Role of Oxidative Stress and Neuroinflammation in Attention-Deficit/Hyperactivity Disorder
Abstract
:1. Introduction
1.1. Attention-Deficit/Hyperactivity Disorder
1.2. Medications for ADHD
1.3. Etiology of ADHD
1.4. Pathophysiology of ADHD
2. Role of Oxidative Stress
2.1. Oxidative Stress and Oxidant Levels
2.2. Nitrosative Stress
2.3. Antioxidant Levels in ADHD
2.4. ADHD Medications and Oxidative Damage
3. Role of Neuroinflammation
3.1. Inflammation and Polymorphisms
3.2. Antibodies in ADHD
3.3. Comorbidity with Other Disorders
4. Use of Dietary and Natural Compounds against Oxidative Stress and Neuroinflammation in ADHD
5. Conclusions
Funding
Conflicts of Interest
References
- Faraone, S.V.; Asherson, P.; Banaschewski, T.; Biederman, J.; Buitelaar, J.K.; Ramos-Quiroga, J.A.; Rohde, L.A.; Sonuga-Barke, E.J.; Tannock, R.; Franke, B. Attention-deficit/hyperactivity disorder. Nat. Rev. Dis. Primers 2015, 1, 15020. [Google Scholar] [CrossRef]
- Corona, J.C. Natural Compounds for the Management of Parkinson’s Disease and Attention-Deficit/Hyperactivity Disorder. Biomed. Res. Int. 2018, 2018, 4067597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez-Arellano, L.; Gonzalez-Garcia, N.; Salazar-Garcia, M.; Corona, J.C. Antioxidants as a Potential Target against Inflammation and Oxidative Stress in Attention-Deficit/Hyperactivity Disorder. Antioxidants 2020, 9, 176. [Google Scholar] [CrossRef] [Green Version]
- Wolraich, M.L.; Hagan, J.F., Jr.; Allan, C.; Chan, E.; Davison, D.; Earls, M.; Evans, S.W.; Flinn, S.K.; Froehlich, T.; Frost, J.; et al. Clinical Practice Guideline for the Diagnosis, Evaluation, and Treatment of Attention-Deficit/Hyperactivity Disorder in Children and Adolescents. Pediatrics 2019, 144, e20192528. [Google Scholar] [CrossRef] [Green Version]
- Jensen, P.S.; Hinshaw, S.P.; Kraemer, H.C.; Lenora, N.; Newcorn, J.H.; Abikoff, H.B.; March, J.S.; Arnold, L.E.; Cantwell, D.P.; Conners, C.K.; et al. ADHD comorbidity findings from the MTA study: Comparing comorbid subgroups. J. Am. Acad. Child. Adolesc. Psychiatry 2001, 40, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Tejeda-Romero, C.; Kobashi-Margain, R.A.; Alvarez-Arellano, L.; Corona, J.C.; Gonzalez-Garcia, N. Differences in substance use, psychiatric disorders and social factors between Mexican adolescents and young adults. Am. J. Addict. 2018, 27, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Newcorn, J.H.; Halperin, J.M.; Jensen, P.S.; Abikoff, H.B.; Arnold, L.E.; Cantwell, D.P.; Conners, C.K.; Elliott, G.R.; Epstein, J.N.; Greenhill, L.L.; et al. Symptom profiles in children with ADHD: Effects of comorbidity and gender. J. Am. Acad. Child. Adolesc. Psychiatry 2001, 40, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Yoshimasu, K.; Barbaresi, W.J.; Colligan, R.C.; Voigt, R.G.; Weaver, A.L.; Katusic, S.K. Mediating and Moderating Role of Depression, Conduct Disorder or Attention-Deficit/Hyperactivity Disorder in Developing Adolescent Substance Use Disorders: A Population-Based Study. PLoS ONE 2016, 11, e0157488. [Google Scholar] [CrossRef]
- Posner, J.; Polanczyk, G.V.; Sonuga-Barke, E. Attention-deficit hyperactivity disorder. Lancet 2020, 395, 450–462. [Google Scholar] [CrossRef]
- Polanczyk, G.; de Lima, M.S.; Horta, B.L.; Biederman, J.; Rohde, L.A. The worldwide prevalence of ADHD: A systematic review and metaregression analysis. Am. J. Psychiatry 2007, 164, 942–948. [Google Scholar] [CrossRef]
- Sayal, K.; Prasad, V.; Daley, D.; Ford, T.; Coghill, D. ADHD in children and young people: Prevalence, care pathways, and service provision. Lancet Psychiatry 2018, 5, 175–186. [Google Scholar] [CrossRef]
- Willcutt, E.G. The prevalence of DSM-IV attention-deficit/hyperactivity disorder: A meta-analytic review. Neurotherapeutics 2012, 9, 490–499. [Google Scholar] [CrossRef] [Green Version]
- Caye, A.; Spadini, A.V.; Karam, R.G.; Grevet, E.H.; Rovaris, D.L.; Bau, C.H.; Rohde, L.A.; Kieling, C. Predictors of persistence of ADHD into adulthood: A systematic review of the literature and meta-analysis. Eur. Child. Adolesc. Psychiatry 2016, 25, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Wilens, T.E.; Faraone, S.V.; Biederman, J. Attention-deficit/hyperactivity disorder in adults. JAMA 2004, 292, 619–623. [Google Scholar] [CrossRef] [PubMed]
- Wilens, T.E.; Spencer, T.J. Understanding attention-deficit/hyperactivity disorder from childhood to adulthood. Postgrad. Med. 2010, 122, 97–109. [Google Scholar] [CrossRef]
- Geffen, J.; Forster, K. Treatment of adult ADHD: A clinical perspective. Ther. Adv. Psychopharmacol. 2018, 8, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Koda, K.; Ago, Y.; Cong, Y.; Kita, Y.; Takuma, K.; Matsuda, T. Effects of acute and chronic administration of atomoxetine and methylphenidate on extracellular levels of noradrenaline, dopamine and serotonin in the prefrontal cortex and striatum of mice. J. Neurochem. 2010, 114, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Clemow, D.B. Misuse of Methylphenidate. Curr. Top. Behav. Neurosci. 2017, 34, 99–124. [Google Scholar]
- Swanson, J.M.; Elliott, G.R.; Greenhill, L.L.; Wigal, T.; Arnold, L.E.; Vitiello, B.; Hechtman, L.; Epstein, J.N.; Pelham, W.E.; Abikoff, H.B.; et al. Effects of stimulant medication on growth rates across 3 years in the MTA follow-up. J. Am. Acad. Child. Adolesc. Psychiatry 2007, 46, 1015–1027. [Google Scholar] [CrossRef]
- Greenhill, L.L.; Swanson, J.M.; Hechtman, L.; Waxmonsky, J.; Arnold, L.E.; Molina, B.S.G.; Hinshaw, S.P.; Jensen, P.S.; Abikoff, H.B.; Wigal, T.; et al. Trajectories of Growth Associated With Long-Term Stimulant Medication in the Multimodal Treatment Study of Attention-Deficit/Hyperactivity Disorder. J. Am. Acad. Child. Adolesc. Psychiatry 2019. [Google Scholar] [CrossRef]
- Cinnamon Bidwell, L.; Dew, R.E.; Kollins, S.H. Alpha-2 adrenergic receptors and attention-deficit/hyperactivity disorder. Curr. Psychiatry Rep. 2010, 12, 366–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bymaster, F.P.; Katner, J.S.; Nelson, D.L.; Hemrick-Luecke, S.K.; Threlkeld, P.G.; Heiligenstein, J.H.; Morin, S.M.; Gehlert, D.R.; Perry, K.W. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: A potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 2002, 27, 699–711. [Google Scholar] [CrossRef]
- Reed, V.A.; Buitelaar, J.K.; Anand, E.; Day, K.A.; Treuer, T.; Upadhyaya, H.P.; Coghill, D.R.; Kryzhanovskaya, L.A.; Savill, N.C. The Safety of Atomoxetine for the Treatment of Children and Adolescents with Attention-Deficit/Hyperactivity Disorder: A Comprehensive Review of Over a Decade of Research. CNS Drugs 2016, 30, 603–628. [Google Scholar] [CrossRef] [PubMed]
- Faraone, S.V.; Perlis, R.H.; Doyle, A.E.; Smoller, J.W.; Goralnick, J.J.; Holmgren, M.A.; Sklar, P. Molecular genetics of attention-deficit/hyperactivity disorder. Biol. Psychiatry 2005, 57, 1313–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palladino, V.S.; McNeill, R.; Reif, A.; Kittel-Schneider, S. Genetic risk factors and gene-environment interactions in adult and childhood attention-deficit/hyperactivity disorder. Psychiatr. Genet. 2019, 29, 63–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thapar, A. Discoveries on the Genetics of ADHD in the 21st Century: New Findings and Their Implications. Am. J. Psychiatry 2018, 175, 943–950. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.; O’Donovan, M.C.; Thapar, A.; Langley, K.; Williams, N. The relative contribution of common and rare genetic variants to ADHD. Transl. Psychiatry 2015, 5, e506. [Google Scholar] [CrossRef] [Green Version]
- Franke, B.; Faraone, S.V.; Asherson, P.; Buitelaar, J.; Bau, C.H.; Ramos-Quiroga, J.A.; Mick, E.; Grevet, E.H.; Johansson, S.; Haavik, J.; et al. The genetics of attention deficit/hyperactivity disorder in adults, a review. Mol. Psychiatry 2012, 17, 960–987. [Google Scholar] [CrossRef] [Green Version]
- Nigg, J.T.; Elmore, A.L.; Natarajan, N.; Friderici, K.H.; Nikolas, M.A. Variation in an Iron Metabolism Gene Moderates the Association Between Blood Lead Levels and Attention-Deficit/Hyperactivity Disorder in Children. Psychol. Sci. 2016, 27, 257–269. [Google Scholar] [CrossRef]
- Nigg, J.T.; Breslau, N. Prenatal smoking exposure, low birth weight, and disruptive behavior disorders. J. Am. Acad. Child. Adolesc. Psychiatry 2007, 46, 362–369. [Google Scholar] [CrossRef]
- Knopik, V.S.; Sparrow, E.P.; Madden, P.A.; Bucholz, K.K.; Hudziak, J.J.; Reich, W.; Slutske, W.S.; Grant, J.D.; McLaughlin, T.L.; Todorov, A.; et al. Contributions of parental alcoholism, prenatal substance exposure, and genetic transmission to child ADHD risk: A female twin study. Psychol. Med. 2005, 35, 625–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genro, J.P.; Kieling, C.; Rohde, L.A.; Hutz, M.H. Attention-deficit/hyperactivity disorder and the dopaminergic hypotheses. Expert Rev. Neurother. 2010, 10, 587–601. [Google Scholar] [CrossRef]
- Swanson, J.M.; Kinsbourne, M.; Nigg, J.; Lanphear, B.; Stefanatos, G.A.; Volkow, N.; Taylor, E.; Casey, B.J.; Castellanos, F.X.; Wadhwa, P.D. Etiologic subtypes of attention-deficit/hyperactivity disorder: Brain imaging, molecular genetic and environmental factors and the dopamine hypothesis. Neuropsychol. Rev. 2007, 17, 39–59. [Google Scholar] [CrossRef] [PubMed]
- Del Campo, N.; Chamberlain, S.R.; Sahakian, B.J.; Robbins, T.W. The roles of dopamine and noradrenaline in the pathophysiology and treatment of attention-deficit/hyperactivity disorder. Biol. Psychiatry 2011, 69, e145–e157. [Google Scholar] [CrossRef] [PubMed]
- Prince, J. Catecholamine dysfunction in attention-deficit/hyperactivity disorder: An update. J. Clin. Psychopharmacol. 2008, 28, S39–S45. [Google Scholar] [CrossRef]
- Lopresti, A.L. Oxidative and nitrosative stress in ADHD: Possible causes and the potential of antioxidant-targeted therapies. Atten. Defic. Hyperact. Dis. 2015, 7, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Joseph, N.; Zhang-James, Y.; Perl, A.; Faraone, S.V. Oxidative Stress and ADHD: A Meta-Analysis. J. Atten. Dis. 2015, 19, 915–924. [Google Scholar] [CrossRef]
- Instanes, J.T.; Halmoy, A.; Engeland, A.; Haavik, J.; Furu, K.; Klungsoyr, K. Attention-Deficit/Hyperactivity Disorder in Offspring of Mothers With Inflammatory and Immune System Diseases. Biol. Psychiatry 2017, 81, 452–459. [Google Scholar] [CrossRef] [Green Version]
- Dunn, G.A.; Nigg, J.T.; Sullivan, E.L. Neuroinflammation as a risk factor for attention deficit hyperactivity disorder. Pharm. Biochem. Behav. 2019, 182, 22–34. [Google Scholar] [CrossRef]
- Leffa, D.T.; Torres, I.L.S.; Rohde, L.A. A Review on the Role of Inflammation in Attention-Deficit/Hyperactivity Disorder. Neuroimmunomodulation 2018, 25, 328–333. [Google Scholar] [CrossRef]
- Cobley, J.N.; Fiorello, M.L.; Bailey, D.M. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 2018, 15, 490–503. [Google Scholar] [CrossRef] [PubMed]
- Singh, E.; Devasahayam, G. Neurodegeneration by oxidative stress: A review on prospective use of small molecules for neuroprotection. Mol. Biol. Rep. 2020, 47, 3133–3140. [Google Scholar] [CrossRef] [PubMed]
- Corona, J.C.; Duchen, M.R. Impaired mitochondrial homeostasis and neurodegeneration: Towards new therapeutic targets? J. Bioenerg. Biomembr. 2015, 47, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Moniczewski, A.; Gawlik, M.; Smaga, I.; Niedzielska, E.; Krzek, J.; Przegalinski, E.; Pera, J.; Filip, M. Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part 1. Chemical aspects and biological sources of oxidative stress in the brain. Pharm. Rep. 2015, 67, 560–568. [Google Scholar] [CrossRef]
- Smaga, I.; Niedzielska, E.; Gawlik, M.; Moniczewski, A.; Krzek, J.; Przegalinski, E.; Pera, J.; Filip, M. Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part 2. Depression, anxiety, schizophrenia and autism. Pharm. Rep. 2015, 67, 569–580. [Google Scholar] [CrossRef]
- Weng, M.; Xie, X.; Liu, C.; Lim, K.L.; Zhang, C.W.; Li, L. The Sources of Reactive Oxygen Species and Its Possible Role in the Pathogenesis of Parkinson’s Disease. Parkinsons Dis. 2018, 2018, 9163040. [Google Scholar] [CrossRef] [Green Version]
- de Araujo Boleti, A.P.; de Oliveira Flores, T.M.; Moreno, S.E.; Anjos, L.D.; Mortari, M.R.; Migliolo, L. Neuroinflammation: An overview of neurodegenerative and metabolic diseases and of biotechnological studies. Neurochem. Int. 2020, 136, 104714. [Google Scholar] [CrossRef]
- Solleiro-Villavicencio, H.; Rivas-Arancibia, S. Effect of Chronic Oxidative Stress on Neuroinflammatory Response Mediated by CD4+T Cells in Neurodegenerative Diseases. Front. Cell. Neurosci. 2018, 12, 114. [Google Scholar] [CrossRef] [Green Version]
- Ross, B.M.; McKenzie, I.; Glen, I.; Bennett, C.P. Increased levels of ethane, a non-invasive marker of n-3 fatty acid oxidation, in breath of children with attention deficit hyperactivity disorder. Nutr. Neurosci. 2003, 6, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Bulut, M.; Selek, S.; Gergerlioglu, H.S.; Savas, H.A.; Yilmaz, H.R.; Yuce, M.; Ekici, G. Malondialdehyde levels in adult attention-deficit hyperactivity disorder. J. Psychiatry Neurosci. 2007, 32, 435–438. [Google Scholar]
- Bulut, M.; Selek, S.; Bez, Y.; Cemal Kaya, M.; Gunes, M.; Karababa, F.; Celik, H.; Savas, H.A. Lipid peroxidation markers in adult attention deficit hyperactivity disorder: New findings for oxidative stress. Psychiatry Res. 2013, 209, 638–642. [Google Scholar] [CrossRef] [PubMed]
- Chovanova, Z.; Muchova, J.; Sivonova, M.; Dvorakova, M.; Zitnanova, I.; Waczulikova, I.; Trebaticka, J.; Skodacek, I.; Durackova, Z. Effect of polyphenolic extract, Pycnogenol, on the level of 8-oxoguanine in children suffering from attention deficit/hyperactivity disorder. Free Radic. Res. 2006, 40, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Ceylan, M.; Sener, S.; Bayraktar, A.C.; Kavutcu, M. Oxidative imbalance in child and adolescent patients with attention-deficit/hyperactivity disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010, 34, 1491–1494. [Google Scholar] [CrossRef]
- Kawatani, M.; Tsukahara, H.; Mayumi, M. Evaluation of oxidative stress status in children with pervasive developmental disorder and attention deficit hyperactivity disorder using urinary-specific biomarkers. Redox Rep. 2011, 16, 45–46. [Google Scholar] [CrossRef]
- Ceylan, M.F.; Sener, S.; Bayraktar, A.C.; Kavutcu, M. Changes in oxidative stress and cellular immunity serum markers in attention-deficit/hyperactivity disorder. Psychiatry Clin. Neurosci. 2012, 66, 220–226. [Google Scholar] [CrossRef]
- Oztop, D.; Altun, H.; Baskol, G.; Ozsoy, S. Oxidative stress in children with attention deficit hyperactivity disorder. Clin. Biochem. 2012, 45, 745–748. [Google Scholar] [CrossRef]
- Spahis, S.; Vanasse, M.; Belanger, S.A.; Ghadirian, P.; Grenier, E.; Levy, E. Lipid profile, fatty acid composition and pro- and anti-oxidant status in pediatric patients with attention-deficit/hyperactivity disorder. Prostaglandins Leukot. Essent. Fat. Acids 2008, 79, 47–53. [Google Scholar] [CrossRef]
- Selek, S.; Bulut, M.; Ocak, A.R.; Kalenderoglu, A.; Savas, H.A. Evaluation of total oxidative status in adult attention deficit hyperactivity disorder and its diagnostic implications. J. Psychiatr. Res. 2012, 46, 451–455. [Google Scholar] [CrossRef]
- Kul, M.; Unal, F.; Kandemir, H.; Sarkarati, B.; Kilinc, K.; Kandemir, S.B. Evaluation of Oxidative Metabolism in Child and Adolescent Patients with Attention Deficit Hyperactivity Disorder. Psychiatry Investig. 2015, 12, 361–366. [Google Scholar] [CrossRef] [Green Version]
- Guney, E.; Cetin, F.H.; Alisik, M.; Tunca, H.; Tas Torun, Y.; Iseri, E.; Isik Taner, Y.; Cayci, B.; Erel, O. Attention Deficit Hyperactivity Disorder and oxidative stress: A short term follow up study. Psychiatry Res. 2015, 229, 310–317. [Google Scholar] [CrossRef]
- Sezen, H.; Kandemir, H.; Savik, E.; Basmaci Kandemir, S.; Kilicaslan, F.; Bilinc, H.; Aksoy, N. Increased oxidative stress in children with attention deficit hyperactivity disorder. Redox Rep. 2016, 21, 248–253. [Google Scholar] [CrossRef] [Green Version]
- Karababa, I.F.; Savas, S.N.; Selek, S.; Cicek, E.; Cicek, E.I.; Asoglu, M.; Bayazit, H.; Kandemir, H.; Kati, M.; Ulas, T. Homocysteine Levels and Oxidative Stress Parameters in Patients With Adult ADHD. J. Atten. Dis. 2017, 21, 487–493. [Google Scholar] [CrossRef]
- Leffa, D.T.; Bellaver, B.; de Oliveira, C.; de Macedo, I.C.; de Freitas, J.S.; Grevet, E.H.; Caumo, W.; Rohde, L.A.; Quincozes-Santos, A.; Torres, I.L.S. Increased Oxidative Parameters and Decreased Cytokine Levels in an Animal Model of Attention-Deficit/Hyperactivity Disorder. Neurochem. Res. 2017, 42, 3084–3092. [Google Scholar] [CrossRef]
- Nasim, S.; Naeini, A.A.; Najafi, M.; Ghazvini, M.; Hassanzadeh, A. Relationship between Antioxidant Status and Attention Deficit Hyperactivity Disorder among Children. Int. J. Prev. Med. 2019, 10, 41. [Google Scholar]
- Verlaet, A.A.J.; Breynaert, A.; Ceulemans, B.; De Bruyne, T.; Fransen, E.; Pieters, L.; Savelkoul, H.F.J.; Hermans, N. Oxidative stress and immune aberrancies in attention-deficit/hyperactivity disorder (ADHD): A case-control comparison. Eur. Child. Adolesc. Psychiatry 2019, 28, 719–729. [Google Scholar] [CrossRef]
- Kozlowska, A.; Wojtacha, P.; Rowniak, M.; Kolenkiewicz, M.; Huang, A.C.W. ADHD pathogenesis in the immune, endocrine and nervous systems of juvenile and maturating SHR and WKY rats. Psychopharmacology 2019, 236, 2937–2958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitaoka, T.; Morimoto, M.; Hashimoto, T.; Tsuda, Y.; Nakatsu, T.; Kyotani, S. Evaluation of the efficacy of drug treatment based on measurement of the oxidative stress, using reactive oxygen metabolites and biological antioxidant potential, in children with autism spectrum disorder and attention deficit hyperactivity disorder. J. Pharm. Health Care Sci. 2020, 6, 8. [Google Scholar] [CrossRef]
- Avcil, S.; Uysal, P.; Yenisey, C.; Abas, B.I. Elevated Melatonin Levels in Children with Attention Deficit Hyperactivity Disorder: Relationship to Oxidative and Nitrosative Stress. J. Atten. Dis. 2019. [Google Scholar] [CrossRef]
- Aspide, R.; Gironi Carnevale, U.A.; Sergeant, J.A.; Sadile, A.G. Non-selective attention and nitric oxide in putative animal models of Attention-Deficit Hyperactivity Disorder. Behav. Brain Res. 1998, 95, 123–133. [Google Scholar] [CrossRef]
- Varol Tas, F.; Guvenir, T.; Tas, G.; Cakaloz, B.; Ormen, M. Nitric oxide levels in disruptive behavioral disorder. Neuropsychobiology 2006, 53, 176–180. [Google Scholar] [CrossRef]
- Selek, S.; Savas, H.A.; Gergerlioglu, H.S.; Bulut, M.; Yilmaz, H.R. Oxidative imbalance in adult attention deficit/hyperactivity disorder. Biol. Psychol. 2008, 79, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Swanson, C.J.; Perry, K.W.; Koch-Krueger, S.; Katner, J.; Svensson, K.A.; Bymaster, F.P. Effect of the attention deficit/hyperactivity disorder drug atomoxetine on extracellular concentrations of norepinephrine and dopamine in several brain regions of the rat. Neuropharmacology 2006, 50, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.R.; Reinke, A.; Petronilho, F.C.; Gomes, K.M.; Dal-Pizzol, F.; Quevedo, J. Methylphenidate treatment induces oxidative stress in young rat brain. Brain Res. 2006, 1078, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Andreazza, A.C.; Frey, B.N.; Valvassori, S.S.; Zanotto, C.; Gomes, K.M.; Comim, C.M.; Cassini, C.; Stertz, L.; Ribeiro, L.C.; Quevedo, J.; et al. DNA damage in rats after treatment with methylphenidate. Prog. Neuropsychopharmacol. Biol. Psychiatry 2007, 31, 1282–1288. [Google Scholar] [CrossRef]
- Fagundes, A.O.; Rezin, G.T.; Zanette, F.; Grandi, E.; Assis, L.C.; Dal-Pizzol, F.; Quevedo, J.; Streck, E.L. Chronic administration of methylphenidate activates mitochondrial respiratory chain in brain of young rats. Int. J. Dev. Neurosci. 2007, 25, 47–51. [Google Scholar] [CrossRef]
- Gomes, K.M.; Inacio, C.G.; Valvassori, S.S.; Reus, G.Z.; Boeck, C.R.; Dal-Pizzol, F.; Quevedo, J. Superoxide production after acute and chronic treatment with methylphenidate in young and adult rats. Neurosci. Lett. 2009, 465, 95–98. [Google Scholar] [CrossRef]
- Schmitz, F.; Scherer, E.B.; Machado, F.R.; da Cunha, A.A.; Tagliari, B.; Netto, C.A.; Wyse, A.T. Methylphenidate induces lipid and protein damage in prefrontal cortex, but not in cerebellum, striatum and hippocampus of juvenile rats. Metab. Brain Dis. 2012, 27, 605–612. [Google Scholar] [CrossRef]
- Comim, C.M.; Gomes, K.M.; Reus, G.Z.; Petronilho, F.; Ferreira, G.K.; Streck, E.L.; Dal-Pizzol, F.; Quevedo, J. Methylphenidate treatment causes oxidative stress and alters energetic metabolism in an animal model of attention-deficit hyperactivity disorder. Acta Neuropsychiatr. 2014, 26, 96–103. [Google Scholar] [CrossRef]
- Motaghinejad, M.; Motevalian, M.; Shabab, B.; Fatima, S. Effects of acute doses of methylphenidate on inflammation and oxidative stress in isolated hippocampus and cerebral cortex of adult rats. J. Neural. Transm. (Vienna) 2017, 124, 121–131. [Google Scholar] [CrossRef]
- Corona, J.C.; Carreon-Trujillo, S.; Gonzalez-Perez, R.; Gomez-Bautista, D.; Vazquez-Gonzalez, D.; Salazar-Garcia, M. Atomoxetine produces oxidative stress and alters mitochondrial function in human neuron-like cells. Sci. Rep. 2019, 9, 13011. [Google Scholar] [CrossRef]
- Dutt, M.; Dharavath, R.N.; Kaur, T.; Chopra, K.; Sharma, S. Differential effects of alprazolam against methylphenidate-induced neurobehavioral alterations. Physiol. Behav. 2020, 222, 112935. [Google Scholar] [CrossRef] [PubMed]
- Dvorakova, M.; Sivonova, M.; Trebaticka, J.; Skodacek, I.; Waczulikova, I.; Muchova, J.; Durackova, Z. The effect of polyphenolic extract from pine bark, Pycnogenol on the level of glutathione in children suffering from attention deficit hyperactivity disorder (ADHD). Redox. Rep. 2006, 11, 163–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dvorakova, M.; Jezova, D.; Blazicek, P.; Trebaticka, J.; Skodacek, I.; Suba, J.; Iveta, W.; Rohdewald, P.; Durackova, Z. Urinary catecholamines in children with attention deficit hyperactivity disorder (ADHD): Modulation by a polyphenolic extract from pine bark (pycnogenol). Nutr. Neurosci. 2007, 10, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.J. Decreased Serum Cu/Zn SOD Associated with High Copper in Children with Attention Deficit Hyperactivity Disorder (ADHD). J. Cent. Nerv. Syst. Dis. 2010, 2, 9–14. [Google Scholar] [CrossRef] [Green Version]
- El Adham, E.K.; Hassan, A.I.; El Aziz El-Mahdy, A.A. Nutritional and Metabolic Disturbances in Attention Deficit Hyperactivity Disease. Res. J. Med. Med. Sci 2011, 6, 10–16. [Google Scholar]
- Ruchi, K.; Anil Kumar, S.; Sunil, G.; Bashir, A.; and Prabhat, S. Antioxidant activity in children with ADHD—A comparison in untreated and treated subjects with normal children. Med. J. Malays. 2011, 10, 31–35. [Google Scholar]
- Archana, E.; Pai, P.; Prabhu, B.K.; Shenoy, R.P.; Prabhu, K.; Rao, A. Altered biochemical parameters in saliva of pediatric attention deficit hyperactivity disorder. Neurochem. Res. 2012, 37, 330–334. [Google Scholar] [CrossRef]
- Gomes, K.M.; Petronilho, F.C.; Mantovani, M.; Garbelotto, T.; Boeck, C.R.; Dal-Pizzol, F.; Quevedo, J. Antioxidant enzyme activities following acute or chronic methylphenidate treatment in young rats. Neurochem. Res. 2008, 33, 1024–1027. [Google Scholar] [CrossRef]
- Goldstein, D.S.; Kopin, I.J.; Sharabi, Y. Catecholamine autotoxicity. Implications for pharmacology and therapeutics of Parkinson disease and related disorders. Pharmacol. Ther. 2014, 144, 268–282. [Google Scholar] [CrossRef] [Green Version]
- Napolitano, A.; Manini, P.; d’Ischia, M. Oxidation chemistry of catecholamines and neuronal degeneration: An update. Curr. Med. Chem. 2011, 18, 1832–1845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smythies, J. Redox aspects of signaling by catecholamines and their metabolites. Antioxid. Redox Signal. 2000, 2, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Neri, M.; Cerretani, D.; Fiaschi, A.I.; Laghi, P.F.; Lazzerini, P.E.; Maffione, A.B.; Micheli, L.; Bruni, G.; Nencini, C.; Giorgi, G.; et al. Correlation between cardiac oxidative stress and myocardial pathology due to acute and chronic norepinephrine administration in rats. J. Cell. Mol. Med. 2007, 11, 156–170. [Google Scholar] [CrossRef]
- Spencer, W.A.; Jeyabalan, J.; Kichambre, S.; Gupta, R.C. Oxidatively generated DNA damage after Cu (II) catalysis of dopamine and related catecholamine neurotransmitters and neurotoxins: Role of reactive oxygen species. Free Radic. Biol. Med. 2011, 50, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Stephenson, J.; Nutma, E.; van der Valk, P.; Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology 2018, 154, 204–219. [Google Scholar] [CrossRef] [Green Version]
- Waisman, A.; Liblau, R.S.; Becher, B. Innate and adaptive immune responses in the CNS. Lancet Neurol. 2015, 14, 945–955. [Google Scholar] [CrossRef]
- Shabab, T.; Khanabdali, R.; Moghadamtousi, S.Z.; Kadir, H.A.; Mohan, G. Neuroinflammation pathways: A general review. Int. J. Neurosci. 2017, 127, 624–633. [Google Scholar] [CrossRef]
- Kohman, R.A.; Rhodes, J.S. Neurogenesis, inflammation and behavior. Brain Behav. Immun. 2013, 27, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Ni Chasaide, C.; Lynch, M.A. The role of the immune system in driving neuroinflammation. Brain Neurosci. Adv. 2020, 4, 2398212819901082. [Google Scholar] [CrossRef] [Green Version]
- Yong, H.Y.F.; Rawji, K.S.; Ghorbani, S.; Xue, M.; Yong, V.W. The benefits of neuroinflammation for the repair of the injured central nervous system. Cell. Mol. Immunol. 2019, 16, 540–546. [Google Scholar] [CrossRef]
- Matta, S.M.; Hill-Yardin, E.L.; Crack, P.J. The influence of neuroinflammation in Autism Spectrum Disorder. Brain Behav. Immun. 2019, 79, 75–90. [Google Scholar] [CrossRef]
- Benedetti, F.; Aggio, V.; Pratesi, M.L.; Greco, G.; Furlan, R. Neuroinflammation in Bipolar Depression. Front. Psychiatry 2020, 11, 71. [Google Scholar] [CrossRef] [Green Version]
- Cernackova, A.; Durackova, Z.; Trebaticka, J.; Mravec, B. Neuroinflammation and depressive disorder: The role of the hypothalamus. J. Clin. Neurosci. 2020, 75, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Buckley, P.F. Neuroinflammation and Schizophrenia. Curr. Psychiatry Rep. 2019, 21, 72. [Google Scholar] [CrossRef] [PubMed]
- Oades, R.D.; Dauvermann, M.R.; Schimmelmann, B.G.; Schwarz, M.J.; Myint, A.M. Attention-deficit hyperactivity disorder (ADHD) and glial integrity: S100B, cytokines and kynurenine metabolism—Effects of medication. Behav. Brain Funct. 2010, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Oades, R.D.; Myint, A.M.; Dauvermann, M.R.; Schimmelmann, B.G.; Schwarz, M.J. Attention-deficit hyperactivity disorder (ADHD) and glial integrity: An exploration of associations of cytokines and kynurenine metabolites with symptoms and attention. Behav. Brain Funct. 2010, 6, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siracusa, R.; Fusco, R.; Cuzzocrea, S. Astrocytes: Role and Functions in Brain Pathologies. Front. Pharm. 2019, 10, 1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandau, U.S.; Alderman, Z.; Corfas, G.; Ojeda, S.R.; Raber, J. Astrocyte-specific disruption of SynCAM1 signaling results in ADHD-like behavioral manifestations. PLoS ONE 2012, 7, e36424. [Google Scholar] [CrossRef] [Green Version]
- Buske-Kirschbaum, A.; Schmitt, J.; Plessow, F.; Romanos, M.; Weidinger, S.; Roessner, V. Psychoendocrine and psychoneuroimmunological mechanisms in the comorbidity of atopic eczema and attention deficit/hyperactivity disorder. Psychoneuroendocrinology 2013, 38, 12–23. [Google Scholar] [CrossRef]
- Darwish, A.H.; Elgohary, T.M.; Nosair, N.A. Serum Interleukin-6 Level in Children with Attention-Deficit Hyperactivity Disorder (ADHD). J. Child. Neurol. 2019, 34, 61–67. [Google Scholar] [CrossRef]
- Chang, J.P.; Mondelli, V.; Satyanarayanan, S.K.; Chiang, Y.J.; Chen, H.T.; Su, K.P.; Pariante, C.M. Cortisol, inflammatory biomarkers and neurotrophins in children and adolescents with attention deficit hyperactivity disorder (ADHD) in Taiwan. Brain Behav. Immun. 2020. [Google Scholar] [CrossRef]
- Segman, R.H.; Meltzer, A.; Gross-Tsur, V.; Kosov, A.; Frisch, A.; Inbar, E.; Darvasi, A.; Levy, S.; Goltser, T.; Weizman, A.; et al. Preferential transmission of interleukin-1 receptor antagonist alleles in attention deficit hyperactivity disorder. Mol. Psychiatry 2002, 7, 72–74. [Google Scholar] [CrossRef] [PubMed]
- Misener, V.L.; Schachar, R.; Ickowicz, A.; Malone, M.; Roberts, W.; Tannock, R.; Kennedy, J.L.; Pathare, T.; Barr, C.L. Replication test for association of the IL-1 receptor antagonist gene, IL1RN, with attention-deficit/hyperactivity disorder. Neuropsychobiology 2004, 50, 231–234. [Google Scholar] [CrossRef]
- Drtilkova, I.; Sery, O.; Theiner, P.; Uhrova, A.; Zackova, M.; Balastikova, B.; Znojil, V. Clinical and molecular-genetic markers of ADHD in children. Neuro Endocrinol. Lett. 2008, 29, 320–327. [Google Scholar]
- Ribases, M.; Hervas, A.; Ramos-Quiroga, J.A.; Bosch, R.; Bielsa, A.; Gastaminza, X.; Fernandez-Anguiano, M.; Nogueira, M.; Gomez-Barros, N.; Valero, S.; et al. Association study of 10 genes encoding neurotrophic factors and their receptors in adult and child attention-deficit/hyperactivity disorder. Biol. Psychiatry 2008, 63, 935–945. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.F.; Anastopoulos, A.D.; Garrett, M.E.; Arias-Vasquez, A.; Franke, B.; Oades, R.D.; Sonuga-Barke, E.; Asherson, P.; Gill, M.; Buitelaar, J.K.; et al. Angiogenic, neurotrophic, and inflammatory system SNPs moderate the association between birth weight and ADHD symptom severity. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2014, 165B, 691–704. [Google Scholar] [CrossRef] [Green Version]
- Fasmer, O.B.; Riise, T.; Eagan, T.M.; Lund, A.; Dilsaver, S.C.; Hundal, O.; Oedegaard, K.J. Comorbidity of asthma with ADHD. J. Atten. Dis. 2011, 15, 564–571. [Google Scholar] [CrossRef]
- Passarelli, F.; Donfrancesco, R.; Nativio, P.; Pascale, E.; Di Trani, M.; Patti, A.M.; Vulcano, A.; Gozzo, P.; Villa, M.P. Anti-Purkinje cell antibody as a biological marker in attention deficit/hyperactivity disorder: A pilot study. J. Neuroimmunol. 2013, 258, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, J.; Romanos, M.; Schmitt, N.M.; Meurer, M.; Kirch, W. Atopic eczema and attention-deficit/hyperactivity disorder in a population-based sample of children and adolescents. JAMA 2009, 301, 724–726. [Google Scholar] [CrossRef] [Green Version]
- Genuneit, J.; Braig, S.; Brandt, S.; Wabitsch, M.; Florath, I.; Brenner, H.; Rothenbacher, D. Infant atopic eczema and subsequent attention-deficit/hyperactivity disorder--a prospective birth cohort study. Pediatr. Allergy Immunol. 2014, 25, 51–56. [Google Scholar] [CrossRef]
- Chen, Q.; Sjolander, A.; Langstrom, N.; Rodriguez, A.; Serlachius, E.; D’Onofrio, B.M.; Lichtenstein, P.; Larsson, H. Maternal pre-pregnancy body mass index and offspring attention deficit hyperactivity disorder: A population-based cohort study using a sibling-comparison design. Int. J. Epidemiol. 2014, 43, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Rivera, H.M.; Christiansen, K.J.; Sullivan, E.L. The role of maternal obesity in the risk of neuropsychiatric disorders. Front. Neurosci. 2015, 9, 194. [Google Scholar] [CrossRef] [PubMed]
- Toto, M.; Margari, F.; Simone, M.; Craig, F.; Petruzzelli, M.G.; Tafuri, S.; Margari, L. Antibasal Ganglia Antibodies and Antistreptolysin O in Noncomorbid ADHD. J. Atten. Dis. 2015, 19, 965–970. [Google Scholar] [CrossRef] [PubMed]
- Peterson, B.S.; Leckman, J.F.; Tucker, D.; Scahill, L.; Staib, L.; Zhang, H.; King, R.; Cohen, D.J.; Gore, J.C.; Lombroso, P. Preliminary findings of antistreptococcal antibody titers and basal ganglia volumes in tic, obsessive-compulsive, and attention deficit/hyperactivity disorders. Arch. Gen. Psychiatry 2000, 57, 364–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giana, G.; Romano, E.; Porfirio, M.C.; D’Ambrosio, R.; Giovinazzo, S.; Troianiello, M.; Barlocci, E.; Travaglini, D.; Granstrem, O.; Pascale, E.; et al. Detection of auto-antibodies to DAT in the serum: Interactions with DAT genotype and psycho-stimulant therapy for ADHD. J. Neuroimmunol. 2015, 278, 212–222. [Google Scholar] [CrossRef]
- Donfrancesco, R.; Nativio, P.; Di Benedetto, A.; Villa, M.P.; Andriola, E.; Melegari, M.G.; Cipriano, E.; Di Trani, M. Anti-Yo Antibodies in Children With ADHD: First Results About Serum Cytokines. J. Atten. Dis. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.H.; Su, T.P.; Chen, Y.S.; Hsu, J.W.; Huang, K.L.; Chang, W.H.; Chen, T.J.; Bai, Y.M. Comorbidity of Allergic and Autoimmune Diseases Among Patients with ADHD. J. Atten. Dis. 2017, 21, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, P.R.; Benros, M.E.; Dalsgaard, S. Associations between Autoimmune Diseases and Attention-Deficit/Hyperactivity Disorder: A Nationwide Study. J. Am. Acad. Child. Adolesc. Psychiatry 2017, 56, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Brawley, A.; Silverman, B.; Kearney, S.; Guanzon, D.; Owens, M.; Bennett, H.; Schneider, A. Allergic rhinitis in children with attention-deficit/hyperactivity disorder. Ann. Allergy Asthma Immunol. 2004, 92, 663–667. [Google Scholar] [CrossRef]
- hen, M.H.; Su, T.P.; Chen, Y.S.; Hsu, J.W.; Huang, K.L.; Chang, W.H.; Bai, Y.M. Attention deficit hyperactivity disorder, tic disorder, and allergy: Is there a link? A nationwide population-based study. J. Child. Psychol. Psychiatry 2013, 54, 545–551. [Google Scholar]
- Tsai, J.D.; Chang, S.N.; Mou, C.H.; Sung, F.C.; Lue, K.H. Association between atopic diseases and attention-deficit/hyperactivity disorder in childhood: A population-based case-control study. Ann. Epidemiol. 2013, 23, 185–188. [Google Scholar] [CrossRef]
- Wang, L.J.; Yu, Y.H.; Fu, M.L.; Yeh, W.T.; Hsu, J.L.; Yang, Y.H.; Chen, W.J.; Chiang, B.L.; Pan, W.H. Attention deficit-hyperactivity disorder is associated with allergic symptoms and low levels of hemoglobin and serotonin. Sci. Rep. 2018, 8, 10229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.F.; Yang, C.C.; Wang, I.J. Association between allergic diseases, allergic sensitization and attention-deficit/hyperactivity disorder in children: A large-scale, population-based study. J. Chin. Med. Assoc. 2018, 81, 277–283. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhu, X.; Liu, C.L.; Shi, H.; Shen, S.; Yang, Y.; Hasegawa, K.; Camargo, C.A.; Liang, L. Shared Genetics of Asthma and Mental Health Disorders: A Large-Scale Genome-Wide Cross-Trait Analysis. Eur. Respir. J. 2019. [Google Scholar] [CrossRef]
- Chudal, R.; Brown, A.S.; Gyllenberg, D.; Hinkka-Yli-Salomaki, S.; Sucksdorff, M.; Surcel, H.M.; Upadhyaya, S.; Sourander, A. Maternal serum C-reactive protein (CRP) and offspring attention deficit hyperactivity disorder (ADHD). Eur. Child. Adolesc. Psychiatry 2020, 29, 239–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moghadas, M.; Essa, M.M.; Ba-Omar, T.; Al-Shehi, A.; Qoronfleh, M.W.; Eltayeb, E.A.; Guillemin, G.J.; Manivasagam, T.; Justin-Thenmozhi, A.; Al-Bulushi, B.S.; et al. Antioxidant therapies in attention deficit hyperactivity disorder. Front. Biosci. 2019, 24, 313–333. [Google Scholar]
- Verlaet, A.A.J.; Maasakkers, C.M.; Hermans, N.; Savelkoul, H.F.J. Rationale for Dietary Antioxidant Treatment of ADHD. Nutrients 2018, 10, 405. [Google Scholar] [CrossRef] [Green Version]
- Richardson, A.J. Omega-3 fatty acids in ADHD and related neurodevelopmental disorders. Int. Rev. Psychiatry 2006, 18, 155–172. [Google Scholar] [CrossRef]
Biomarker/Outcome | Sample Compared to Control/Treatment (Tx) | Reference |
---|---|---|
Improved non-selective attention | Rat intraperitoneal NOS inhibitor | [69] |
↑ Extracellular norepinephrine and dopamine in PC | Rat brain-Tx ATX | [22] |
Breakdown of PUFAs | ↑ exhaled ethane | [49] |
↑ Extracellular norepinephrine and dopamine in PC, OC, HPT, HC, and CB | Rat brain-Tx ATX | [72] |
NO | ↓ Plasma | [70] |
↑ TBARS and protein carbonyl formation | Rat brain regions-Tx MPH | [73] |
8-oxoG | ↑ Plasma | [52] |
↑ DNA damage | Rat blood and brain regions-Tx MPH | [74] |
↑ Mitochondrial complexes | Rat brain homogenates-Tx MPH | [75] |
MDA | ↑ Plasma | [50] |
MDA | ↓ Plasma | [57] |
NO | ↑ Plasma | [71] |
↑ Superoxide in submitochondrial particles in CB and HC | Rat brain-Tx MPH | [76] |
MDA and NO | ↑ Plasma | [53] |
Acrolein-lysine | ↑ Urine | [54] |
TOS and OSI | ↑ Plasma | [58] |
MDA and 8-OHdG | ↓ Plasma | [56] |
XO and NOS | ↑ Serum | [55] |
↓TBARS and reactive species level in HC and ST ↑ Reactive species level and lipid peroxidation in PC | Rat brain homogenates-Tx MPH | [77] |
MDA | ↑ Plasma | [51] |
↑ TBARS and carbonyl groups | Rat brain homogenates-Tx MPH | [78] |
TOS and OSI | ↑ Plasma | [59] |
TOS | ↑ Plasma | [60] |
TOS and OSI | ↑ Serum | [61] |
↑ MDA and induced neurodegeneration in CC and HC | Rat brain homogenates-Tx MPH | [79] |
DCFH-DA | ↑ Rat brain homogenates | [63] |
TOS and OSI | = Serum | [62] |
MDA | = Serum | [64] |
MDA and 8-OHdG | ↑ Plasma and urine | [65] |
MDA and free sulphydryl groups | ↑ Rat spleen | [66] |
Impaired oxidants-antioxidants balance ↑ NO | Serum | [68] |
↑ Cytosolic and mitochondrial ROS, damage of mitochondria and cell death | Cell line-Tx ATX | [80] |
MDA in CX and HC | ↑ Rat brain homogenates-Tx MPH | [81] |
Hydroperoxide | ↑ Serum | [67] |
Biomarker/Outcome | Sample Compared to Control/Treatment (Tx) | Reference |
---|---|---|
TAS | ↓ Plasma | [52] |
TAS | ↓ Plasma | [82] |
↑ Adrenaline and noradrenaline ↑ GSSG level and ↓ GSH level | Plasma | [83] |
SOD (chronic Tx: ↑ CC, HC, and ↓ ST-acute Tx: ↑ CC and ↓ PC) CAT (acute Tx: ↓ HC) | Rat brain-Tx MPH | [88] |
SOD | ↓ Plasma | [71] |
↑ CAT, ↓ GPx and = SOD | Plasma | [53] |
SOD1 | ↓ Serum | [84] |
SOD, GST, GPx, and CAT | ↓ Plasma | [85] |
Antioxidant activity and CAT | ↓ Saliva | [86] |
GST, PON1 | ↓ Serum | [55] |
PON1 and thiol | = Plasma | [56] |
= Ceruloplasmin and ↑ thiol | Saliva | [87] |
TAS | ↑ Plasma | [58] |
↑ SOD and CAT in CB | Rat brain homogenates-Tx MPH | [77] |
PON1 and ARE | ↓ Plasma | [51] |
↓ SOD and CAT | Rat brain homogenates-Tx MPH | [78] |
TAS | ↓ Plasma | [59] |
↓ TAS and thiol = PON and ARE | Plasma | [60] |
TAS, PON1, and ARE | ↓ Serum | [61] |
↓ GSH, SOD, GPx, and GR in CC and HC | Rat brain homogenates-Tx MPH | [79] |
= GSH, SOD, and CAT ↓ GPx in PC | Rat brain homogenates | [63] |
↓ Homocysteine and ↑ Folate = Vitamin B12 and TAS | Serum | [62] |
Retinyl palmitate and GSH | ↑ Plasma and erythrocytes | [65] |
TAC, CAT, and GSH | ↓ Serum | [64] |
Melatonin | ↑ Serum | [68] |
SOD in CX and HC | ↓ Rat brain homogenates-Tx MPH | [81] |
Type of Study | Outcome | References |
---|---|---|
DNA from children | IL-1RA: 2-repeat allele ↓ risk and 4-repeat allele ↑ risk | [111] |
DNA from children | No evidence of IL-1RA polymorphism | [112] |
DNA from children | ↑ Polymorphism of dopamine receptor D2, BDNF, IL-2, IL-6 and TNF-α | [113] |
DNA from children and adults | Association with CNTF | [114] |
Serum from children | ↑ Levels of IL-16 and IL-13 ↓ S100B associated with hyperactive-impulsive symptoms | [105] |
A cross-sectional study of adults | ↑ Comorbidity with asthma | [116] |
Serum from children | ↑ ADA activity | [55] |
Astrocyte-specific disruption of SynCAM1 | ADHD-like behavior abnormalities in mice | [107] |
Serum from children | Positive immunoreactivity against anti-Purkinje cell antibodies in the cerebellum | [117] |
Birth cohort, population-based and correlational studies of children and adolescents | ↑ Comorbidity with atopic eczema | [108,118,119] |
DNA from young | 2 SNPs in CNTF were associated SNPs within IL-16 and S100B moderated birthweight and symptom severity | [115] |
A population-based cohort study using a sibling-comparison design | Maternal obesity and metabolic complications could increase the risk of ADHD in offspring | [120,121] |
Serum from patients | Autoimmune reactions against the basal ganglia and streptococcal infections | [122,123] |
Serum from children | ↑ Auto-antibodies against the dopamine transporter | [124] |
Serum from patients | ↑ Anti-basal ganglia antibodies | [122] |
Serum from children | ↑ Anti-Purkinje antibodies and IL-6 and IL-10 | [125] |
Population-based study of patients | ↑ Prevalence of autoimmune thyroid disease, ulcerative colitis, and ankylosing spondylitis | [126] |
Population-based nested case-control study | Mothers with inflammatory or immune diseases ↑ risk of ADHD in offspring | [38] |
A prospective nationwide study | Maternal history of autoimmune disease could ↑ risk of ADHD | [127] |
Population-based case-control, large-scale cross-sectional, population-based studies, and venous blood of children | ↑ Comorbidity with allergic diseases such as allergic rhinitis, atopic dermatitis, allergic conjunctivitis | [128,129,130,131,132] |
Serum from children | ↑ IL-6 | [109] |
Serum and spleen from SHR | ↑ IP-10, RANTES, and MCP-1 ↑ Levels of IL-6 and TNF-α | [66] |
Large-scale genome-wide cross-trait association study | Causal links between asthma and ADHD | [133] |
Plasma from young | ↑ C-reactive protein and IL-6 and ↓ TNF-α and BDNF | [110] |
Prenatal studies with a nested case-control design | Maternal C-reactive protein during early pregnancy showed no significant association in offspring | [134] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corona, J.C. Role of Oxidative Stress and Neuroinflammation in Attention-Deficit/Hyperactivity Disorder. Antioxidants 2020, 9, 1039. https://doi.org/10.3390/antiox9111039
Corona JC. Role of Oxidative Stress and Neuroinflammation in Attention-Deficit/Hyperactivity Disorder. Antioxidants. 2020; 9(11):1039. https://doi.org/10.3390/antiox9111039
Chicago/Turabian StyleCorona, Juan Carlos. 2020. "Role of Oxidative Stress and Neuroinflammation in Attention-Deficit/Hyperactivity Disorder" Antioxidants 9, no. 11: 1039. https://doi.org/10.3390/antiox9111039