property
3.4. Antioxidant Residual Activity in the Cell Supernatant
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bahareh, A.; Hossein, H. Black cumin (Nigella sativa) and its active constituent, thymoquinone: An overview on the analgesic and anti-inflammatory effects. Planta Med. 2016, 82, 8–16. [Google Scholar] [CrossRef]
- Gholamnezhad, Z.; Havakhah, S.; Boskabady, M.H. Preclinical and clinical effects of Nigella sativa and its constituent, thymoquinone: A review. J. Ethnopharmacol. 2016, 190, 372–386. [Google Scholar] [CrossRef] [PubMed]
- Ikhsan, M.; Hiedayati, N.; Maeyama, K.; Nurwidya, F. Nigella sativa as an anti-inflammatory agent in asthma. BMC Res. Notes 2018, 11, 744. [Google Scholar] [CrossRef] [PubMed]
- Daryabeygi-Khotbehsara, R.; Golzaranda, M.; Payam Ghaffarib, M.; Djafariana, K. Nigella sativa improves glucose homeostasis and serum lipids in type 2 diabetes: A systematic review and meta-analysis. Complement. Ther. Med. 2017, 35, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, A.; Ghatreh Samani, K.; Farrokhi, E.; Heidarian, E. Effects of Nigella sativa extracts on the lipid profile and uncoupling protein-1 gene expression in brown adipose tissue of mice. Adv. Biomed. Res. 2018, 7, 121. [Google Scholar] [CrossRef] [PubMed]
- Alsuhaibani, A.M.A. Effect of Nigella sativa against cisplatin induced nephrotoxicity in rats. Ital. J. Food Saf. 2018, 7, 7242. [Google Scholar] [CrossRef] [PubMed]
- Farooqui, Z.; Shahid, F.; Khan, A.A.; Khan, F. Oral administration of Nigella sativa oil and thymoquinone attenuates long term cisplatin treatment induced toxicity and oxidative damage in rat kidney. Biomed. Pharmacother. 2017, 96, 912–923. [Google Scholar] [CrossRef] [PubMed]
- Isik, S.; Kartal, M.; Aslan Erdem, S. Quantitative analysis of thymoquinone in Nigella Sativa L. (Black Cumin) seeds and commercial seed oils and seed oil capsules from Turkey. J. Fac. Pharm. Ankara/Ankara ECZ Fac. Derg. 2017, 41, 34–41. [Google Scholar] [CrossRef]
- Mohammed, N.K.; Abd Manap, M.Y.; Tan, C.P.; Muhialdin, B.J.; Alhelli, A.M.; Meor Hussin, A.S. The effects of different extraction methods on antioxidant properties, chemical composition, and thermal behavior of black seed (Nigella sativa L.) oil. Evid. Based Complement. Alternat. Med. 2016, 2016, 6273817. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.; Al-Naqeep, G.; Chan, K.W. Nigella sativa thymoquinone-rich fraction greatly improves plasma antioxidant capacity and expression of antioxidant genes in hypercholesterolemic rats. Free Rad. Biol. Med. 2010, 48, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Desai, S.D.; Shaik Hussain, S.; Das, K.K.; Haseena, S. Effect of Nigella sativa seed powder on MDA and SOD levels in sterptozotocine induced diabetis albino rats. J. Pharm. Sci. Res. 2015, 7, 206–209. [Google Scholar]
- Zeinvand-Lorestani, H.; Nili-Ahmadabadi, A.; Balak, F.; Hasanzadeh, G.; Sabzevari, O. Protective role of thymoquinone against paraquat-induced hepatotoxicity in mice. Pestic. Biochem. Physiol. 2018, 148, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Liang, Y.; Zhao, B.; Wang, Y. Thymoquinone protects human retinal pigment epithelial cells against hydrogen peroxide induced oxidative stress and apoptosis. J. Cell Biochem. 2019, 120, 4514–4522. [Google Scholar] [CrossRef] [PubMed]
- Mahboubi, M.; Mohammad Taghizadeh Kashani, L.; Mahboubi, M. Nigella sativa fixed oil as alternative treatment in management of pain in arthritis rheumatoid. Phytomedicine 2018, 46, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, N.; Visioli, F.; Buratti, S.; Brighenti, F. Direct analysis of total antioxidant activity of olive oil and studies on the influence of heating. J. Agric. Food Chem. 2001, 49, 2352–2358. [Google Scholar] [CrossRef]
- Zullo, B.A.; Ciafardini, G. The olive oil oxygen radical absorbance capacity (DPPH assay) as a quality indicator. Eur. J. Lipid Sci. Technol. 2008, 110, 428–434. [Google Scholar] [CrossRef]
- Gabbianelli, R.; Falcioni, G.; Santroni, A.M.; Fiorini, R.; Kantar, A. Interaction of trout hemoglobin with H2O2: A chemiluminescence study. J. Biolumin. Chemilumin. 1997, 12, 79–85. [Google Scholar] [CrossRef]
- Murphy, M.E.; Sies, H. Visible-range low-level chemiluminescence in biological systems. Methods Enzymol. 1990, 186, 595–610. [Google Scholar] [PubMed]
- Keuper, M.; Dzyakanchuk, A.; Amrein, K.E.; Wabitsch, M.; Fischer-Posovszky, P. THP-1 macrophages and SGBS adipocytes—A new human in vitro model system of inflamed adipose tissue. Front. Endocrinol. (Lausanne) 2011, 2, 89. [Google Scholar] [CrossRef] [PubMed]
- Aziz, S.A.; Kurniawati, A.; Faridah, D.N. Changes of thymoquinone, thymol, and malondialdehyde content of black cumin (Nigella sativa L.) in response to Indonesia tropical altitude variation. HAYATI J. Biosci. 2017, 24, 156–161. [Google Scholar] [CrossRef]
- Michalczyk, M.; Macura, M. Effect of processing and storage on the antioxidant activity of frozen and pasteurized shadblow serviceberry (Amelanchier Canadensis). Int. J. Food Prop. 2010, 13, 1225–1233. [Google Scholar] [CrossRef]
- Fante, C.A.; de Siqueira Elias, H.H.; de Castro Henrique, P.; Vilas Boas, A.C.; de Oliveira Lima, L.C. Antioxidant activity during storage of apples subjected to irradiation. Ciência Agrotec. 2015, 39, 269–275. [Google Scholar] [CrossRef]
- Hay, F.R.; Probert, R.J. Advances in seed conservation of wild plant species: A review of recent research. Conserv. Physiol. 2013, 1. [Google Scholar] [CrossRef] [PubMed]
- Taranto, F.; Pasqualone, A.; Mangini, G.; Tripodi, P.; Miazzi, M.M.; Pavan, S.; Montemurro, C. Polyphenol oxidases in crops: Biochemical, physiological and genetic aspects. Int. J. Mol. Sci. 2017, 18, 377. [Google Scholar] [CrossRef] [PubMed]
- Montanari, T.; Colitti, M. Simpson–Golabi–Behmel syndrome human adipocytes reveal a changing phenotype throughout differentiation. Histochem. Cell Biol. 2018, 149, 593–605. [Google Scholar] [CrossRef] [PubMed]
- Yeo, C.R.; Agrawal, M.; Hoon, S.; Shabbir, A.; Shrivastava, M.K.; Huang, S.; Khoo, C.M.; Chhay, V.; Yassin, M.S.; Tai, E.S.; et al. SGBS cells as a model of human adipocyte browning: A comprehensive comparative study with primary human white subcutaneous adipocytes. Sci. Rep. 2017, 7, 4031. [Google Scholar] [CrossRef] [PubMed]
- Makki, K.; Froguel, P.; Wolowczuk, I. Adipose tissue in obesity-related inflammation and insulin resistance: Cells, cytokines, and chemokines. ISRN Inflamm. 2013, 2013, 139239. [Google Scholar] [CrossRef] [PubMed]
- Allott, E.H.; Oliver, E.; Lysaght, J.; Gray, S.G.; Reynolds, J.V.; Roche, H.M.; Pidgeon, G.P. The SGBS cell strain as a model for the in vitro study of obesity and cancer. Clin. Transl. Oncol. 2012, 14, 774–782. [Google Scholar] [CrossRef] [PubMed]
- Vandanmagsar, B.; Youm, Y.-H.; Ravussin, A.; Galgani, J.E.; Stadler, K.; Mynatt, R.L.; Ravussin, E.; Stephens, J.M.; Deep Dixit, V. The NALP3/NLRP3 inflammasome instigates obesity-induced autoinflammation and insulin resistance. Nat. Med. 2011, 17, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Michaud, M.; Balardy, L.; Moulis, G.; Gaudin, C.; Peyrot, C.; Vellas, B.; Cesari, M.; Nourhashemi, F. Proinflammatory cytokines, aging, and age-related diseases. J. Am. Med. Dir. Assoc. 2013, 14, 877–882. [Google Scholar] [CrossRef] [PubMed]
- Jager, J.; Grémeaux, T.; Cormont, M.; Le Marchand–Brustel, Y.; Tanti, J.F. Interleukin-1beta–induced insulin resistance in adipocytes through down–regulation of insulin receptor substrate-1 expression. Endocrinology 2007, 148, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef] [PubMed]
- Spranger, J.; Kroke, A.; Möhlig, M.; Hoffmann, K.; Bergmann, M.M.; Ristow, M.; Boeing, H.; Pfeiffer, A.F. Inflammatory cytokines and the risk to develop type 2 diabetes: Results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 2003, 52, 812–817. [Google Scholar] [CrossRef] [PubMed]
- Rider, P.; Carmi, Y.; Guttman, O.; Braiman, A.; Cohen, I.; Voronov, E.; White, M.R.; Dinarello, C.A.; Apte, R.N. IL-1α and IL-1β recruit different myeloid cells and promote different stages of sterile inflammation. J. Immunol. 2011, 187, 4835–4843. [Google Scholar] [CrossRef] [PubMed]
- Apte, R.N.; Voronov, E. Immunotherapeutic approaches of IL-1 neutralization in the tumor microenvironment. J. Leukoc. Biol. 2017, 102, 293–306. [Google Scholar] [CrossRef] [PubMed]
(a) Intra Day | ||
Sample | Mean ± SDmg/mL | RDS% |
SEO | 4.767 ± 0.116 | 2.44 |
FEO | 7.200* ± 0.078 | 1.08 |
(b) Inter Day | ||
Sample | Mean ± SDmg/mL | RDS% |
SEO | 4.834 ± 0.117 | 2.43 |
FEO | 7.118* ± 0.083 | 1.18 |
Sample (10 µL) | Luminol-Amplified CL (Scavenger Activity H2O2) | Lucigenin-Amplified CL (Scavenger Activity to O2−.) |
---|---|---|
SEO | 140.68 1 ± 4.66 | 0.0138 2 ± 1.54 × 10−5 |
FEO | 132.78 1 ± 11.33 1 | 0.0137 2 ± 4.175 × 104 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bordoni, L.; Fedeli, D.; Nasuti, C.; Maggi, F.; Papa, F.; Wabitsch, M.; De Caterina, R.; Gabbianelli, R. Antioxidant and Anti-Inflammatory Properties of Nigella sativa Oil in Human Pre-Adipocytes. Antioxidants 2019, 8, 51. https://doi.org/10.3390/antiox8020051
Bordoni L, Fedeli D, Nasuti C, Maggi F, Papa F, Wabitsch M, De Caterina R, Gabbianelli R. Antioxidant and Anti-Inflammatory Properties of Nigella sativa Oil in Human Pre-Adipocytes. Antioxidants. 2019; 8(2):51. https://doi.org/10.3390/antiox8020051
Chicago/Turabian StyleBordoni, Laura, Donatella Fedeli, Cinzia Nasuti, Filippo Maggi, Fabrizio Papa, Martin Wabitsch, Raffaele De Caterina, and Rosita Gabbianelli. 2019. "Antioxidant and Anti-Inflammatory Properties of Nigella sativa Oil in Human Pre-Adipocytes" Antioxidants 8, no. 2: 51. https://doi.org/10.3390/antiox8020051
APA StyleBordoni, L., Fedeli, D., Nasuti, C., Maggi, F., Papa, F., Wabitsch, M., De Caterina, R., & Gabbianelli, R. (2019). Antioxidant and Anti-Inflammatory Properties of Nigella sativa Oil in Human Pre-Adipocytes. Antioxidants, 8(2), 51. https://doi.org/10.3390/antiox8020051