Wild and Cultivated Centaurea raphanina subsp. mixta: A Valuable Source of Bioactive Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Chemical Analyses Assays
2.2.1. Nutritional Value and Energetic Value
2.2.2. Free Sugars
2.2.3. Organic Acids
2.2.4. Tocopherols
2.2.5. Fatty Acids
2.2.6. Phenolic Compounds
2.3. Antioxidant Activity
2.3.1. OxHLIA Assay
2.3.2. TBARS Assay
2.4. Hepatotoxicity and Cytotoxicity Assays
2.5. Antimicrobial Properties
2.6. Statistical Analysis
3. Results and Discussion
3.1. Nutritional Value and Chemical Composition
3.1.1. Proximate Analysis and Energetic Value
3.1.2. Free Sugars Composition
3.1.3. Organic Acids Composition
3.1.4. Tocopherols Composition
3.1.5. Fatty Acids Composition
3.1.6. Phenolic Compounds Composition
3.2. Bioactive Properties
3.2.1. Antioxidant Activity
3.2.2. Hepatotoxicity and Cytotoxic Activity
3.2.3. Antimicrobial Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Turner, N.J.; Łuczaj, Ł.J.; Migliorini, P.; Pieroni, A.; Dreon, A.L.; Sacchetti, L.E.; Paoletti, M.G. Edible and tended wild plants, traditional ecological knowledge and agroecology. Crit. Rev. Plant Sci. 2011, 30, 198–225. [Google Scholar] [CrossRef]
- Nebel, S.; Pieroni, A.; Heinrich, M. Ta chórta: Wild edible greens used in the Graecanic area in Calabria, Southern Italy. Appetite 2006, 47, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Zeghichi, S.; Kallithraka, S.; Simopoulos, A.P.; Kypriotakis, Z. Nutritional composition of selected wild plants in the diet of Greece. World Rev. Nutr. Diet. 2003, 91, 22–40. [Google Scholar]
- Guarrera, P.M.; Savo, V. Wild food plants used in traditional vegetable mixtures in Italy. J. Ethnopharmacol. 2016, 185, 202–234. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Vasilopoulou, E.; Hollman, P.; Chamalides, C.; Foufa, E.; Kaloudis, T.; Kromhout, D.; Miskaki, P.; Petrochilou, I.; Poulima, E.; et al. Nutritional composition and flavonoid content of edible wild greens and green pies: A potential rich source of antioxidant nutrients in the Mediterranean diet. Food Chem. 2000, 70, 319–323. [Google Scholar] [CrossRef]
- Conforti, F.; Sosa, S.; Marrelli, M.; Menichini, F.; Statti, G.A.; Uzunov, D.; Tubaro, A.; Menichini, F. The protective ability of Mediterranean dietary plants against the oxidative damage: The role of radical oxygen species in inflammation and the polyphenol, flavonoid and sterol contents. Food Chem. 2009, 112, 587–594. [Google Scholar] [CrossRef]
- Mikropoulou, E.V.; Vougogiannopoulou, K.; Kalpoutzakis, E.; Sklirou, A.D.; Skaperda, Z.; Houriet, J.; Wolfender, J.L.; Trougakos, I.P.; Kouretas, D.; Halabalaki, M.; et al. Phytochemical composition of the decoctions of Greek edible greens (chórta) and evaluation of antioxidant and cytotoxic properties. Molecules 2018, 23, 1541. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.; Fernandes, A.; Barros, L.; Ferreira, I. A comparison of the phenolic profile and antioxidant activity of different Cichorium spinosum L. ecotypes. J. Sci. Food Agric. 2017, 98, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.; Levizou, E.; Ntatsi, G.; Fernandes, Â.; Petrotos, K.; Akoumianakis, K.; Barros, L.; Ferreira, I. Salinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum L. Food Chem. 2017, 214, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.; Ntatsi, G.; Levizou, E.; Barros, L.; Ferreira, I. Nutritional profile and chemical composition of Cichorium spinosum ecotypes. LWT Food Sci. Technol. 2016, 73, 95–101. [Google Scholar] [CrossRef]
- Brieudes, V.; Angelis, A.; Vougogiannopoulos, K.; Pratsinis, H.; Kletsas, D.; Mitakou, S.; Halabalaki, M.; Skaltsounis, L.A. Phytochemical analysis and antioxidant potential of the phytonutrient-rich decoction of Cichorium spinosum and C. intybus. Planta Med. 2016, 82, 1070–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sokovic, M.; Ciric, A.; Glamoclija, J.; Skaltsa, H. Biological activities of sesquiterpene lactones isolated from the genus Centaurea L. (Asteraceae). Curr. Pharm. Des. 2017, 23, 2767–2786. [Google Scholar] [CrossRef] [PubMed]
- Nacer, A.; Merza, J.; Kabouche, Z.; Rhouati, S.; Boustie, J.; Richomme, P. Sesquiterpene lactones from Centaurea tougourensis. Biochem. Syst. Ecol. 2012, 43, 163–165. [Google Scholar] [CrossRef]
- Simopoulos, A.P.; Tan, D.X.; Manchester, L.C.; Reiter, R.J. Purslane: A plant source of omega-3 fatty acids and melatonin. J. Pineal Res. 2005, 39, 331–332. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Omega-3 fatty acids and antioxidants in edible wild plants. Biol. Res. 2004, 37, 263–277. [Google Scholar] [CrossRef] [Green Version]
- Pieroni, A.; Janiak, V.; Dürr, C.M.; Lüdeke, S.; Trachsel, E.; Heinrich, M. In vitro antioxidant activity of non-cultivated vegetables of ethnic Albanians in southern Italy. Phyther. Res. 2002, 16, 467–473. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Tzortzakis, N.; Sokovic, M.; Ciric, A.; Barros, L.; Ferreira, I.C.F.R. Bioactive compounds content and antimicrobial activities of wild edible Asteraceae species of the Mediterranean flora under commercial cultivation conditions. Food Res. Int. 2019, 119, 859–868. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.; Fernandes, Â.; Karkanis, A.; Ntatsi, G.; Barros, L.; Ferreira, I. Successive harvesting affects yield, chemical composition and antioxidant activity of Cichorium spinosum L. Food Chem. 2017, 237, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.; Fernandes, Â.; Vasileios, A.; Ntatsi, G.; Barros, L.; Ferreira, I.I.C.F.R.; Antoniadis, V.; Ntatsi, G.; Barros, L.; Ferreira, I.I.C.F.R. Chemical composition and antioxidant activity of Cichorium spinosum L. leaves in relation to developmental stage. Food Chem. 2018, 239, 946–952. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.A.; Karkanis, A.; Martins, N.; Ferreira, I.C.F.R. Edible halophytes of the Mediterranean basin: Potential candidates for novel food products. Trends Food Sci. Technol. 2018, 74, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Marín, B.; Milla, R.; Martín-Robles, N.; Arc, E.; Kranner, I.; Becerril, J.M.; García-Plazaola, J.I. Side-effects of domestication: Cultivated legume seeds contain similar tocopherols and fatty acids but less carotenoids than their wild counterparts. BMC Plant Biol. 2014, 14, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ertas, A.; Gören, A.C.; Boga, M.; Demirci, S.; Kolak, U. Chemical composition of the tssential oils of Three Centaurea species growing wild in Anatolia and their anticholinesterase activities. J. Essent. Oil Bear. Plants 2014, 17, 922–926. [Google Scholar] [CrossRef]
- Della, A.; Paraskeva-Hadjichambi, D.; Hadjichambis, A.C. An ethnobotanical survey of wild edible plants of Paphos and Larnaca countryside of Cyprus. J. Ethnobiol. Ethnomed. 2006, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kubacey, T.; Haggag, E.; El-Toumy, S.; Ahmed, A.; El-Ashmawy, I.; Youns, M. Biological activity and flavonoids from Centaurea alexanderina leaf extract. J. Pharm. Res. 2012, 5, 3352–3361. [Google Scholar]
- Csupor, D.; Widowitz, U.; Blazsõ, G.; Laczkõ-Zöld, E.; Tatsimo, J.S.N.; Balogh, Á.; Boros, K.; Dankõ, B.; Bauer, R.; Hohmann, J. Anti-inflammatory activities of eleven Centaurea species occurring in the Carpathian basin. Phyther. Res. 2013, 27, 540–544. [Google Scholar] [CrossRef]
- Tekeli, Y.; Zengin, G.; Aktumsek, A.; Mehmet, S.; Torlak, E. Antibacterial activities of extracts from twelve Centaurea species from Turkey. Arch. Biol. Sci. 2011, 63, 685–690. [Google Scholar] [CrossRef]
- Panagouleas, C.; Skaltsa, H.; Lazari, D.; Skaltsounis, A.L.; Sokovic, M. Antifungal activity of secondary metabolites of Centaurea raphanina ssp. mixta, growing wild in Greece. Pharm. Biol. 2003, 41, 266–270. [Google Scholar]
- Morales, P.; Ferreira, I.C.F.R.; Carvalho, A.M.; Fernández-Ruiz, V.; Sánchez-Mata, M.S.O.S.C.C.; Cámara, M.; Morales, R.; Tardío, J. Wild edible fruits as a potential source of phytochemicals with capacity to inhibit lipid peroxidation. Eur. J. Lipid Sci. Technol. 2013, 115, 176–185. [Google Scholar] [CrossRef]
- Vanzani, P.; Rossetto, M.; De Marco, V.; Sacchetti, L.E.; Paoletti, M.G.; Rigo, A. Wild Mediterranean Plants as Traditional Food: A Valuable Source of Antioxidants. J. Food Sci. 2011, 76, 46–51. [Google Scholar] [CrossRef]
- Schaffer, S.; Schmitt-Schillig, S.; Müller, W.E.; Eckert, G.P. Antioxidant properties of Mediterranean food plant extracts: Geographical differences. J. Physiol. Pharmacol. 2005, 56, 115–124. [Google Scholar]
- Pinela, J.; Carvalho, A.M.; Ferreira, I.C.F.R. Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today ’s society. Food Chem. Toxicol. 2017, 110, 165–188. [Google Scholar] [CrossRef] [Green Version]
- Molina, M.; Tardío, J.; Aceituno-Mata, L.; Morales, R.; Reyes-García, V.; Pardo-de-Santayana, M. Weeds and food diversity: Natural yield assessment and future alternatives for traditionally consumed wild vegetables. J. Ethnobiol. 2014, 34, 44–67. [Google Scholar] [CrossRef]
- Çekiç, Ç.; Özgen, M. Comparison of antioxidant capacity and phytochemical properties of wild and cultivated red raspberries (Rubus idaeus L.). J. Food Compos. Anal. 2010, 23, 540–544. [Google Scholar] [CrossRef]
- Isbilir, S.S.; Sagiroglu, A. Total phenolic content, antiradical and antioxidant activities of wild and cultivated Rumex acetosella L. extracts. Biol. Agric. Hortic. 2013, 29, 219–226. [Google Scholar] [CrossRef]
- Disciglio, G.; Tarantino, A.; Frabboni, L.; Gagliardi, A.; Giuliani, M.M.; Tarantino, E.; Gatta, G. Qualitative characterisation of cultivated and wild edible plants: Mineral elements, phenols content and antioxidant capacity. Ital. J. Agron. 2017, 12, 383–394. [Google Scholar]
- Papafilippaki, A.; Nikolaidis, N.P. Comparative study of wild and cultivated populations of Cichorium spinosum: The influence of soil and organic matter addition. Sci. Hortic. (Amsterdam) 2020, 261, 108942. [Google Scholar] [CrossRef]
- Alu’datt, M.H.; Rababah, T.; Alhamad, M.N.; Al-Tawaha, A.; Al-Tawaha, A.R.; Gammoh, S.; Ereifej, K.I.; Al-Karaki, G.; Hamasha, H.R.; Tranchant, C.C.; et al. Herbal yield, nutritive composition, phenolic contents and antioxidant activity of purslane (Portulaca oleracea L.) grown in different soilless media in a closed system. Ind. Crops Prod. 2019, 141, 111746. [Google Scholar] [CrossRef]
- AOAC. Official methods of analysis of AOAC International. In Official Methods of Analysis of AOAC International; Horwitz, W., Latimer, G., Eds.; AOAC International: Gaithersburg, MD, USA, 2016. [Google Scholar]
- Guimarães, R.; Barros, L.; Dueñas, M.; Calhelha, R.C.; Carvalho, A.M.; Santos-Buelga, C.; Queiroz, M.J.R.P.; Ferreira, I.C.F.R. Nutrients, phytochemicals and bioactivity of wild Roman chamomile: A comparison between the herb and its preparations. Food Chem. 2013, 136, 718–725. [Google Scholar] [CrossRef] [Green Version]
- Pereira, C.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Use of UFLC-PDA for the analysis of organic acids in thirty-five species of food and medicinal plants. Food Anal. Methods 2013, 6, 1337–1344. [Google Scholar] [CrossRef]
- Bessada, S.M.F.; Barreira, J.C.M.; Barros, L.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P. Phenolic profile and antioxidant activity of Coleostephus myconis (L.) Rchb.f.: An underexploited and highly disseminated species. Ind. Crops Prod. 2016, 89, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Lockowandt, L.; Pinela, J.; Roriz, C.L.; Pereira, C.; Abreu, R.M.V.; Calhelha, R.C.; Alves, M.J.; Barros, L.; Bredol, M.; Ferreira, I.C.F.R. Chemical features and bioactivities of cornflower (Centaurea cyanus L.) capitula: The blue flowers and the unexplored non-edible part. Ind. Crops Prod. 2019, 128, 496–503. [Google Scholar] [CrossRef] [Green Version]
- Abreu, R.M.V.; Ferreira, I.C.F.R.; Calhelha, R.C.; Lima, R.T.; Vasconcelos, M.H.; Adega, F.; Chaves, R.; Queiroz, M.J.R.P. Anti-hepatocellular carcinoma activity using human HepG2 cells and hepatotoxicity of 6-substituted methyl 3-aminothieno[3, 2-b]pyridine-2-carboxylate derivatives: In vitro evaluation, cell cycle analysis and QSAR studies. Eur. J. Med. Chem. 2011, 46, 5800–5806. [Google Scholar] [CrossRef] [Green Version]
- Sokovic, M.; Glamočlija, J.; Marin, P.D.; Brkić, D.; Van Griensven, L.J.L.D. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules 2010, 15, 7532–7546. [Google Scholar] [CrossRef] [Green Version]
- Boari, F.; Cefola, M.; Di Gioia, F.; Pace, B.; Serio, F.; Cantore, V. Effect of cooking methods on antioxidant activity and nitrate content of selected wild Mediterranean plants. Int. J. Food Sci. Nutr. 2013, 64, 870–876. [Google Scholar] [CrossRef]
- Afolayan, A.J.; Jimoh, F.O. Nutritional quality of some wild leafy vegetables in South Africa. Int. J. Food Sci. Nutr. 2009, 60, 424–431. [Google Scholar] [CrossRef]
- Di Gioia, F.; Gonnella, M.; Buono, V.; Ayala, O.; Santamaria, P. Agronomic, physiological and quality response of romaine and red oak-leaf lettuce to nitrogen input. Ital. J. Agron. 2017, 12, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Cardenas-Navarro, R.; Adamowicz, S.; Robin, P. Nitrate accumulation in plants: A role for water. J. Exp. Bot. 1999, 50, 613–624. [Google Scholar] [CrossRef]
- Pereira, C.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Nutritional composition and bioactive properties of commonly consumed wild greens: Potential sources for new trends in modern diets. Food Res. Int. 2011, 44, 2634–2640. [Google Scholar] [CrossRef]
- Zushi, K.; Matsuzoe, N. Metabolic profile of organoleptic and health-promoting qualities in two tomato cultivars subjected to salt stress and their interactions using correlation network analysis. Sci. Hortic. (Amsterdam) 2015, 184, 8–17. [Google Scholar] [CrossRef]
- Giuffrida, F.; Cassaniti, C.; Malvuccio, A.; Leonardi, C. Effects of salt stress imposed during two growth phases on cauliflower production and quality. J. Sci. Food Agric. 2017, 97, 1552–1560. [Google Scholar] [CrossRef]
- Di Gioia, F.; Rosskopf, E.N.; Leonardi, C.; Giuffrida, F. Effects of application timing of saline irrigation water on broccoli production and quality. Agric. Water Manag. 2018, 203, 97–104. [Google Scholar] [CrossRef]
- Zaghdoud, C.; Alcaraz-López, C.; Mota-Cadenas, C.; Martínez-Ballesta, M. del C.; Moreno, D.A.; Ferchichi, A.; Carvajal, M. Differential responses of two broccoli (Brassica oleracea L. var Italica) cultivars to salinity and nutritional quality improvement. Sci. World J. 2012, 2012, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klados, E.; Tzortzakis, N. Effects of substrate and salinity in hydroponically grown Cichorium spinosum. J. Soil Sci. Plant Nutr. 2014, 14, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Tarchoune, I.; Sgherri, C.; Baâtour, O.; Izzo, R.; Lachaâl, M.; Navari-Izzo, F.; Ouerghi, Z. Effects of oxidative stress caused by NaCl or Na2SO4 excess on lipoic acid and tocopherols in Genovese and Fine basil (Ocimum basilicum). Ann. Appl. Biol. 2013, 163, 23–32. [Google Scholar] [CrossRef]
- Poli, F.; Sacchetti, G.; Tosi, B.; Fogagnolo, M.; Chillemi, G.; Lazzarin, R.; Bruni, A. Variation in the content of the main guaianolides and sugars in Cichorium intybus var. “Rosso di Chioggia” selections during cultivation. Food Chem. 2002, 76, 139–147. [Google Scholar] [CrossRef]
- Ifantis, T.M.; Solujić, S.; Pavlović-Muratspahić, D.; Skaltsa, H. Secondary metabolites from the aerial parts of Centaurea pannonica (Heuff.) Simonk. from Serbia and their chemotaxonomic importance. Phytochemistry 2013, 94, 159–170. [Google Scholar] [CrossRef]
- Bruno, M.; Bancheva, S.; Rosselli, S.; Maggio, A. Sesquiterpenoids in subtribe Centaureinae (Cass.) Dumort (tribe Cardueae, Asteraceae): Distribution, 13C NMR spectral data and biological properties. Phytochemistry 2013, 95, 19–93. [Google Scholar] [CrossRef] [Green Version]
- Nemzer, B.; Al-Taher, F.; Abshiru, N. Phytochemical composition and nutritional value of different plant parts in two cultivated and wild purslane (Portulaca oleracea L.) genotypes. Food Chem. 2020, 320, 126621. [Google Scholar] [CrossRef]
- Petropoulos, S.; Karkanis, A.; Fernandes, Â.; Barros, L.; Ferreira, I.C.F.R.; Ntatsi, G.; Petrotos, K.; Lykas, C.; Khah, E. Chemical composition and yield of six genotypes of common purslane (Portulaca oleracea L.): An alternative source of omega-3 fatty acids. Plant Foods Hum. Nutr. 2015, 70, 420–426. [Google Scholar] [CrossRef]
- Morales, P.; Ferreira, I.C.F.R.; Carvalho, A.M.; Sánchez-Mata, M.C.; Cámara, M.; Fernández-Ruiz, V.; Pardo-de-Santayana, M.; Tardío, J. Mediterranean non-cultivated vegetables as dietary sources of compounds with antioxidant and biological activity. LWT Food Sci. Technol. 2014, 55, 389–396. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Vasilakoglou, I.B.; Petrotos, K.; Barros, L.; Ferreira, I.C.F.R. Nutritional value, chemical composition and cytotoxic properties of common purslane (Portulaca oleracea L.) in relation to harvesting stage and plant part. Antioxidants 2019, 8, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerra, L.; Pereira, C.; Andrade, P.B.; Rodrigues, M.Â.; Ferreres, F.; De Pinho, P.G.; Seabra, R.M.; Valentão, P. Targeted metabolite analysis and antioxidant potential of Rumex induratus. J. Agric. Food Chem. 2008, 56, 8184–8194. [Google Scholar] [CrossRef] [PubMed]
- Amalraj, A.; Pius, A. Bioavailability of calcium and its absorption inhibitors in raw and cooked green leafy vegetables commonly consumed in India—An in vitro study. Food Chem. 2015, 170, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Kristanc, L.; Kreft, S. European medicinal and edible plants associated with subacute and chronic toxicity part II: Plants with hepato-, neuro-, nephro- and immunotoxic effects. Food Chem. Toxicol. 2016, 92, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.A.; Fernandes, Â.; Calhelha, R.C.; Di Gioia, F.; Kolovou, P.; Barros, L.; Ferreira, I.C.F.R. Chemical composition and bioactive properties of Cichorium spinosum L. in relation to nitrate/ammonium nitrogen ratio. J. Sci. Food Agric. 2019, 99, 6741–6750. [Google Scholar] [CrossRef] [Green Version]
- Palaniswamy, U.R.; McAvoy, R.J.; Bible, B. Oxalic acid concentrations in purslane (Portulaca oleraceae L.) is altered by the stage of harvest and the nitrate to ammonium ratios in hydroponics. Sci. Hortic. (Amsterdam). 2004, 629, 299–305. [Google Scholar]
- Zhang, Y.P.S.Y.; Lin, X.Y.; Zhang, Y.P.S.Y.; Zheng, S.J.; Du, S.T. Effects of nitrogen levels and nitrate/ammonium ratios on oxalate concentrations of different forms in edible parts of spinach. J. Plant Nutr. 2005, 28, 2011–2025. [Google Scholar] [CrossRef]
- Guil, J.L.; Torija, M.E.; Giménez, J.J.; Rodríguez-García, I.; Himénez, A. Oxalic acid and calcium determination in wild edible plants. J. Agric. Food Chem. 1996, 44, 1821–1823. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.; Giménez-Giménez, A.; Rodríguez-García, I.; Torija-Isasa, M. Nutritional composition of Sonchus species (S asper L, S oleraceus L and S tenerrimus L). J. Sci. Food Agric. 1998, 76, 628–632. [Google Scholar] [CrossRef]
- Guil, J.L.; Rodríguez-García, I.; Torija, E. Nutritional and toxic factors in selected wild edible plants. Plant Foods Hum. Nutr. 1997, 51, 99–107. [Google Scholar] [CrossRef]
- Toledo, M.E.A.; Ueda, Y.; Imahori, Y.; Ayaki, M. L-ascorbic acid metabolism in spinach (Spinacia oleracea L.) during postharvest storage in light and dark. Postharvest Biol. Technol. 2003, 28, 47–57. [Google Scholar] [CrossRef]
- Vardavas, C.I.; Majchrzak, D.; Wagner, K.H.; Elmadfa, I.; Kafatos, A. The antioxidant and phylloquinone content of wildly grown greens in Crete. Food Chem. 2006, 99, 813–821. [Google Scholar] [CrossRef]
- Barros, L.; Heleno, S.A.; Carvalho, A.M.; Ferreira, I.C.F.R. Lamiaceae often used in Portuguese folk medicine as a source of powerful antioxidants: Vitamins and phenolics. LWT Food Sci. Technol. 2010, 43, 544–550. [Google Scholar] [CrossRef]
- Ching, L.S.; Mohamed, S. Alpha-tocopherol content in 62 edible tropical plants. J. Agric. Food Chem. 2001, 49, 3101–3105. [Google Scholar] [CrossRef]
- Morales, P.; Carvalho, A.M.; Sánchez-Mata, M.C.; Cámara, M.; Molina, M.; Ferreira, I.C.F.R. Tocopherol composition and antioxidant activity of Spanish wild vegetables. Genet. Resour. Crop Evol. 2012, 59, 851–863. [Google Scholar] [CrossRef]
- Keles, Y.; Oncel, I. Response of antioxidative defence system to temperature and water stress combinations in wheat seedlings. Plant Sci. 2002, 163, 783–790. [Google Scholar] [CrossRef]
- Freyer, M.J. The antioxidant effects of thylakoid Vitamin E (α-tocopherol). Plant. Cell Environ. 1992, 15, 381–392. [Google Scholar] [CrossRef]
- Azzi, A.; Stocker, A. Vitamin E: Non-antioxidant roles. Prog. Lipid Res. 2000, 39, 231–255. [Google Scholar] [CrossRef]
- Otten, J.J.; Hellwig, J.P.; Meyers, L.D. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; The National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Caretto, S.; Nisi, R.; Paradiso, A.; de Gara, L. Tocopherol production in plant cell cultures. Mol. Nutr. Food Res. 2010, 54, 726–730. [Google Scholar] [CrossRef]
- Petropoulos, S.; Fernandes, Â.; Karkanis, A.; Antoniadis, V.; Barros, L.; Ferreira, I. Nutrient solution composition and growing season affect yield and chemical composition of Cichorium spinosum plants. Sci. Hortic. (Amsterdam) 2018, 231, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Simopoulos, A.P.; Norman, H.A.; Gillaspy, J.E.; Duke, J.A. Common purslane: A source of omega-3 fatty acids and antioxidants. J. Am. Coll. Nutr. 1992, 52, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Zeghichi, S.; Kallithraka, S.; Simopoulos, A.; Kypriotakis, Z. Nutritional composition of molokhia (Corchorus olitorius) and stamnagathi (Cichorium spinosum). World Rev. Nutr. Diet. 2003, 91, 1–21. [Google Scholar] [PubMed]
- Martins, D.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Nutritional and in vitro antioxidant properties of edible wild greens in Iberian Peninsula traditional diet. Food Chem. 2011, 125, 488–494. [Google Scholar] [CrossRef] [Green Version]
- Aktumsek, A.; Zengin, G.; Guler, G.O.; Cakmak, Y.S.; Duran, A. Assessment of the antioxidant potential and fatty acid composition of four Centaurea L. taxa from Turkey. Food Chem. 2013, 141, 91–97. [Google Scholar] [CrossRef]
- Erdogan, T.; Gonenc, T.; Cakilcioglu, U.; Kivcak, B. Fatty acid composition of the aerial parts of some Centaurea species in Elazig, Turkey. Trop. J. Pharm. Res. 2014, 13, 613–616. [Google Scholar] [CrossRef] [Green Version]
- Tekeli, Y.; Sezgin, M.; Aktumsek, A.; Ozmen Guler, G.; Aydin Sanda, M. Fatty acid composition of six Centaurea species growing in Konya, Turkey. Nat. Prod. Res. 2010, 24, 1883–1889. [Google Scholar] [CrossRef]
- Tekeli, Y.; Zengin, G.; Aktumsek, A.; Sezgin, M.; Faculty, A.; Faculty, S.; Faculty, S. Comparison of the fatty acid compositions of six Centaurea species. Chem. Nat. Compd. 2013, 49, 423–424. [Google Scholar] [CrossRef]
- Fernandes, L.; Ramalhosa, E.; Pereira, J.A.; Saraiva, J.A.; Casal, S. Borage, camellia, centaurea and pansies: Nutritional, fatty acids, free sugars, vitamin E, carotenoids and organic acids characterization. Food Res. Int. 2020, 132, 109070. [Google Scholar] [CrossRef]
- Fernandes, L.; Pereira, J.A.; Saraiva, J.A.; Ramalhosa, E.; Casal, S. Phytochemical characterization of Borago officinalis L. and Centaurea cyanus L. during flower development. Food Res. Int. 2019, 123, 771–778. [Google Scholar] [CrossRef] [Green Version]
- Dalar, A.; Uzun, Y.; Mukemre, M.; Turker, M.; Konczak, I. Centaurea karduchorum Boiss. from Eastern Anatolia: Phenolic composition, antioxidant and enzyme inhibitory activities. J. Herb. Med. 2015, 5, 211–216. [Google Scholar] [CrossRef]
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Calhelha, R.C.; Alves, M.J.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Edible flowers as sources of phenolic compounds with bioactive potential. Food Res. Int. 2018, 105, 580–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.M.; Yoon, K.Y. Comparison of polyphenol contents, antioxidant, and anti-inflammatory activities of wild and cultivated Lactuca indica. Hortic. Environ. Biotechnol. 2014, 55, 248–255. [Google Scholar] [CrossRef]
- Gutiérrez-Velázquez, M.V.; Almaraz-Abarca, N.; Herrera-Arrieta, Y.; Ávila-Reyes, J.A.; González-Valdez, L.S.; Torres-Ricario, R.; Uribe-Soto, J.N.; Monreal-García, H.M. Comparison of the phenolic contents and epigenetic and genetic variability of wild and cultivated watercress (Rorippa nasturtium var. aquaticum L.). Electron. J. Biotechnol. 2018, 34, 9–16. [Google Scholar] [CrossRef]
- Kollia, E.; Markaki, P.; Zoumpoulakis, P.; Proestos, C. Antioxidant activity of Cynara scolymus L. and Cynara cardunculus L. extracts obtained by different extraction techniques. Nat. Prod. Res. 2016, 31, 1163–1167. [Google Scholar] [CrossRef]
- Petropoulos, S.; Fernandes, Â.; Pereira, C.; Tzortzakis, N.; Vaz, J.; Soković, M.; Barros, L.; Ferreira, I.C.F.R. Bioactivities, chemical composition and nutritional value of Cynara cardunculus L. seeds. Food Chem. 2019, 289, 404–412. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Pereira, C.; Barros, L.; Ferreira, I.C.F.R. Leaf parts from Greek artichoke genotypes as a good source of bioactive compounds and antioxidants. Food Funct. 2017, 8, 2022–2029. [Google Scholar] [CrossRef] [Green Version]
- Lahneche, A.M.; Boucheham, R.; Ozen, T.; Altun, M.; Boubekri, N.; Demirtas, I.; Bicha, S.; Bentamene, A.L.I.; Benayache, F.; Benayache, S.; et al. In vitro antioxidant, dna-damaged protection and antiproliferative activities of ethyl acetate and n-butanol extracts of Centaurea sphaerocephala L. An. Acad. Bras. Cienc. 2019, 91, 1–11. [Google Scholar] [CrossRef]
- Demiroz, T.; Nalbantsoy, A.; Kose, F.A.; Baykan, S. Phytochemical composition and antioxidant, cytotoxic and anti-inflammatory properties of Psephellus goeksunensis (Aytaç & H. Duman) Greuter & Raab-Straube. South African J. Bot. 2020, 130, 1–7. [Google Scholar]
- Özcan, K.; Acet, T.; Çorbacı, C. Centaurea hypoleuca DC: Phenolic content, antimicrobial, antioxidant and enzyme inhibitory activities. South Afr. J. Bot. 2019, 127, 313–318. [Google Scholar] [CrossRef]
- Escher, G.B.; Santos, J.S.; Rosso, N.D.; Marques, M.B.; Azevedo, L.; do Carmo, M.A.V.; Daguer, H.; Molognoni, L.; do Prado-Silva, L.; Sant’Ana, A.S.; et al. Chemical study, antioxidant, anti-hypertensive, and cytotoxic/cytoprotective activities of Centaurea cyanus L. petals aqueous extract. Food Chem. Toxicol. 2018, 118, 439–453. [Google Scholar] [CrossRef]
- Tepe, B.; Sokmen, M.; Akpulat, H.A.; Yumrutas, O.; Sokmen, A. Screening of antioxidative properties of the methanolic extracts of Pelargonium endlicherianum Fenzl., Verbascum wiedemannianum Fisch. & Mey., Sideritis libanotica Labill. subsp. linearis (Bentham) Borm., Centaurea mucronife. Food Chem. 2006, 98, 9–13. [Google Scholar]
- Karamenderes, C.; Konyalioglu, S.; Khan, S.; Khan, I.A. Total phenolic contents, free radical scavenging activities and inhibitory effects on the activation of NF-kappa B of eight Centaurea L. species. Phyther. Res. 2007, 21, 488–491. [Google Scholar] [CrossRef] [PubMed]
- Ostad, S.N.; Rajabi, A.; Khademi, R.; Farjadmand, F.; Eftekhari, M.; Hadjiakhoondi, A.; Khanavi, M. Cytotoxic potential of Centaurea bruguierana ssp. belangerana: The MTT assay. Acta Med. Iran. 2016, 54, 583–589. [Google Scholar] [PubMed]
- Erol-Dayi, Ö.; Pekmez, M.; Bona, M.; Aras-Perk, A.; Arda, N. Total phenolic contents, antioxidant activities cytotoxicity of three Centaurea species: C. calcitrapa subsp. calcitrapa, C. ptosimopappa C. spicata. Free Radicals Antioxidants 2011, 1, 31–36. [Google Scholar] [CrossRef]
- Mirzahosseini, G.; Manayi, A.; Khanavi, M.; Safavi, M.; Salari, A.; Madjid Ansari, A.; San’ati, H.; Vazirian, M. Bio-guided isolation of Centaurea bruguierana subsp. belangerana cytotoxic components. Nat. Prod. Res. 2019, 33, 1687–1690. [Google Scholar] [CrossRef] [PubMed]
- Ćirić, A.; Karioti, A.; Koukoulitsa, C.; Soković, M.; Skaltsa, H. Sesquiterpene lactones from Centaurea zuccariniana and their antimicrobial activity. Chem. Biodivers. 2012, 9, 2843–2853. [Google Scholar] [CrossRef]
- Šiler, B.; Živković, S.; Banjanac, T.; Cvetković, J.; Nestorović Živković, J.; Ćirić, A.; Soković, M.; Mišić, D. Centauries as underestimated food additives: Antioxidant and antimicrobial potential. Food Chem. 2014, 147, 367–376. [Google Scholar] [CrossRef]
- Shakeri, A.; Masullo, M.; Bottone, A.; Asili, J.; Emami, S.A.; Piacente, S.; Iranshahi, M. Sesquiterpene lactones from Centaurea rhizantha C.A. Meyer. Nat. Prod. Res. 2019, 33, 2016–2023. [Google Scholar] [CrossRef]
- Bouzghaia, B.; Moussa, M.T.B.; Goudjil, R.; Harkat, H.; Pale, P. Chemical composition, in vitro antioxidant and antibacterial activities of Centaurea resupinata subsp. dufourii (dostál) greuter. Nat. Prod. Res. 2020, 0, 1–5. [Google Scholar]
- Labed, F.; Masullo, M.; Mirra, V.; Nazzaro, F.; Benayache, F.; Benayache, S.; Piacente, S. Amino acid-sesquiterpene lactone conjugates from the aerial parts of Centaurea pungens and evaluation of their antimicrobial activity. Fitoterapia 2019, 133, 51–55. [Google Scholar] [CrossRef]
- Grienke, U.; Brkanac, S.R.; Vujčić, V.; Urban, E.; Ivanković, S.; Stojković, R.; Rollinger, J.M.; Kralj, J.; Brozovic, A.; Stojković, M.R. Biological activity of flavonoids and rare sesquiterpene lactones isolated from Centaurea ragusina L. Front. Pharmacol. 2018, 9, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, A.; Amini, E.; Asili, J.; Masullo, M.; Piacente, S.; Iranshahi, M. Screening of several biological activities induced by different sesquiterpene lactones isolated from Centaurea behen L. and Rhaponticum repens (L.) Hidalgo. Nat. Prod. Res. 2018, 32, 1436–1440. [Google Scholar] [CrossRef] [PubMed]
- Koukoulitsa, C.; Geromichalos, G.D.; Skaltsa, H. VolSurf analysis of pharmacokinetic properties for several antifungal sesquiterpene lactones isolated from Greek Centaurea sp. J. Comput. Aided. Mol. Des. 2005, 19, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Karioti, A.; Skaltsa, H.; Lazari, D.; Sokovic, M.; Garcia, B.; Harvala, C. Secondary metabolites from Centaurea deusta with antimicrobial activity. Zeitschrift fur Naturforsch. Sect. C J. Biosci. 2002, 57, 75–80. [Google Scholar] [CrossRef]
Sample | Moisture | Fat | Protein | Ash | Carbohydrates | Energy |
---|---|---|---|---|---|---|
Wild | 84.8 ± 0.3 | 0.42 ± 0.03 | 2.82 ± 0.01 | 2.17 ± 0.06 | 9.7 ± 0.1 | 54.1 ± 0.1 |
Cultivated | 93.3 ± 0.4 | 0.189 ± 0.002 | 1.42 ± 0.04 | 1.08 ± 0.04 | 4.04 ± 0.01 | 23.5 ± 0.1 |
t test | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Sample | Fructose | Glucose | Sucrose | Trehalose | Total Sugars | |
Wild | 0.170 ± 0.001 | 0.073 ± 0.001 | 0.081 ± 0.003 | 0.224 ± 0.005 | 0.550 ± 0.007 | |
Cultivated | 0.166 ± 0.002 | 0.092 ± 0.002 | 0.111 ± 0.001 | 0.144 ± 0.004 | 0.510 ± 0.009 | |
t test | 0.184 | <0.001 | <0.001 | <0.001 | <0.01 |
Sample | Oxalic Acid | Malic Acid | Ascorbic Acid | Citric Acid | Fumaric Acid | Total Organic Acids |
---|---|---|---|---|---|---|
Wild | 45.9 ± 0.1 | 387.1 ± 0.9 | 0.56 ± 0.06 | 409 ± 1 | 0.020 ± 0.001 | 842.8 ± 0.4 |
Cultivated | 423 ± 1 | 320 ± 2 | 0.050 ± 0.001 | 460 ± 6 | tr | 1203 ± 6 |
t-test | <0.001 | <0.001 | <0.001 | <0.001 | - | <0.001 |
Sample | α-Tocopherol | γ-Tocopherol | Total Tocopherols | |||
Wild | 0.045 ± 0.001 | 0.021 ± 0.001 | 0.070 ± 0.001 | |||
Cultivated | 0.185 ± 0.005 | 0.067 ± 0.002 | 0.260 ± 0.007 | |||
t-test | <0.001 | <0.001 | <0.001 |
Fatty Acids | Wild | Cultivated | t-Test |
---|---|---|---|
C8:0 | 0.56 ± 0.04 | 0.120 ± 0.006 | <0.001 |
C10:0 | 0.048 ± 0.002 | 0.13 ± 0.01 | <0.001 |
C11:0 | 0.13 ± 0.01 | 0.43 ± 0.01 | <0.001 |
C12:0 | 0.387 ± 0.002 | 0.33 ± 0.02 | <0.01 |
C14:0 | 1.12 ± 0.01 | 0.930 ± 0.008 | <0.001 |
C14:1 | 0.094 ± 0.008 | 0.222 ± 0.001 | <0.001 |
C15:0 | 0.54 ± 0.03 | 0.44 ± 0.01 | <0.001 |
C16:0 | 22.2 ± 0.5 | 28.4 ± 0.4 | <0.001 |
C17:0 | 0.28 ± 0.02 | 0.63 ± 0.03 | <0.001 |
C18:0 | 2.42 ± 0.06 | 3.5 ± 0.2 | <0.001 |
C18:1n9c | 2.09 ± 0.01 | 2.94 ± 0.01 | <0.001 |
C18:2n6c | 25.5 ± 0.6 | 28.2 ± 0.1 | <0.001 |
C18:3n3 | 38.2 ± 0.1 | 29.5 ± 0.1 | <0.001 |
C20:0 | 0.382 ± 0.004 | 0.84 ± 0.04 | <0.001 |
C21:0 | 0.49 ± 0.03 | 0.319 ± 0.008 | <0.001 |
C22:0 | 4.1 ± 0.2 | 1.30 ± 0.03 | <0.001 |
C23:0 | 0.48 ± 0.02 | 0.427 ± 0.004 | <0.001 |
C24:0 | 1.04 ± 0.04 | 1.4 ± 0.2 | <0.001 |
SFA | 34.2 ± 0.6 | 39.16 ± 0.01 | <0.001 |
MUFA | 2.19 ± 0.02 | 3.17 ± 0.01 | <0.001 |
PUFA | 63.7 ± 0.6 | 57.67 ± 0.01 | <0.001 |
PUFA/SFA | 1.9 ± 0.3 | 1.47 ± 0.01 | <0.001 |
n6/n3 | 0.67 ± 0.33 | 0.96 ± 0.12 | <0.001 |
Peak | Rt (min) | λmax (nm) | [M-H]− (m/z) | MS2 (m/z) | Tentative Identification | Wild | Cultivated | t-Test |
---|---|---|---|---|---|---|---|---|
1 | 14.16 | 349 | 493 | 317 (100) | Myricetin-O-glucoside | 0.099 ± 0.001 | 0.045 ± 0.001 | <0.001 |
2 | 18.1 | 344 | 477 | 301 (100) | Quercetin-3-O-glucoside | 0.036 ± 0.001 | 0.011 ± 0.001 | <0.001 |
3 | 18.63 | 334 | 461 | 285 (100) | Kaempherol-O-glucuronide | 0.113 ± 0.003 | 0.031 ± 0.002 | <0.001 |
4 | 20.4 | 334 | 579 | 285 (100) | Kaempherol-O-hexosyl-pentoside | 0.049 ± 0.001 | 0.016 ± 0.001 | <0.001 |
5 | 22.14 | 334 | 563 | 269 (100) | Apigenin-O-hexosyl-pentoside | 0.057 ± 0.001 | 0.02 ± 0.001 | <0.001 |
6 | 22.9 | 334 | 445 | 269 (100) | Apigenin-O-glucuronide | 0.043 ± 0.001 | 0.016 ± 0.001 | <0.001 |
7 | 25.44 | 332 | 665 | 621 (100), 285 (45) | Kaempherol-O-malonyl-pentoside | 0.034 ± 0.001 | 0.011 ± 0.001 | <0.001 |
8 | 28.28 | 286/326 | 549 | 429 (12), 297 (14), 279 (5), 255 (41) | Pinocembrin-O-arabirosyl-glucoside | 0.093 ± 0.001 | 0.023 ± 0.002 | <0.001 |
9 | 29.47 | 286/326 | 563 | 443 (12), 401 (5), 297 (21), 255 (58) | Pinocembrin-O-neohesperidoside | 2.1 ± 0.1 | 0.54 ± 0.01 | <0.001 |
10 | 31.39 | 288/328 | 591 | 549 (30), 429 (20), 297 (15), 279 (5), 255 (32) | Pinocembrin-O-acetylarabirosyl-glucoside | 0.54 ± 0.01 | 0.093 ± 0.001 | <0.001 |
11 | 31.79 | 285/326 | 605 | 563 (12), 545 (5), 443 (30), 401 (10), 255 (40) | Pinocembrin-O-acetylneohesperidoside isomer I | 0.62 ± 0.01 | 0.08 ± 0.01 | <0.001 |
12 | 32.14 | 286/328 | 605 | 563 (10), 545 (5), 443 (28), 401 (9), 255 (39) | Pinocembrin-O-acetylneohesperidoside isomer II | 6.68 ± 0.02 | 0.54 ± 0.03 | <0.001 |
Tfols | 0.33 ± 0.01 | 0.113 ± 0.003 | <0.001 | |||||
Tflav | 10.1 ± 0.1 | 1.28 ± 0.04 | <0.001 | |||||
Tflavone | 0.100 ± 0.001 | 0.036 ± 0.001 | <0.001 | |||||
TPC | 10.5 ± 0.1 | 1.42 ± 0.04 | <0.001 |
Sample | OxHLIA (IC50; µg/mL); Δt = 60 min | TBARS (EC50, μg/mL) |
---|---|---|
Wild | 35 ± 2 | 65 ± 2 |
Cultivated | 83 ± 6 | 29 ± 1 |
Positive control Trolox | 19.6 ± 0.1 | 23 ± 0.1 |
t-test | <0.001 | <0.001 |
Sample | Cytotoxicity to Non-Tumor Cell Lines | Cytotoxicity to Tumor Cell Lines | |||
---|---|---|---|---|---|
PLP2 (Porcine Liver Primary Culture) | HeLa (Cervical Carcinoma) | HepG2 (Hepatocellular Carcinoma) | MCF-7 (Breast Carcinoma) | NCI-H460 (Non-Small Cell Lung Cancer) | |
Wild | 366 ± 22 | 322 ± 9 | 238 ± 14 | >400 | 327 ± 21 |
Cultivated | 369 ± 4 | 283 ± 24 | >400 | 259 ± 2 | 314 ± 22 |
Positive control Ellipticine | 2.3 ± 0.2 | 0.9 ± 0.1 | 1.10 ± 0.09 | 1.21 ± 0.02 | 1.03 ± 0.09 |
t-test | 0.78 | <0.001 | <0.001 | <0.001 | 0.34 |
Sample | MIC/MBC | S. aureus (ATCC 11632) | B. cereus (Food Isolate) | L. monocytogenes (NCTC 7973) | E. coli (ATCC 25922) | S. typhimurium (ATCC 13311) | E. cloacae (ATCC 35030) |
---|---|---|---|---|---|---|---|
Wild | MIC * | 0.5 | 0.5 | 1 | 0.5 | 2 | 2 |
MBC | 1 | 1 | 2 | 1 | 4 | 4 | |
Cultivated | MIC | 1 | 1 | 2 | 0.5 | 2 | 2 |
MBC | 2 | 2 | 4 | 1 | 4 | 4 | |
Streptomycin | MIC | 0.1 | 0.025 | 0.15 | 0.1 | 0.1 | 0.025 |
MBC | 0.2 | 0.05 | 0.3 | 0.2 | 0.2 | 0.05 | |
Ampicillin | MIC | 0.1 | 0.1 | 0.15 | 0.15 | 0.1 | 0.1 |
MBC | 0.15 | 0.15 | 0.3 | 0.2 | 0.2 | 0.15 | |
Sample | MIC/MFC | Aspergillus fumigatus (ATCC 9197) | Aspergillus niger (ATCC 6275) | Aspergillus versicolor (ATCC 11730) | Penicillium funiculosum (ATCC 36839 | Trichoderma viride (IAM 5061) | Penicillium verrucosum var. cyclopium (food isolate) |
Wild | MIC | 0.5 | 0.5 | 0.25 | 0.25 | 0.12 | 0.25 |
MFC | 1 | 1 | 0.25 | 0.5 | 0.25 | 0.5 | |
Cultivated | MIC | 0.5 | 0.5 | 0.5 | 0.25 | 0.25 | 0.5 |
MFC | 1 | 1 | 1 | 0.5 | 0.5 | 1 | |
Bifonazole | MIC | 0.15 | 0.15 | 0.1 | 0.2 | 0.15 | 0.1 |
MFC | 0.2 | 0.2 | 0.2 | 0.25 | 0.2 | 0.2 | |
Ketoconazole | MIC | 0.2 | 0.2 | 0.2 | 0.2 | 1 | 0.2 |
MFC | 0.5 | 0.5 | 0.5 | 0.5 | 1.5 | 0.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.; Di Gioia, F.; Tzortzakis, N.; Ivanov, M.; Sokovic, M.; Barros, L.; et al. Wild and Cultivated Centaurea raphanina subsp. mixta: A Valuable Source of Bioactive Compounds. Antioxidants 2020, 9, 314. https://doi.org/10.3390/antiox9040314
Petropoulos SA, Fernandes Â, Dias MI, Pereira C, Calhelha R, Di Gioia F, Tzortzakis N, Ivanov M, Sokovic M, Barros L, et al. Wild and Cultivated Centaurea raphanina subsp. mixta: A Valuable Source of Bioactive Compounds. Antioxidants. 2020; 9(4):314. https://doi.org/10.3390/antiox9040314
Chicago/Turabian StylePetropoulos, Spyridon A., Ângela Fernandes, Maria Ines Dias, Carla Pereira, Ricardo Calhelha, Francesco Di Gioia, Nikolaos Tzortzakis, Marija Ivanov, Marina Sokovic, Lillian Barros, and et al. 2020. "Wild and Cultivated Centaurea raphanina subsp. mixta: A Valuable Source of Bioactive Compounds" Antioxidants 9, no. 4: 314. https://doi.org/10.3390/antiox9040314