Mediterranean Propolis from the Adriatic Sea Islands as a Source of Natural Antioxidants: Comprehensive Chemical Biodiversity Determined by GC-MS, FTIR-ATR, UHPLC-DAD-QqTOF-MS, DPPH and FRAP Assay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling of Mediterranean Propolis from the Adriatic Sea Islands
2.2. Headspace Solid-Phase Microextraction (HS-SPME) and Hydrodistillation (HD) Followed by Gas Chromatography and Mass Spectrometry Analysis (GC-MS)
2.3. FTIR-ATR Spectroscopy
2.4. Preparation of Propolis Extracts for Colorimetric Tests and Liquid Chromatography
2.5. High Performance Liquid Chromatography and Mass Spectrometry (UHPLC-DAD-QqTOF-MS)
2.6. Total Flavonoid (TF), Total Phenolic (TP) Content and Antioxidant Potential (DPPH and FRAP Assays)
2.6.1. Total Antioxidant Activity (FRAP Assay)
2.6.2. Total Phenolic Content (TP)
2.6.3. Total Flavonoid Content (TF)
2.6.4. Antiradical Activity (DPPH Test)
2.6.5. Statistical Analysis
3. Results and Discussion
3.1. HS-SPME/GC-MS and HD/GC-MS
3.1.1. Mediterranean Propolis (Non-Poplar Type)
3.1.2. Comparison with Probable Plant Source Volatiles
3.1.3. Mediterranean Propolis (Poplar Type) Volatiles
3.1.4. Comparison with Populus spp. Volatiles
3.2. Chemical Characterization by FTIR-ATR Spectroscopy
3.3. UHPLC-DAD-QqTOF-MS
Possible Botanical Origin of the Samples Based on LC-MS Profiles
3.4. Total Phenol Content and Antioxidant Potential
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pasupuleti, V.R.; Sammugam, L.; Ramesh, N.; Gan, S.H. Honey, propolis, and royal jelly: A comprehensive review of their biological actions and health benefits. Oxid. Med. Cell. Longev. 2017, 2017, 1259510. [Google Scholar] [CrossRef]
- Bankova, V.; Popova, M.; Trusheva, B. Propolis volatile compounds: Chemical diversity and biological activity: A review. Chem. Cent. J. 2014, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Sforcin, J.M.; Bankova, V. Propolis: Is there a potential for the development of new drugs? J. Ethnopharmacol. 2011, 133, 253–260. [Google Scholar] [CrossRef]
- Banskota, A.H.; Tezuka, Y.; Kadota, S. Recent progress in pharmacological research of propolis. Phyther. Res. 2001, 15, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Bankova, V.; Bertelli, D.; Borba, R.; Conti, B.J.; da Silva Cunha, I.B.; Danert, C.; Eberlin, M.N.; I Falcão, S.; Isla, M.I.; Moreno, M.I.N.; et al. Standard methods for Apis mellifera propolis research. J. Apic. Res. 2019, 7366–7376. [Google Scholar] [CrossRef] [Green Version]
- Ristivojević, P.; Trifković, J.; Andrić, F.; Milojković-Opsenica, D. Poplar-type propolis: Chemical composition, botanical origin and biological activity. Nat. Prod. Commun. 2015, 1869–1875. [Google Scholar] [CrossRef] [Green Version]
- Salatino, A.; Fernandes-Silva, C.C.; Righi, A.A.; Salatino, M.L.F. Propolis research and the chemistry of plant products. Nat. Prod. Rep. 2011, 925–936. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.J.; Huang, C.H.; Wu, C.L.; Lin, J.K.; Chen, Y.W.; Lin, C.L.; Chuang, S.E.; Huang, C.Y.; Chen, C.N. Propolin G, a prenylflavanone, isolated from Taiwanese propolis, induces caspase-dependent apoptosis in brain cancer cells. J. Agric. Food Chem. 2007, 55, 7366–7376. [Google Scholar] [CrossRef] [PubMed]
- Kumazawa, S.; Nakamura, J.; Murase, M.; Miyagawa, M.; Ahn, M.R.; Fukumoto, S. Plant origin of Okinawan propolis: Honeybee behavior observation and phytochemical analysis. Naturwissenschaften 2008, 781–786. [Google Scholar] [CrossRef]
- Trusheva, B.; Popova, M.; Koendhori, E.B.; Tsvetkova, I.; Naydenski, C.; Bankova, V. Indonesian propolis: Chemical composition, biological activity and botanical origin. Nat. Prod. Res. 2011, 452–461. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Konteles, S.J.; Troullidou, E.; Mourtzinos, I.; Karathanos, V.T. Chemical composition, antioxidant activity and antimicrobial properties of propolis extracts from Greece and Cyprus. Food Chem. 2009, 116, 452–461. [Google Scholar] [CrossRef]
- Popova, M.P.; Graikou, K.; Chinou, I.; Bankova, V.S. GC-MS profiling of diterpene compounds in mediterranean propolis from Greece. J. Agric. Food Chem. 2010, 3167–3176. [Google Scholar] [CrossRef] [PubMed]
- Radović, J.; Čivić, K.; Topić, R. Biodiversity of Croatia; State Institute for Nature Protect, Ministry of Culture of the Republic of Croatia: Velika Gorica, Croatia, 2006.
- Kosalec, I.; Bakmaz, M.; Pepeljnjak, S. Analysis of propolis from the continental and Adriatic regions of Croatia. Acta Pharm. 2003, 275–285. [Google Scholar]
- Saftić, L.; Peršurić, Ž.; Fornal, E.; Pavlešić, T.; Kraljević Pavelić, S. Targeted and untargeted LC-MS polyphenolic profiling and chemometric analysis of propolis from different regions of Croatia. J. Pharm. Biomed. Anal. 2019, 162–172. [Google Scholar] [CrossRef]
- Tlak-Gajger, I.; Pavlović, I.; Bojić, M.; Kosalec, I.; Srećec, S.; Vlainić, T.; Vlainić, J. Components responsible for antimicrobial activity of propolis from continental and Mediterranean regions in Croatia. Czech J. Food Sci. 2017, 275–285. [Google Scholar] [CrossRef] [Green Version]
- Milojković Opsenica, D.; Ristivojević, P.; Trifković, J.; Vovk, I.; Lušić, D.; Tešić, Ž. TLC Fingerprinting and pattern recognition methods in the assessment of authenticity of poplar-type propolis. J. Chromatogr. Sci. 2016, 54, 1077–1083. [Google Scholar] [CrossRef] [Green Version]
- Jerković, I.; Marijanović, Z.; Kuś, P.M.; Tuberoso, C.I.G. Comprehensive study of Mediterranean (Croatian) propolis peculiarity: Headspace, volatiles, anti-Varroa-treatment residue, phenolics, and antioxidant properties. Chem. Biodivers. 2016, 13, 210–218. [Google Scholar] [CrossRef]
- El-Sayed, A.M. The Pherobase: Database of Insect Pheromones and Semiochemicals. 2012. Available online: http://www.pherobase.com (accessed on 5 March 2020).
- Kuś, P.M.; Okińczyc, P.; Jakovljević, M.; Jokić, S.; Jerković, I. Development of supercritical CO2 extraction of bioactive phytochemicals from black poplar (Populus nigra L.) buds followed by GC–MS and UHPLC-DAD-QqTOF-MS. J. Pharm. Biomed. Anal. 2018, 158, 15–27. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Rossi, J.A.J. Colorimetry of total phenolics with acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Kuś, P.; Jerković, I.; Jakovljević, M.; Jokić, S. Extraction of bioactive phenolics from black poplar (Populus nigra L.) buds by supercritical CO2 and its optimization by response surface methodology. J. Pharm. Biomed. Anal. 2018, 152, 128–136. [Google Scholar] [CrossRef]
- European Pharmacopoeia, 9th ed.; Strasbourg, France, 2019.
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Kaškonienė, V.; Kaškonas, P.; Maruška, A.; Kubilienė, L. Chemometric analysis of volatiles of propolis from different regions using static headspace GC-MS. Cent. Eur. J. Chem. 2014, 12, 736–746. [Google Scholar] [CrossRef]
- Pellati, F.; Prencipe, F.P.; Benvenuti, S. Headspace solid-phase microextraction-gas chromatography-mass spectrometry characterization of propolis volatile compounds. J. Pharm. Biomed. Anal. 2013, 84, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Borčić, I.; Radonić, A.; Grzunov, K. Comparison of the volatile constituents of propolis gathered in different regions of Croatia. Flavour Fragr. J. 1996, 11, 311–313. [Google Scholar] [CrossRef]
- Greenaway, W.; May, J.; Scaysbrook, T.; Whatley, F.R. Identification by gas chromatography-mass spectrometry of 150 compounds in propolis. Z. Naturforsch. Sect. C J. Biosci. 1991, 46, 111–121. [Google Scholar] [CrossRef]
- Bankova, V.; Christov, R.; Kujumgiev, A.; Marcucci, M.C.; Podov, S. Chemical composition and antibacterial activity of Brazilian propolis. Z. Naturforsch. Sect. C J. Biosci. 1995, 50, 167–172. [Google Scholar] [CrossRef]
- Melliou, E.; Stratis, E.; Chinou, I. Volatile constituents of propolis from various regions of Greece - Antimicrobial activity. Food Chem. 2007, 103, 375–380. [Google Scholar] [CrossRef]
- Kocabas E, E.H.; Betul, D.; Atac, U.; Fatih, D. Volatile composition of Anatolian propolis by headspace-solid-phase microextraction (HS-SPME), antimicrobial activity against food contaminants and antioxidant activity. J. Med. Plants Res. 2013, 7, 2140–2149. [Google Scholar] [CrossRef]
- Trusheva, B.; Ivanova, D.; Popova, M.; Bankova, V. Insights into the essential oil compositions of Brazilian red and Taiwanese green propolis. Nat. Prod. Commun. 2017, 12, 197–200. [Google Scholar] [CrossRef] [Green Version]
- Falcão, S.I.; Freire, C.; Cristina Figueiredo, A.; Vilas-Boas, M. The volatile composition of Portuguese propolis towards its origin discrimination. Rec. Nat. Prod. 2015, 10, 176–188. [Google Scholar]
- Naik, D.G.; Vaidya, H.S.; Namjoshi, T.P. Essential oil of Indian propolis: Chemical composition and repellency against the honeybee Apis florea. Chem. Biodivers. 2013, 10, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Nikolić, T. Flora Croatica Database, Faculty of Science, University of Zagreb. 2015. Available online: http://hirc.botanic.hr/fcd (accessed on 2 March 2020).
- Milos, M.; Radonic, A.; Mastelic, J. Seasonal variation in essential oil compositions of Cupressus sempervirens L. J. Essent. Oil Res. 2002, 14, 222–223. [Google Scholar] [CrossRef]
- Adams, R.P. The leaf essential oils and chemotaxonomy of Juniperus sect. Juniperus. Biochem. Syst. Ecol. 1998, 26, 637–645. [Google Scholar] [CrossRef]
- Milos, M.; Radonic, A. Gas chromatography mass spectral analysis of free and glycosidically bound volatile compounds from Juniperus oxycedrus L. growing wild in Croatia. Food Chem. 2000, 68, 333–338. [Google Scholar] [CrossRef]
- Ulukanli, Z.; Karabörklü, S.; Bozok, F.; Ates, B.; Erdogan, S.; Cenet, M.; Karaaslan, M.G. Chemical composition, antimicrobial, insecticidal, phytotoxic and antioxidant activities of Mediterranean Pinus brutia and Pinus pinea resin essential oils. Chin. J. Nat. Med. 2014, 12, 901–910. [Google Scholar] [CrossRef]
- Jerković, I.; Marijanović, Z.; Gugić, M.; Roje, M. Chemical profile of the organic residue from ancient amphora found in the adriatic sea determined by direct GC and GC-MS analysis. Molecules 2011, 16, 7936–7948. [Google Scholar] [CrossRef]
- Piovetti, L.; Gonzalez, E.; Diara, A. Diterpene composition of Cupressus dupreziana and Cupressus sempervirens. Phytochemistry 1980, 19, 2772–2773. [Google Scholar] [CrossRef]
- Seca, A.; Silva, A. The chemical composition of the Juniperus Genus (1970–2004). In Recent Progress in Medicinal Plants; Studium Press (India) Pvt. Ltd.: Houston, TX, USA, 2006; ISBN 0-9761849-8-2. [Google Scholar]
- Zhang, J.; Rahman, A.; Jain, S.; Tekwani, B.; Khan, S.; Jacob, M.; Muhammad, I. Antimicrobial and antiparastic abietane diterpenoids from Cupressus sempervirens. Planta Med. 2012, 78. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, N.A.; El-Seedi, H.R.; Mohammed, M.M.D. Constituents and biological activity of the chloroform extract and essential oil of Cupressus sempervirens. Chem. Nat. Compd. 2009, 45, 309–313. [Google Scholar] [CrossRef]
- Demetzos, C.; Angelopoulou, D. A comparative study of the essential oils of Cistus salviifolius in several populations of Crete (Greece). Biochem. Syst. Ecol. 2002, 30, 651–665. [Google Scholar] [CrossRef]
- Demetzos, C.; Loukis, A.; Spiliotis, V.; Zoakis, N.; Stratigakis, N.; Katerinopoulos, H.E. Composition and antimicrobial activity of the essential oil of Cistus creticus L. J. Essent. Oil Res. 1995, 7, 407–410. [Google Scholar] [CrossRef]
- Demetzos, C.; Katerinopoulos, H.; Kouvarakis, A.; Stratigakis, N.; Loukis, A.; Ekonomakis, C.; Spiliotis, V.; Tsaknis, J. Composition and antimicrobial activity of the essential oil of Cistus creticus subsp. eriocephalus. Planta Med. 1997, 63, 477–479. [Google Scholar] [CrossRef] [PubMed]
- Mariotti, J.P.; Tomi, F.; Casanova, J.; Costa, J.; Bernardini, A.F. Composition of the essential oil of Cistus ladaniferus L. cultivated in Corsica (France). Flavour Fragr. J. 1997, 12, 147–151. [Google Scholar] [CrossRef]
- Srdjan, B.; Šarac, Z.; Biljana, N.; Tešević, V.; Todosijević, M.; Veljić, M.; Marin, P.D. Composition of n-alkanes in natural populations of Pinus nigra from Serbia—Chemotaxonomic implications. Chem. Biodivers. 2012, 9, 2761–2774. [Google Scholar] [CrossRef]
- Sezik, E.; Kocakulak, E.; Baser, K.H.C.; Ozek, T. Composition of the essential oils of Juniperus oxycedrus subsp. macrocarpa from Turkey. Chem. Nat. Compd. 2005, 41, 352–354. [Google Scholar] [CrossRef]
- Maffei, M.; Badino, S.; Bossi, S. Chemotaxonomic significance of leaf wax n-alkanes in the Pinales (Coniferales). J. Biol. Res. 2004, 1, 3–19. [Google Scholar]
- Rajčević, N.; Janaćković, P.; Dodoš, T.; Tešević, V.; Marin, P.D. Biogeographic variation of foliar n-alkanes of Juniperus communis var. saxatilis Pallas from the Balkans. Chem. Biodivers. 2014, 11, 1923–1938. [Google Scholar] [CrossRef] [PubMed]
- Bankova, V.; Christov, R.; Popov, S.; Pureb, O.; Bocari, G. Volatile constituents of propolis. Z. Naturforsch. Sect. C J. Biosci. 1994, 49, 6–10. [Google Scholar] [CrossRef]
- Banthrope, D.V. Terpenoids. In Natural Products; Mann, J., Davidson, R.S., Hobbs, R.B., Banthrope, D.V., Harborne, J.B.E., Eds.; Longman: Essex, UK, 1996; pp. 306–327. [Google Scholar]
- Clair, G.; Peyron, L. The study of propolis essential oil. Riv. Ital. Eppos 1981, 168–170. [Google Scholar]
- Noureddine, H.; Hage-Sleiman, R.; Wehbi, B.; Fayyad-Kazan, A.H.; Hayar, S.; Traboulssi, M.; Alyamani, O.A.; Faour, W.H.; ElMakhour, Y. Chemical characterization and cytotoxic activity evaluation of Lebanese propolis. Biomed. Pharmacother. 2017, 95, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Qin, Z.H.; Guo, X.F.; Hu, X.S.; Wu, J.H. Geographical origin identification of propolis using GC-MS and electronic nose combined with principal component analysis. Food Res. Int. 2013, 51, 813–822. [Google Scholar] [CrossRef]
- Miguel, M.G.; Nunes, S.; Cruz, C.; Duarte, J.; Antunes, M.D.; Cavaco, A.M.; Mendes, M.D.; Lima, A.S.; Pedro, L.G.; Barroso, J.G.; et al. Propolis volatiles characterisation from acaricide-treated and -untreated beehives maintained at Algarve (Portugal). Nat. Prod. Res. 2013, 27, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Okinczyc, P.; Szumny, A.; Szperlik, J.; Kulma, A.; Franiczek, R.; Zbikowska, B.; Krzyzanowska, B.; Sroka, Z. Profile of polyphenolic and essential oil composition of Polish propolis, black poplar and aspens buds. Molecules 2018, 23, 1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jerković, I.; Mastelić, J. Volatile compounds from leaf-buds of Populus nigra L. (Salicaceae). Phytochemistry 2003, 63, 109–113. [Google Scholar] [CrossRef]
- Isidorov, V.A.; Vinogorova, V.T. GC-MS analysis of compounds extracted from buds of Populus balsamifera and Popul. Nigra. Z. Naturforsch. Sect. C J. Biosci. 2003, 58, 355–360. [Google Scholar] [CrossRef]
- Greenaway, W.; English, S.; Whatley, F.R. Variation in bud exudate composition of Populus nigra assessed by gas chromatography-mass spectrometry. Z. Naturforsch. Sect. C J. Biosci. 1990, 45, 931–936. [Google Scholar] [CrossRef]
- do Nascimento, T.G.; da Silva, P.F.; Azevedo, L.F.; da Rocha, L.G.; de Moraes Porto, I.C.C.; Lima e Moura, T.F.A.; Basílio-Júnior, I.D.; Grillo, L.A.M.; Dornelas, C.B.; Fonseca, E.J.d.S.; et al. Polymeric nanoparticles of Brazilian red propolis extract: Preparation, characterization, antioxidant and leishmanicidal activity. Nanoscale Res. Lett. 2016, 11, 301. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, R.N.; Mancini, M.C.; de Oliveira, F.C.S.; Passos, T.M.; Quilty, B.; Thiré, R.M.d.S.M.; McGuinness, G.B. FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Matéria (Rio Jan.) 2016, 21, 767–779. [Google Scholar] [CrossRef] [Green Version]
- Franca, J.R.; De Luca, M.P.; Ribeiro, T.G.; Castilho, R.O.; Moreira, A.N.; Santos, V.R.; Faraco, A.A.G. Propolis—Based chitosan varnish: Drug delivery, controlled release and antimicrobial activity against oral pathogen bacteria. Bmc Complement. Altern. Med. 2014, 14, 478. [Google Scholar] [CrossRef] [Green Version]
- Dewi, Y.N.; Hanny Wijaya, C.; Nasrullah, N. Classification of Trigona spp. bee propolis from four regions in Indonesia using FTIR metabolomics approach. In Proceedings of the 13th ASEAN Food Conference, Meeting Future Food Demands: Security & Sustainability, Singapore, 9–11 November 2013. [Google Scholar]
- Moţ, A.C.; Silaghi-Dumitrescu, R.; Sârbu, C. Rapid and effective evaluation of the antioxidant capacity of propolis extracts using DPPH bleaching kinetic profiles, FT-IR and UV-Vis spectroscopic data. J. Food Compos. Anal. 2011, 24, 516–522. [Google Scholar] [CrossRef]
- Wu, Y.W.; Sun, S.Q.; Zhao, J.; Li, Y.; Zhou, Q. Rapid discrimination of extracts of Chinese propolis and poplar buds by FT-IR and 2D IR correlation spectroscopy. J. Mol. Struct. 2008, 883–884, 48–54. [Google Scholar] [CrossRef]
- Jerman, S.D.; Prđun, S.; Bubalo, D.; Svečnjak, L. Chemical characterization and variations in the composition of propolis in the honey bee colony (Apis mellifera L.). In Proceedings of the 54 Croatian & 14 International Symposium on Agriculture, Vodice, Croatia, 17–22 February 2019; pp. 373–377. [Google Scholar]
- Vahur, S.; Teearu, A.; Peets, P.; Joosu, L.; Leito, I. ATR-FT-IR spectral collection of conservation materials in the extended region of 4000–80 cm−1. Anal. Bioanal. Chem. 2016, 408, 3373–3379. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, S.; Bankova, V. Propolis: Origin, Production, Composition. The Propolis Book, Chapter 1. Available online: http://www.bee-hexagon.net/propolis/ (accessed on 3 March 2020).
- Socrates, G. Infrared and Raman Characteristic Group Frequencies. Tables and Charts; Wiley: Hoboken, NJ, USA, 2001; ISBN 978-0-470-09307-8. [Google Scholar]
- Svečnjak, L.; Chesson, L.A.; Gallina, A.; Maia, M.; Martinello, M.; Mutinelli, F.; Muz, M.N.; Nunes, F.M.; Saucy, F.; Tipple, B.J.; et al. Standard methods for Apis mellifera beeswax research. J. Apic. Res. 2019, 58, 1–108. [Google Scholar] [CrossRef] [Green Version]
- Piccinelli, A.L.; Mencherini, T.; Celano, R.; Mouhoubi, Z.; Tamendjari, A.; Aquino, R.P.; Rastrelli, L. Chemical composition and antioxidant activity of Algerian propolis. J. Agric. Food Chem. 2013, 61, 5080–5088. [Google Scholar] [CrossRef]
- Barbarić, M.; Mišković, K.; Bojić, M.; Lončar, M.B.; Smolčić-Bubalo, A.; Debeljak, Z.; Medić-Šarić, M. Chemical composition of the ethanolic propolis extracts and its effect on HeLa cells. J. Ethnopharmacol. 2011, 135, 772–778. [Google Scholar] [CrossRef]
- Cvek, J.; Medić-Šarić, M.; Jasprica, I.; Mornar, A. High-performance thin-layer chromatographic analysis of the phenolic acid and flavonoid content of Croatian propolis samples. J. Planar Chromatogr. 2007, 20, 429–435. [Google Scholar] [CrossRef]
- Sobočanec, S.; Šverko, V.; Balog, T.; Šarić, A.; Rusak, G.; Likić, S.; Kušić, B.; Katalinić, V.; Radić, S.; Marotti, T. Oxidant/antioxidant properties of Croatian native propolis. J. Agric. Food Chem. 2006, 54, 8018–8026. [Google Scholar] [CrossRef]
- Isidorov, V.A.; Szczepaniak, L.; Bakier, S. Rapid GC/MS determination of botanical precursors of Eurasian propolis. Food Chem. 2014, 142, 101–106. [Google Scholar] [CrossRef]
- Isidorov, V.A.; Bakier, S.; Pirożnikow, E.; Zambrzycka, M.; Swiecicka, I. Selective behaviour of honeybees in acquiring European propolis plant precursors. J. Chem. Ecol. 2016, 42, 475–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, D.S.; Cuendet, M.; Fong, H.H.S.; Pezzuto, J.M.; Kinghorn, A.D. Constituents of Asparagus officinalis evaluated for inhibitory activity against cyclooxygenase-2. J. Agric. Food Chem. 2004, 52, 2218–2222. [Google Scholar] [CrossRef]
- Cooper, R.; Gottlieb, H.E.; Lavie, D. New phenolic diglycerides from Aegilops ovata. Phytochemistry 1978, 17, 1673–1675. [Google Scholar] [CrossRef]
- Zapesochnaya, G.G.; Ivanova, S.Z.; Medvedeva, S.A.; Tyukavkina, N.A. O-acylated flavonoid glycosides of the needles of Pinus sylvestris L. O-acetylated derivatives of flavonol glycosides. Chem. Nat. Compd. 1978, 14, 156–158. [Google Scholar] [CrossRef]
- Nicoletti, M.; Toniolo, C.; Venditti, A.; Bruno, M.; Ben Jemia, M. Antioxidant activity and chemical composition of three Tunisian Cistus: Cistus monspeliensis Cistus villosus and Cistus libanotis. Nat. Prod. Res. 2015, 29, 223–230. [Google Scholar] [CrossRef]
- Van Der Doelen, G.A.; Van Den Berg, K.J.; Boon, J.J.; Shibayama, N.; René De La Rie, E.; Wim, W.J. Analysis of fresh triterpenoid resins and aged triterpenoid varnishes by high-performance liquid chromatography-atmospheric pressure chemical ionisation (tandem) mass spectrometry. J. Chromatogr. A 1998, 809, 21–37. [Google Scholar] [CrossRef]
- Popova, M.; Giannopoulou, E.; Skalicka-Wózniak, K.; Graikou, K.; Widelski, J.; Bankova, V.; Kalofonos, H.; Sivolapenko, G.; Gaweł-Bȩben, K.; Antosiewicz, B.; et al. Characterization and biological evaluation of propolis from Poland. Molecules 2017, 22, 1159. [Google Scholar] [CrossRef] [PubMed]
- Debab, M.; Toumi-Benali, F.; Dif, M.M. Antioxidant activity of propolis of West Algeria. Phytotherapie 2017, 15, 230–234. [Google Scholar] [CrossRef]
- Popova, M.P.; Chinou, I.B.; Marekov, I.N.; Bankova, V.S. Terpenes with antimicrobial activity from Cretan propolis. Phytochemistry 2009, 70, 1262–1271. [Google Scholar] [CrossRef]
- El-Guendouz, S.; Aazza, S.; Lyoussi, B.; Bankova, V.; Popova, M.; Neto, L.; Faleiro, M.L.; Da Graça Miguel, M. Moroccan propolis: A natural antioxidant, antibacterial, and antibiofilm against Staphylococcus aureus with no induction of resistance after continuous exposure. Evid.-Based Complement. Altern. Med. 2018, 2018, 9759240. [Google Scholar] [CrossRef] [Green Version]
- Martos, I.; Cossentini, M.; Ferreres, F.; Toma, F.A. Flavonoid composition of Tunisian honeys and propolis. J. Agric. Food Chem. 1997, 2, 2824–2829. [Google Scholar] [CrossRef]
- Smith, C.A.; O’Maille, G.; Want, E.J.; Qin, C.; Trauger, S.A.; Brandon, T.R.; Custodio, D.E.; Abagyan, R.; Siuzdak, G. METLIN: A metabolite mass spectral database. Ther. Drug Monit. 2005, 27, 747–751. [Google Scholar] [CrossRef]
- Christov, R.; Trusheva, B.; Popova, M.; Bankova, V.; Bertrand, M. Chemical composition of propolis from Canada, its antiradical activity and plant origin. Nat. Prod. Res. 2006, 19, 673–678. [Google Scholar] [CrossRef]
- Popova, M.; Trusheva, B.; Cutajar, S.; Antonova, D.; Mifsud, D.; Farrugia, C.; Bankova, V. Identification of the plant origin of the botanical biomarkers of Mediterranean type propolis. Nat. Prod. Commun. 2012, 7, 569–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellati, F.; Orlandini, G.; Pinetti, D.; Benvenuti, S. HPLC-DAD and HPLC-ESI-MS/MS methods for metabolite profiling of propolis extracts. J. Pharm. Biomed. Anal. 2011, 55, 934–948. [Google Scholar] [CrossRef] [PubMed]
- Ristivojević, P.; Trifković, J.; Gašić, U.; Andrić, F.; Nedić, N.; Tešić, Ž.; Milojković-Opsenica, D. Ultrahigh-performance liquid chromatography and mass spectrometry (UHPLC-LTQ/Orbitrap/MS/MS) study of phenolic profile of Serbian poplar type propolis. Phytochem. Anal. 2015, 26, 127–136. [Google Scholar] [CrossRef]
- Shi, H.; Yang, H.; Zhang, X.; Yu, L. Identification and quantification of phytochemical composition and anti-inflammatory and radical scavenging properties of methanolic extracts of Chinese propolis. J. Agric. Food Chem. 2012, 60, 12403–12410. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Yang, H.; Zhang, X.; Sheng, Y.; Huang, H.; Yu, L. Isolation and characterization of five glycerol esters from wuhan propolis and their potential anti-inflammatory properties. J. Agric. Food Chem. 2012, 60, 10041–10047. [Google Scholar] [CrossRef] [PubMed]
- Trudić, B.; Anđelković, B.; Orlović, S.; Tešević, V.; Pilipović, A.; Cvetković, M.; Stanković, J. HPLC/MS-TOF analysis of surface resins from three poplar clones grown in Serbia. South-East Eur. 2016, 2, 129–133. [Google Scholar]
- Bertrams, J.; Müller, M.B.; Kunz, N.; Kammerer, D.R.; Stintzing, F.C. Phenolic compounds as marker compounds for botanical origin determination of German propolis samples based on TLC and TLC-MS. J. Appl. Bot. Food Qual. 2013, 153, 143–153. [Google Scholar] [CrossRef]
- Isidorov, V.A.; Brzozowska, M.; Czyzewska, U.; Glinka, L. Gas chromatographic investigation of phenylpropenoid glycerides from aspen (Populus tremula L.) buds. J. Chromatogr. A 2008, 1198, 169–201. [Google Scholar] [CrossRef]
- Tian, Y.; Liimatainen, J.; Alanne, A.L.; Lindstedt, A.; Liu, P.; Sinkkonen, J.; Kallio, H.; Yang, B. Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants. Food Chem. 2017, 220, 226–281. [Google Scholar] [CrossRef]
- Mai, F.; Glomb, M.A. Isolation of phenolic compounds from iceberg lettuce and impact on enzymatic browning. J. Agric. Food Chem. 2013, 61, 2868–2874. [Google Scholar] [CrossRef]
- Midorikawa, K.; Banskota, A.H.; Tezuka, Y.; Nagaoka, T.; Matsushige, K.; Message, D.; Huertas, A.A.G.; Kadota, S. Liquid chromatography-mass spectrometry analysis of propolis. Phytochem. Anal. 2001, 12, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Jarrell, T.M.; Marcum, C.L.; Sheng, H.; Owen, B.C.; O’Lenick, C.J.; Maraun, H.; Bozell, J.J.; Kenttämaa, H.I. Characterization of organosolv switchgrass lignin by using high performance liquid chromatography/high resolution tandem mass spectrometry using hydroxide-doped negative-ion mode electrospray ionization. Green Chem. 2014, 16, 2713–2727. [Google Scholar] [CrossRef]
- Sanz, M.; Cadahía, E.; Esteruelas, E.; Muñoz, Á.M.; Fernández De Simón, B.; Hernández, T.; Estrella, I. Phenolic compounds in cherry (Prunus avium) heartwood with a view to their use in cooperage. J. Agric. Food Chem. 2010, 58, 4907–4914. [Google Scholar] [CrossRef] [PubMed]
- Cisilotto, J.; Sandjo, L.P.; Faqueti, L.G.; Fernandes, H.; Joppi, D.; Biavatti, M.W.; Creczynski-Pasa, T.B. Cytotoxicity mechanisms in melanoma cells and UPLC-QTOF/MS2 chemical characterization of two Brazilian stingless bee propolis: Uncommon presence of piperidinic alkaloids. J. Pharm. Biomed. Anal. 2018, 149, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.G.R.; Kotiyal, J.P.; Bhardwaj, D.K. Myricetin 7,4′-dimethyl ether and its 3-galactoside from Rhus lancea. Phytochemistry 1983, 22, 318–319. [Google Scholar] [CrossRef]
- Justesen, U. Negative atmospheric pressure chemical ionisation low-energy collision activation mass spectrometry for the characterisation of flavonoids in extracts of fresh herbs. J. Chromatogr. A 2000, 902, 369–379. [Google Scholar] [CrossRef]
- Zhang, B.; Ye, X.; Chen, Z.; Jiang, X.; Yuan, L.; Yi, J.; Li, X. Synthesis and antimicrobial activity of 7-alkoxyhesperetin. Med. Chem. Res. 2011, 1200–1205. [Google Scholar] [CrossRef]
- Gardana, C.; Scaglianti, M.; Pietta, P.; Simonetti, P. Analysis of the polyphenolic fraction of propolis from different sources by liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal. 2007, 45, 390–399. [Google Scholar] [CrossRef]
- English, S.; Greenaway, W.; Whatley, F.R. Bud exudate composition of Populus tremuloides. Can. J. Bot. 1991, 69, 2291–2295. [Google Scholar] [CrossRef]
- Voirin, B. UV spectral differentiation of 5-hydroxy- and 5-hydroxy-3-methoxyflavones with mono-(4′;), di-(3′,4′) or tri-(3′,4′,5′)-substituted B rings. Phytochemistry 1983, 22, 2107–2145. [Google Scholar] [CrossRef]
- Greenaway, W.; Wollenweber, E.; Whatley, F.R. Esters of caffeic acid with aliphatic alcohols in bud exudate of Populus nigra. Z. Naturforsch. Sect. C J. Biosci. 1988, 43, 795–798. [Google Scholar] [CrossRef] [Green Version]
- Justesen, U. Collision-induced fragmentation of deprotonated methoxylated flavonoids, obtained by electrospray ionization mass spectrometry. J. Mass Spectrom. 2001, 36, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Purwar, C.; Rai, R.; Srivastava, N.; Singh, J. New flavonoid glycosides from Cassia occidentalis. Indian J. Chem. Sect. B Org. Med. Chem. 2003, 42B, 434–436. [Google Scholar] [CrossRef]
- Nakatani, N.; Jitoe, A.; Masuda, T.; Yonemori, S. Flavonoid constituents of Zingiber zerumbet Smith. Agric. Biol. Chem. 1991, 455–460. [Google Scholar] [CrossRef] [Green Version]
- Popravko, S.A.; Gurevieh, A.I.; Kolosov, M.N. Flavonoid components of propolis. Khimiya Prir. Soedin. 1969, 476–482. [Google Scholar] [CrossRef]
- Gurni, A.A.; König, W.A.; Kubitzki, K. Flavonoid glycosides and sulphates from the Dilleniaceae. Phytochemistry 1981, 20, 1057–1059. [Google Scholar] [CrossRef]
- Zaiter, L.; Bouheroum, M.; Hammoud, L.; Sarri, D.; Benayache, S.; Leon, F.; Brouard, I.; Bermejo, J.; Benayache, F. Phytochemical study of Halimium halimifolium. Chem. Nat. Compd. 2012, 47, 1023–1024. [Google Scholar] [CrossRef]
- Velikova, M.; Bankova, V.; Sorkun, K.; Houcine, S.; Tsvetkova, I.; Kujumgiev, A. Propolis from the Mediterranean region: Chemical composition and antimicrobial activity. Z. Naturforsch. Sect. C J. Biosci. 2000, 9–10, 790–793. [Google Scholar] [CrossRef] [Green Version]
- Kečkeš, S.; Gašić, U.; Veličković, T.Ć.; Milojković-Opsenica, D.; Natić, M.; Tešić, Ž. The determination of phenolic profiles of Serbian unifloral honeys using ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry. Food Chem. 2013, 138, 32–40. [Google Scholar] [CrossRef]
- Axelsson, S.; Eriksson, K.; Nilsson, U. Determination of resin acids during production of wood pellets - A comparison of HPLC/ESI-MS with the GC/FID MDHS 83/2 method. J. Environ. Monit. 2011, 13, 2940–2945. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, J.; Ping, S.; Ma, Q.; Chen, X.; Xuan, H.; Shi, J.; Zhang, C.; Hu, F. Anti-inflammatory effects of ethanol extracts of Chinese propolis and buds from poplar (Populus×canadensis). J. Ethnopharmacol. 2014, 155, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Tugba Degirmencioglu, H.; Guzelmeric, E.; Yuksel, P.I.; Kırmızıbekmez, H.; Deniz, I.; Yesilada, E. A new type of Anatolian propolis: Evaluation of its chemical composition, activity profile and botanical origin. Chem. Biodivers. 2019, 16, e1900492. [Google Scholar] [CrossRef] [PubMed]
- Mašek, T.; Perin, N.; Racané, L.; Cindrić, M.; Paljetak, H.Č.; Perić, M.; Matijašić, M.; Verbanac, D.; Radić, B.; Šuran, J.; et al. Chemical composition, antioxidant and antibacterial activity of different extracts of poplar type propolis. Croat. Chem. Acta 2018, 91, 81–88. [Google Scholar] [CrossRef]
- Kosalec, I.; Bakmaz, M.; Pepeljnjak, S.; Vladimir-Knežević, S. Quantitative analysis of the flavonoids in raw propolis from northern Croatia. Acta Pharm. 2004, 54, 65–72. [Google Scholar]
No. | Compound | RI | BP | KP | RP | PP | K1P | K2P | K3P | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | II | III | I | II | III | I | II | III | I | II | III | I | II | III | I | II | III | I | II | III | |||
1 | Ethanol | < 900 | 0.2 | 0.1 | - | - | - | - | - | - | - | - | 0.2 | - | - | - | - | 1.0 | 0.6 | - | 0.6 | 0.8 | - |
2 | Acetone | < 900 | 6.8 | 5.7 | 0.9 | 1.9 | 2.6 | 1.6 | - | 0.3 | 0.1 | - | 0.7 | - | - | - | - | - | 1.2 | - | 1.3 | 2.6 | - |
3 | Isoprene | < 900 | - | - | - | - | - | - | 0.2 | - | - | 0.5 | - | - | 0.4 | - | - | - | - | - | - | - | - |
4 | But-2-enal | < 900 | - | - | - | 0.3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
5 | Acetic acid | < 900 | 1.0 | 0.4 | - | - | 22.7 | 4.1 | - | 17.1 | 1.7 | 0.4 | 20.9 | 2.4 | - | 31.9 | 9.7 | 17.8 | 6.6 | 0.6 | 23.1 | 18.8 | 2.6 |
6 | Propanoic acid | < 900 | - | - | - | - | - | - | 0.6 | - | 0.1 | 0.1 | - | - | - | - | - | - | - | - | - | - | - |
7 | Butan-2-one | < 900 | 0.5 | 0.9 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
8 | Pentanal | < 900 | - | - | - | 1.6 | 1.5 | 1.4 | - | - | - | - | - | - | - | - | - | 0.5 | 0.1 | - | 0.6 | 2.6 | 1.0 |
9 | Heptane | < 900 | 0.2 | 0.1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
10 | 2,5-Dimethylfuran | < 900 | 0.3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
11 | 3-Methylbut-3-en-1-ol | < 900 | - | - | - | - | - | - | 0.1 | 2.1 | 0.6 | 1.7 | 1.2 | 0.5 | 1.7 | 0.8 | 0.7 | - | - | - | 1.7 | 1.8 | 1.7 |
12 | 2-Methylbut-2-enal | < 900 | - | - | - | - | - | - | 0.6 | - | - | 3.2 | 1.4 | 0.3 | 0.9 | - | - | - | - | - | 1.0 | 1.2 | - |
13 | 2-Methylpropanoic acid | < 900 | - | - | - | - | - | - | - | 1.5 | 0.5 | - | - | - | - | 0.6 | - | - | - | - | - | - | - |
14 | 3-Methylbut-2-en-1-ol | < 900 | - | - | - | - | - | - | 1.5 | 2.7 | 0.7 | 2.6 | 1.4 | 0.8 | 3.7 | 1.8 | 1.5 | - | - | - | 2.9 | 2.3 | 1.5 |
15 | Toluene | < 900 | 2.1 | 1.0 | 0.3 | 0.3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
16 | 3-Methylbut-2-enal | < 900 | 0.2 | - | - | 0.9 | - | - | 1.2 | 1.2 | 0.2 | 7.9 | 2.8 | 0.5 | 2.9 | - | 0.9 | 0.8 | - | - | 4.5 | 2.2 | 1.1 |
17 | Oct-1-ene | < 900 | 0.3 | 0.3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
18 | Octane | < 900 | 0.4 | 0.3 | - | - | - | - | - | - | - | 0.2 | - | - | - | - | - | - | - | - | - | - | - |
19 | Hexanal | < 900 | - | - | - | 1.9 | 1.3 | 1.0 | - | - | - | - | - | - | - | 0.6 | 0.6 | 1.7 | 0.7 | 0.2 | 1.2 | 1.8 | 0.7 |
20 | 2-Furancarboxaldehyde | < 900 | 0.2 | - | - | 0.9 | 0.3 | - | - | - | - | - | - | - | - | - | - | 1.0 | - | - | 0.8 | - | - |
21 | 2-Methylbutanoic acid | < 900 | - | - | - | - | - | - | 0.4 | 0.3 | 1.2 | 1.2 | 1.9 | 1.2 | 2.0 | 2.0 | 2.2 | - | - | - | 1.0 | 1.4 | 0.7 |
22 | Non-1-ene | < 900 | 0.2 | 0.1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
23 | Styrene | < 900 | 0.9 | 0.1 | - | - | - | - | 0.4 | 0.3 | 0.1 | 0.6 | - | - | 2.7 | 0.8 | 0.6 | - | - | - | 0.8 | 0.3 | 0.6 |
24 | Nonane | 900 | 0.5 | 0.3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
25 | Heptanal | 905 | 0.3 | - | - | 1.6 | 1.0 | 0.9 | - | - | - | - | - | - | - | 0.6 | 0.6 | 1.3 | 0.5 | 0.1 | 0.6 | 1.3 | 1.0 |
26 | Prenyl acetate | 927 | - | - | - | - | - | - | 0.9 | 2.4 | 0.6 | 0.9 | 0.7 | 0.3 | 2.6 | 1.0 | 1.0 | - | - | - | - | - | - |
27 | Tricyclene | 932 | 0.2 | 0.3 | 0.2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1.0 | - | - |
28 | 2-Methylbut-2-enoic acid | 942 | - | - | - | - | - | - | 5.7 | 2.1 | 1.2 | 3.7 | 1.9 | 0.9 | 2.9 | 1.1 | 0.7 | - | - | - | 1.2 | 0.8 | - |
29 | α-Pinene | 943 | 32.9 | 42.2 | 52.7 | 8.8 | 7.6 | 13.5 | - | - | 0.6 | 5.1 | 5.9 | 3.6 | 1.3 | 1.0 | 1.3 | - | - | - | - | 1.2 | 1.7 |
30 | Camphene | 958 | 0.4 | 0.6 | 0.8 | - | 0.1 | 0.2 | - | 0.3 | - | - | - | - | - | - | - | - | - | - | - | - | - |
31 | Verbenene | 963 | 1.0 | 1.1 | 1.0 | - | 0.5 | - | - | - | - | 0.2 | 0.5 | 0.3 | - | - | - | - | - | - | - | - | - |
32 | Benzaldehyde | 970 | 0.4 | - | - | 2.7 | 0.7 | 0.5 | 2.1 | 0.3 | 0.2 | 5.2 | 0.7 | 0.4 | 9.8 | 2.0 | 1.9 | 17.9 | 5.7 | 3.2 | 4.7 | 2.6 | 3.2 |
33 | β-Pinene | 984 | 0.5 | 0.6 | 0.8 | 0.1 | 0.2 | 0.5 | - | - | - | - | 0.2 | - | - | - | - | - | - | - | - | 0.6 | 0.4 |
34 | 6-Methylhept-5-en-2-one | 991 | - | - | - | 0.3 | 0.3 | 0.5 | - | - | - | - | - | - | 1.4 | 2.0 | 2.5 | 1.2 | 0.7 | 0.8 | 0.7 | 2.1 | 1.8 |
35 | β-Myrcene | 995 | 0.3 | - | - | - | - | - | - | - | - | 0.2 | 0.2 | 0.1 | - | - | - | - | - | - | - | 0.8 | - |
36 | Octanal | 1006 | 1.3 | 0.8 | 0.5 | 3.2 | 1.6 | 1.5 | - | - | - | 0.2 | 0.2 | 0.1 | 0.9 | 1.1 | 0.9 | 4.0 | 1.7 | 1.4 | 0.8 | 2.2 | 1.7 |
37 | p-Mentha-1,5,8-triene | 1010 | 0.4 | 0.3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
38 | δ-3-Carene | 1016 | 0.6 | 0.5 | 0.6 | 0.7 | 0.5 | 0.8 | - | - | - | 0.5 | 0.2 | 0.1 | - | - | - | - | - | - | - | - | - |
39 | o-Allyltoluene* | 1019 | 0.2 | 0.1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
40 | α-Terpinene | 1023 | - | - | - | - | - | - | - | 0.3 | - | 0.7 | 0.5 | 0.1 | - | - | - | - | - | - | - | - | - |
41 | p-Cymene | 1031 | 0.7 | 0.6 | 0.6 | 0.6 | 0.2 | 0.3 | 0.2 | 0.6 | 0.1 | 1.8 | 0.7 | 0.3 | 0.3 | - | - | 1.2 | 0.7 | 0.5 | 0.8 | 0.9 | 0.8 |
42 | Limonene | 1036 | 1.7 | 1.3 | 1.2 | 1.8 | 0.8 | 1.0 | 0.1 | 0.3 | 0.1 | 2.1 | 0.9 | 0.3 | 0.7 | - | 0.9 | 11.8 | 11.1 | 5.7 | 4.9 | 8.6 | 7.8 |
43 | Benzyl alcohol | 1046 | 0.5 | 0.1 | 0.1 | 0.5 | 0.2 | 0.2 | 6.9 | 2.7 | 2.1 | 1.5 | 0.5 | 0.6 | 3.7 | 1.7 | 2.0 | - | - | - | 3.1 | 3.6 | 5.3 |
44 | Salicylaldehyde | 1051 | - | - | - | - | - | - | - | - | - | 0.7 | 0.2 | 0.4 | - | - | - | - | - | - | - | - | - |
45 | γ-Terpinene | 1065 | - | - | - | - | - | - | 0.1 | 0.3 | 0.1 | 1.0 | 0.7 | 0.3 | - | - | - | - | - | - | 0.5 | 0.9 | 1.1 |
46 | Acetophenone | 1073 | - | - | - | - | - | - | 0.2 | - | - | - | - | - | 0.9 | 0.3 | 0.7 | - | - | - | - | - | - |
47 | p-Cymenene | 1094 | 2.4 | 1.0 | 0.9 | 0.6 | 0.6 | 0.7 | 0.1 | 0.3 | - | 0.9 | 0.5 | 0.4 | - | - | - | - | - | - | - | - | - |
48 | Linalool | 1103 | - | - | - | - | - | - | 0.3 | 1.2 | 0.4 | 1.0 | 0.9 | 0.6 | 3.0 | 1.8 | 1.9 | 0.3 | 0.3 | 0.3 | 1.6 | 1.3 | 0.7 |
49 | Nonanal | 1107 | 5.1 | 2.9 | 2.2 | 16.9 | 7.6 | 7.2 | 0.1 | - | - | 0.5 | 0.5 | 0.4 | 3.2 | 3.3 | 3.6 | 11.0 | 6.1 | 7.5 | 1.9 | 5.7 | 5.8 |
50 | 6-Methylhepta-3,5-dien-2-one | 1110 | - | - | - | 6.8 | 3.8 | 3.5 | - | - | - | - | - | - | 5.3 | 4.2 | 5.5 | - | - | 0.5 | 0.8 | 1.7 | 1.5 |
51 | 2-Phenylethanol | 1121 | - | - | - | - | - | - | 6.7 | 3.6 | 2.8 | 6.1 | 2.1 | 3.3 | 12.2 | 5.9 | 5.8 | 0.1 | 0.3 | 0.8 | 0.6 | 3.5 | 3.5 |
52 | α-Campholenal | 1132 | 1.6 | 1.4 | 1.3 | 1.0 | 0.7 | 0.7 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
56 | trans-Pinocarveol | 1147 | 0.6 | 1.4 | 1.2 | 0.1 | 0.5 | 0.6 | - | - | - | - | - | 0.3 | - | - | - | - | - | - | - | - | - |
54 | cis-Verbenol | 1149 | 0.2 | 0.5 | 0.5 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
55 | trans-Verbenol | 1153 | 2.2 | 4.1 | 4.8 | 0.6 | 1.6 | 2.0 | - | - | - | - | 0.5 | 0.3 | - | - | - | - | - | - | - | - | - |
56 | Benzoic acid | 1162 | - | - | - | - | - | - | 14.5 | 4.2 | 13.2 | 0.2 | - | - | - | - | - | 13.0 | 39.9 | 29.2 | - | - | - |
57 | Benzyl acetate | 1170 | - | - | - | - | - | - | 2.5 | 1.2 | 1.3 | - | - | 0.3 | 1.0 | 0.8 | 1.3 | 0.3 | 0.4 | 0.5 | - | - | - |
58 | trans-p-Menth-2-ene-1,8-diol | 1174 | 0.5 | 0.6 | 0.6 | - | - | - | - | - | - | - | 0.2 | 0.3 | - | - | - | - | - | - | - | - | - |
59 | Terpinen-4-ol | 1183 | 0.2 | 0.3 | 0.1 | 0.9 | 0.9 | 0.9 | - | - | 0.1 | 0.2 | 0.7 | 0.4 | - | - | - | - | - | - | - | - | - |
60 | p-Cymene-8-ol | 1191 | 0.8 | 0.9 | 1.5 | 0.1 | 0.6 | 1.0 | - | - | - | 0.2 | 0.5 | 0.5 | - | - | - | - | - | - | - | - | - |
61 | α-Terpineol | 1195 | 1.3 | 1.4 | 1.2 | 0.2 | 0.6 | 0.7 | - | - | - | 0.1 | 0.5 | 0.4 | - | - | - | - | - | - | - | - | - |
62 | Myrtenal | 1199 | 0.4 | - | 0.6 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
63 | Myrtenol | 1201 | 0.4 | 0.3 | 0.6 | 0.5 | 0.6 | 0.7 | - | 0.3 | - | 0.4 | 0.2 | 0.3 | - | - | - | - | - | - | - | - | - |
64 | Decanal | 1208 | 7.5 | 4.2 | 4.0 | 7.8 | 6.6 | 6.2 | - | - | - | - | - | 0.4 | 2.2 | 3.7 | 5.5 | 5.9 | 4.1 | 7.9 | 0.9 | 3.0 | 3.3 |
65 | Verbenone | 1213 | 2.3 | 3.2 | 3.1 | 0.1 | 0.6 | 0.6 | - | - | - | - | - | 0.1 | - | - | - | - | - | - | - | - | - |
66 | β-Cyclocitral | 1225 | - | - | - | - | - | - | 0.4 | 0.9 | 0.5 | - | - | - | - | - | 0.3 | - | - | - | - | - | - |
67 | trans-Carveol | 1226 | 2.3 | 1.8 | 1.5 | 0.2 | 0.1 | 0.5 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
68 | 2-Methoxy-p-cymene (Carvacrol methyl ether) | 1249 | - | - | - | 8.5 | 6.0 | 6.9 | - | - | - | - | 0.2 | - | - | - | - | - | - | - | - | - | - |
69 | Carvone | 1250 | 0.5 | 0.4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
70 | Phenethyl acetate | 1262 | - | - | - | - | - | - | 1.0 | 0.6 | 1.2 | 0.1 | 0.5 | 0.9 | 1.7 | 1.4 | 2.8 | - | - | - | - | - | - |
71 | 3-Phenylprop-2-enal | 1276 | - | - | - | - | - | - | 0.1 | - | 0.2 | - | - | - | - | - | 0.1 | - | - | - | - | - | - |
72 | Bornyl acetate | 1289 | 0.3 | 0.4 | 0.5 | 1.1 | 2.4 | 3.1 | - | - | - | - | 0.2 | - | - | - | - | - | - | - | - | - | - |
73 | Thymol | 1301 | 1.6 | 1.1 | 1.4 | - | - | 0.1 | - | - | - | - | - | - | 0.3 | 1.0 | 1.6 | 4.5 | 5.5 | 18.9 | 15.8 | 10.1 | 39.9 |
74 | trans-Cinnamyl alcohol | 1315 | - | - | - | - | - | - | - | - | 0.5 | - | - | - | - | - | - | - | - | - | - | - | - |
75 | α-Longipinene | 1354 | - | - | - | 2.8 | 2.6 | 2.4 | - | - | - | 1.3 | 2.3 | 2.0 | 1.4 | 2.3 | 2.3 | - | - | - | - | 0.3 | - |
76 | α-Cubebene | 1355 | 0.9 | 1.0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
77 | Longicyclene | 1374 | - | - | - | 2.6 | 2.6 | 2.9 | - | - | - | - | - | - | 2.0 | 3.9 | 6.1 | - | - | - | - | - | - |
78 | α-Ylangene | 1375 | - | - | - | 0.3 | - | - | 0.3 | 0.6 | 0.6 | - | - | - | - | - | - | - | - | - | - | - | - |
79 | α-Copaene | 1378 | 0.9 | 0.6 | 0.6 | 0.3 | 0.5 | 0.1 | 2.8 | 3.3 | 1.9 | - | - | - | - | 0.5 | 0.6 | 0.4 | 0.5 | 2.3 | - | - | - |
80 | β-Bourbonene | 1387 | 1.2 | 1.0 | 0.7 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
81 | Geranyl acetate | 1387 | - | - | - | 0.6 | 1.0 | 1.4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
82 | Tetradecane | 1400 | - | - | - | 0.7 | 0.5 | 0.9 | 0.2 | 0.3 | 0.2 | 0.2 | 0.2 | 0.8 | - | - | - | 0.4 | 0.3 | 0.4 | 0.1 | 0.5 | 0.4 |
83 | cis-Caryophyllene | 1408 | 0.2 | 0.1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
84 | Junipene | 1405 | - | - | - | 0.7 | 0.9 | 0.8 | - | - | - | - | - | - | - | 0.6 | 0.6 | - | - | - | - | - | - |
85 | Vanillin | 1407 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1.9 | 8.1 | 10.7 | - | - | - |
86 | Dodecanal | 1411 | 0.4 | 0.1 | 0.2 | 0.1 | 0.3 | 0.5 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
87 | trans-β-Caryophyllene | 1422 | 2.7 | 2.3 | 2.6 | 2.3 | 2.4 | 2.9 | - | 0.9 | - | - | - | - | - | - | - | - | - | - | - | - | - |
88 | α-Humulene | 1456 | 0.5 | 0.5 | 0.5 | 0.2 | 0.5 | 0.5 | 0.1 | 0.3 | 0.1 | - | - | - | - | - | - | - | - | 0.1 | - | - | - |
89 | Aromadendrene | 1463 | - | - | - | - | - | - | 2.0 | 0.3 | 2.2 | - | - | - | - | 0.4 | 0.6 | - | - | - | - | - | - |
90 | α-Amorphene | 1479 | - | 0.1 | - | - | - | - | 2.3 | 2.7 | 3.5 | - | - | - | - | 0.4 | 0.7 | - | - | - | - | - | - |
91 | Ar-curcumene | 1485 | - | - | - | - | - | - | 0.9 | 0.9 | 1.2 | - | - | - | - | - | - | - | - | - | - | - | - |
92 | α-Muurolene | 1502 | 2.0 | 1.3 | 1.4 | 0.1 | 0.8 | 0.6 | 4.4 | 4.5 | 5.9 | - | - | - | - | 1.0 | 1.5 | - | - | - | - | - | - |
93 | γ-Cadinene | 1517 | - | - | - | - | - | - | 6.8 | 6.6 | 9.3 | - | - | - | - | 1.1 | 1.6 | - | 0.4 | 0.4 | - | - | - |
94 | cis-Calamenene | 1525 | 1.1 | 0.9 | 0.6 | 0.3 | 0.5 | 0.2 | - | - | - | - | 0.5 | - | - | - | - | - | - | - | - | - | - |
95 | δ-Cadinene | 1526 | - | - | - | - | - | - | 16.4 | 15.0 | 21.5 | 1.1 | 0.7 | 1.0 | 1.9 | 2.0 | 3.2 | - | 1.2 | 1.1 | - | - | - |
96 | α-Cadinene | 1540 | - | - | - | - | - | - | 1.4 | 1.2 | 2.1 | 1.3 | 1.9 | 3.3 | 0.1 | 1.7 | 2.0 | - | - | - | - | - | - |
97 | α-Calacorene | 1546 | - | - | - | - | - | - | 1.5 | 1.2 | 1.1 | - | - | 0.3 | - | - | - | - | - | - | - | - | - |
98 | Caryophyllene oxide | 1585 | 1.3 | 1.9 | 1.7 | 1.2 | 2.6 | 3.7 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
99 | Guaiol | 1601 | - | - | - | - | - | - | 1.8 | 0.9 | 2.7 | 18.5 | 14.3 | 28.9 | 8.9 | 3.2 | 6.5 | - | - | - | 2.3 | 2.6 | 2.9 |
100 | Cedrol | 1603 | - | - | - | 7.7 | 4.7 | 1.0 | - | - | 0.5 | - | - | - | - | - | - | - | - | - | - | - | - |
101 | γ-Eudesmol | 1636 | - | - | - | - | - | - | - | - | - | 1.7 | 1.6 | 3.7 | 2.0 | 1.1 | 1.7 | - | - | - | - | - | - |
102 | α-Cadinol | 1646 | - | - | - | - | - | - | 2.6 | 1.5 | 5.1 | 0.1 | 1.6 | 0.3 | - | - | - | - | - | - | - | - | - |
103 | β-Eudesmol | 1654 | - | - | - | - | - | - | 2.2 | 0.6 | 3.7 | 3.5 | 3.1 | 7.3 | 3.6 | 1.9 | 2.8 | - | - | - | - | - | - |
104 | α-Eudesmol | 1657 | - | - | - | - | - | - | 2.1 | 0.6 | 3.3 | 2.2 | 1.9 | 4.7 | 2.9 | 1.3 | 1.9 | - | - | - | - | - | - |
105 | τ-Muurolol | 1659 | - | - | - | - | - | - | 1.2 | 0.6 | 1.7 | - | - | - | - | - | - | - | - | - | - | - | - |
106 | Bulnesol | 1672 | - | - | - | - | - | - | 0.6 | - | - | 10.7 | 7.7 | 16.7 | - | - | - | - | - | - | - | - | - |
107 | Benzyl benzoate | 1767 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1.0 | 0.8 | - | - | - |
108 | Hexadecanal | 1818 | - | - | - | 0.2 | 0.8 | 1.0 | - | - | - | - | - | - | - | - | 1.9 | - | - | - | - | - | - |
No. | Compound | RI | BP | KP | RP | PP | K1P | K2P | K3P |
---|---|---|---|---|---|---|---|---|---|
1 | 1,3-Dimethylbenzene | < 900 | - | - | - | - | - | - | 0.1 |
2 | Ethenylbenzene | < 900 | - | - | - | - | - | - | 0.1 |
3 | Nonane | 900 | 0.2 | 0.1 | - | - | - | - | 0.1 |
4 | α-Pinene | 942 | 11.3 | 0.2 | - | 0.1 | - | - | 0.1 |
5 | Camphene | 958 | 0.2 | - | - | - | - | - | - |
6 | Verbenene | 962 | 0.3 | - | - | - | - | - | - |
7 | Benzaldehyde | 969 | - | - | 0.1 | - | - | - | 0.1 |
8 | β-Pinene | 984 | 0.2 | - | - | - | - | - | - |
9 | Octanal | 1005 | 0.2 | 0.1 | - | - | 0.1 | 0.1 | 0.2 |
10 | δ-3-Carene | 1015 | 0.2 | - | - | - | - | - | - |
11 | p-Cymene | 1031 | 0.2 | - | - | - | - | - | - |
12 | Limonene | 1035 | 0.2 | - | - | - | - | - | 0.1 |
13 | Nonanal | 1106 | 0.5 | 0.3 | - | - | 0.1 | 0.2 | 0.3 |
14 | α-Campholene aldehyde | 1132 | 0.5 | - | - | - | - | - | - |
15 | cis-Verbenol | 1149 | 1.0 | - | - | - | - | - | - |
16 | trans-Verbenol | 1153 | 2.1 | - | - | - | - | - | - |
17 | cis-p-Menth-2-ene-1,8-diol | 1156 | 0.8 | - | - | - | - | - | - |
18 | Pinocarvone | 1167 | 0.2 | - | - | - | - | - | - |
19 | Benzyl acetate | 1170 | - | - | 0.1 | - | - | - | - |
20 | trans-p-Menth-2-ene-1,8-diol | 1174 | 2.9 | - | - | - | - | - | - |
21 | Terpinen-4-ol | 1183 | 0.2 | - | - | - | - | - | - |
22 | Octanoic acid | 1187 | - | - | 0.1 | - | 0.1 | - | 0.1 |
23 | 4-Methylacetophenone | 1189 | 0.2 | - | - | - | - | - | - |
24 | p-Cymene-8-ol | 1191 | 0.6 | - | - | - | - | - | - |
25 | α-Terpineol | 1195 | 0.6 | - | - | - | - | - | - |
26 | Myrtenal | 1199 | 0.3 | - | - | - | - | - | - |
27 | Myrtenol | 1201 | 0.6 | - | - | - | - | - | - |
28 | Decanal | 1208 | 1.5 | 0.9 | 0.1 | 0.2 | 0.7 | 1.1 | 0.8 |
29 | Verbenone | 1213 | 2.3 | - | - | - | - | - | - |
30 | β-Cyclocitral | 1225 | - | - | 0.1 | - | - | - | - |
31 | trans-Carveol | 1226 | 1.0 | - | - | - | - | - | - |
32 | 3-Phenylbutan-2-one | 1249 | - | - | - | - | 0.1 | - | 0.1 |
33 | 4-Methoxybenzaldehyde | 1260 | - | - | - | - | - | - | 0.1 |
34 | Phenethyl acetate | 1262 | - | - | 0.2 | - | - | - | - |
35 | 3-Phenylprop-2-enal | 1276 | - | - | - | - | 0.2 | - | 0.2 |
36 | Nonanoic acid | 1284 | 0.2 | 0.2 | 0.1 | 0.1 | 0.4 | 0.1 | 0.1 |
37 | Bornyl acetate | 1289 | 0.2 | - | - | - | - | - | - |
38 | Thymol | 1301 | 0.8 | - | - | - | 0.2 | 1.3 | 2.4 |
39 | Carvacrol | 1312 | 0.2 | - | - | - | - | - | - |
40 | 2-Methoxy-4-vinylphenol | 1319 | - | - | 0.2 | 0.1 | 0.2 | 7.3 | 0.6 |
41 | α-Longipinene | 1354 | - | 0.1 | - | - | 0.1 | - | - |
42 | 4-Phenylbut-3-en-2-one* | 1362 | - | - | 0.1 | 0.1 | 0.2 | - | 0.1 |
43 | Eugenol | 1363 | - | - | - | 0.2 | - | 0.1 | - |
44 | 4-Ethenyl-1,2-dimethoxybenzene | 1373 | - | - | 0.2 | - | 0.6 | - | 1.2 |
45 | Longicyclene | 1374 | - | 0.1 | - | - | - | - | - |
46 | α-Copaene | 1378 | 0.2 | - | 0.2 | - | - | - | - |
47 | Decanoic acid | 1381 | 0.3 | 0.2 | 0.1 | 0.1 | 0.2 | 0.2 | 0.1 |
48 | β-Bourbonene | 1387 | 0.2 | - | - | - | - | - | - |
49 | Tetradecane | 1400 | - | 0.1 | - | - | 0.1 | 0.1 | 0.1 |
50 | Junipene | 1405 | - | - | - | - | - | - | 0.1 |
51 | Dodecanal | 1411 | 0.3 | 0.1 | - | - | 0.1 | 0.2 | 0.1 |
52 | trans-β-Caryophyllene | 1422 | 0.8 | 0.1 | 0.1 | - | - | - | - |
53 | α-Humulene | 1456 | 0.2 | - | - | - | - | - | - |
54 | Aromadendrene | 1463 | - | - | 0.6 | - | - | 0.1 | - |
55 | α-Amorphene | 1479 | 0.2 | - | 0.8 | - | 0.1 | - | - |
56 | Pentadecane | 1500 | - | - | - | - | - | - | 0.1 |
57 | α-Muurolene | 1502 | 1.0 | 0.1 | 2.0 | - | 0.2 | 0.2 | - |
58 | γ-Cadinene | 1517 | 0.3 | - | 3.1 | - | 0.2 | 0.3 | - |
59 | δ-Cadinene | 1526 | 0.8 | 0.3 | 6.6 | 0.1 | 0.4 | 0.7 | 0.6 |
60 | α-Cadinene | 1540 | - | - | 1.4 | - | 0.9 | - | - |
61 | α-Copaen-11-ol | 1541 | - | - | - | 0.9 | - | - | 0.6 |
62 | α-Calacorene | 1546 | 0.2 | - | 1.2 | - | 0.1 | - | - |
63 | Dodecanoic acid | 1578 | 0.2 | - | - | - | 0.5 | 0.6 | - |
64 | Caryophyllene oxide | 1585 | 5.8 | 0.5 | - | - | - | 0.1 | - |
65 | Guaiol | 1601 | 1.6 | 3.1 | 4.4 | 14.3 | 4.6 | - | 5.2 |
66 | γ-Eudesmol | 1636 | - | - | 5.5 | 3.9 | 2.6 | 0.3 | 1.6 |
67 | α-Cadinol | 1646 | 0.5 | - | 10.1 | - | 0.5 | 0.8 | 0.6 |
68 | α-Muurolol (torreyol) | 1652 | 0.5 | - | 1.9 | - | - | 0.3 | - |
69 | β-Eudesmol | 1654 | - | - | 9.6 | 6.4 | 5.1 | 0.5 | 2.7 |
70 | α-Eudesmol | 1657 | - | - | 9.4 | 4.5 | 4.0 | - | 1.9 |
71 | τ-Muurolol | 1659 | - | - | - | - | - | 1.4 | - |
72 | Bulnesol | 1672 | - | - | 2.5 | 15.9 | 2.1 | - | 2.4 |
73 | Heptadecane | 1700 | 0.2 | - | 0.1 | 0.5 | - | 0.1 | - |
74 | Benzyl benzoate | 1767 | 0.2 | - | 0.1 | - | 0.1 | 13.8 | 0.1 |
75 | Tetradecanoic acid | 1772 | - | - | - | - | - | - | 0.1 |
76 | Hexadecanal | 1818 | 1.0 | 2.9 | - | - | 3.8 | 1.6 | 3.3 |
77 | Benzyl salycilate | 1870 | - | - | - | - | - | 2.7 | - |
78 | Nonadecane | 1900 | 1.0 | 0.3 | 0.2 | 1.0 | 0.6 | 0.5 | 0.3 |
79 | Heptadecan-2-one | 1903 | - | - | 0.1 | 0.3 | 0.1 | - | 0.2 |
80 | Hexadecanoic acid | 1972 | - | 0.8 | 0.1 | 0.6 | 1.0 | 0.4 | 0.9 |
81 | Manoyl oxide | 1990 | 8.7 | 0.3 | 0.2 | 0.5 | 0.1 | - | - |
82 | Eicosane | 2000 | 2.9 | 0.6 | 0.1 | 0.1 | 0.2 | 0.2 | 0.1 |
83 | Octadecan-2-one* | 2004 | - | - | 0.1 | 0.5 | 0.2 | - | 0.5 |
84 | Dehydroabietan | 2054 | 3.6 | - | - | - | - | - | - |
85 | Manool | 2055 | - | 5.7 | 0.6 | 0.3 | 0.5 | - | - |
86 | Octadecan-1-ol | 2074 | - | 0.3 | - | - | 0.5 | - | 2.8 |
87 | Abietadiene | 2077 | 3.1 | - | - | - | - | - | - |
88 | Benzyl cinnamate | 2091 | - | - | - | - | - | 14.9 | 0.1 |
89 | Heneicosane | 2100 | 3.2 | 4.1 | 1.0 | 3.5 | 2.3 | 3.7 | 2.2 |
90 | Nonadecan-2-one | 2105 | - | - | 0.1 | 1.2 | 0.9 | - | 1.6 |
91 | Docosane | 2200 | 4.2 | 13.5 | 11.2 | 12.7 | 23.5 | 2.7 | 26.0 |
92 | Methyl sandaracopimarate | 2252 | 0.6 | - | - | - | - | - | - |
93 | Dehydroabietal | 2261 | 2.4 | - | - | - | - | - | - |
94 | (Z)-Tricos-9-ene | 2272 | 0.5 | 1.6 | 0.3 | 1.5 | 1.7 | 2.9 | 1.6 |
95 | Methyl isopimarate | 2290 | 1.1 | - | - | - | - | - | - |
96 | Tricosane | 2300 | 11.6 | 31.8 | 5.2 | 22.3 | 24.8 | 35.1 | 27.7 |
97 | Abietadien-18-al | 2301 | 2.6 | - | - | - | - | - | - |
98 | Dehydroabietic acid | 2350 | 1.0 | - | - | - | - | - | - |
99 | Tetracosane | 2400 | - | 25.4 | 9.4 | - | 4.3 | - | - |
No. | Component | RT | UV max [nm] | [M − H+]− | [M + H+]+ / [M + Na+]+/ [M − H2O + H+]+ | BP | KP | RP | PP | K1P | K2P | K3P | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 4-Hydroxybenzoic acid a,b,c | 7.33 | 256 | 137.0246 | 139.0388 | − | − | + | tr | + | + | + | [91] |
2 | 3-Hydroxybenzoic acid b,c | 7.97 | 258 | 137.0247 | 139.0398 | tr | − | − | tr | − | + | tr | [91] |
3 | 4-Hydroxybenzaldehyde b,c | 9.46 | 282 | 121.0296 | 123.0440 | − | − | − | − | − | + | − | [92] |
4 | Caffeic acid a,b,c | 11.02 | 323, 295sh | 179.0351 | 181.0498 | tr | tr | ++ | + | + | + | + | [79,91,93,94,95,96,97,98] |
5 | Vanillin a,b,c | 12.41 | 310,280, 230 | 151.0404 | 153.0543 | tr | tr | tr | + | tr | ++ | tr | [86,91] |
6 | Benzoic acid a,b,c | 13.46 | 230, 274 | 121.0296 | 123.0434 | tr | tr | + | tr | tr | ++ | tr | [86,91] |
7 | p-Coumaric acid a,b,c | 13.81 | 310, 300sh | 163.0401 | 165.0542 | + | tr | ++ | + | + | ++ | + | [79,86,91,94,95,96,97] |
8 | p-Coumaroyl glycerol b,c | 13.94 | 310, 300sh, 229 | 237.0773 | −/261.0733 | tr | − | tr | + | tr | + | tr | [60,99,100] |
9 | Ferulic acid a,b,c | 14.63 | 322, 298sh | 193.0497 | 195.0641 | + | tr | + | + | + | ++ | + | [79,86,91,94,95,97] |
10 | Isoferulic acid a,b,c | 14.74 | 324, 300sh | 193.0497 | 195.0660 | tr | − | ++ | + | ++ | + | ++ | [79,86,91,94,95,97] |
11 | *Caffeoylmalic acid (Phaseolic acid) isomer b,c | 15.29 | 328, 298sh | 295.0824 | −/319.0778 | − | − | + | − | − | + | − | [101,102] |
12 | 4-Hydroxy-3-methoxycinnamaldehyde (Coniferyl aldehyde) b,c | 15.37 | 339 | 177.0556 | 179.0701 | tr | − | − | − | − | ++ | − | [103,104] |
13 | *p-Coumaric acid derivativeb | 15.64 | 310, 225 | 329.1042 | −/353.0977 | − | − | − | tr | − | + | − | − |
14 | *p-Coumaric acid derivativeb | 15.72 | 310, 226 | 359.1134 | −/383.1081 | tr | − | − | tr | − | + | tr | − |
15 | *p-Coumaric acid derivativeb | 15.83 | 310, 227 | 359.1137 | −/383.1090 | tr | − | − | + | − | ++ | tr | − |
16 | *p-Coumaric acid derivativeb | 15.90 | 311, 228 | 359.1137 | /383.1087 | tr | − | − | + | − | + | − | − |
17 | *Aromadendrin (dihydrokaempferol) b,c | 15.98 | 292 | 287.0559 | 289.0705 | tr | ++ | + | + | + | + | + | [105] |
18 | *Ferulic acid derivative b | 16.09 | 322, 298sh | 389.1253 | −/413.1204 | tr | − | − | + | − | + | tr | − |
19 | *Ferulic acid derivative b | 16.18 | 322, 298sh | 389.1239 | −/413.1200 | + | − | − | + | − | ++ | − | |
20 | *Acetyl-p-coumraoylglycerol b, c | 16.29 | 311 | 279.0879 | −/303.0829 | + | − | tr | + | tr | ++ | tr | [60,99,100] |
21 | Apigetrin (apigenin 7-O-glucoside) b, c | 16.30 | 315sh, 265 | 431.0976 | −/455.0966 | − | − | + | tr | − | − | − | [94,95] |
22 | Dimethylcaffeic acid (DMCA) b, c | 16.40 | 324, 294sh | 207.0664 | 209.0943 | − | tr | ++ | + | + | tr | + | [94,95] |
23 | Cinnamic acid a,b,c | 16.75 | 278 | 147.0444 | 149.0601 | tr | − | + | tr | tr | + | tr | [6,91,94,95] |
24 | *Caffeic acid derivative b | 17.15 | 328, 298sh | 277.1082 | −/301.1052 | − | − | + | − | + | − | tr | − |
25 | Pinobanksin 5-methylether b,c | 17.32 | 288 | 285.0762 | 287.0884 | − | − | ++ | tr | tr | tr | + | [6,94,95,96,98] |
26 | Eriodyctiol (4′-hydroxynaringenin) b,c | 17.39 | 288 | 287.0562 | 289.0695 | − | + | − | + | − | tr | + | [95] |
27 | Pinusenocarp b,c | 17.49 | − | 291.1597 | 293.1749 | + | tr | − | tr | − | − | − | [106] |
28 | *Quercetin dimethyl ether b,c | 17.69 | 363, 245 | 329.0667 | 331.0809 | tr | − | ++ | tr | tr | − | − | [91,94,96] |
29 | 6″-O-p-Coumaroyltrifolin (Kaempferol 3-(6-p-coumaroylgalactoside) b,c | 17.71 | 350sh, 313, 262 | 593.1290 | 595.1483 | + | − | − | − | − | − | − | [83] |
30 | Quercetin a,b,c | 17.89 | 364, 270sh, 265 | 301.0349 | 303.0488 | + | + | ++ | + | tr | + | + | [6,91,94,95] |
31 | Luteolin a,b,c | 17.93 | 345, 254 | 285.0407 | 287.0553 | + | − | + | tr | tr | tr | tr | [91,95] |
32 | *Caffeic acid derivative b | 18.10 | 328, 329sh | 349.1658 | −/373.1628 | − | − | + | tr | tr | − | + | − |
33 | 1-Caffeoyl-3-p-coumaroyl glycerol b,c | 18.37 | 315, 298sh, 235 | 399.1085 | 401.1190 | − | − | − | − | − | + | − | [60,79,95] |
34 | Pinobanksin a,b,c | 18.45 | 292 | 271.0611 | 273.0763 | tr | + | ++ | + | + | tr | + | [79,94,95,96] |
35 | Quercetin 3-methyl ether b,c | 18.46 | 355, 268sh, 255 | 315.0497 | 317.0657 | + | + | + | + | + | + | + | [94] |
36 | 7,4′-Di-O-methylmyricetin b,c | 18.60 | 361, 259 | 345.0608 | 347.0764 | + | − | − | − | − | − | − | [107] |
37 | Caffeoyl-feruloylglycerol b,c | 18.64 | 326, 298sh, 240 | 429.1175 | −/453.1153 | + | − | + | + | + | + | − | [60,99] |
38 | Chrysin-5-methyl ether b,c | 18.70 | 314sh, 264 | 267.0663 | 269.0814 | tr | tr | + | tr | tr | tr | tr | [98,108] |
39 | Hesperetin | 18.69 | 290 | 301.0716 | 303.0851 | − | + | + | + | − | − | − | [109] |
40 | Naringenin a,b,c | 18.92 | 289 | 271.0612 | 273.0746 | tr | ++ | + | + | tr | + | + | [95,108] |
41 | *Caffeic acid derivative b | 19.17 | 321 | 299.0932 | 323.0905 | − | − | + | + | + | − | + | − |
42 | Apigenin a,b,c | 19.26 | 338, 290sh, 263 | 269.0450 | 271.0592 | tr | tr | ++ | tr | + | + | tr | [6,94,95] |
43 | Kaempferol a,b,c | 19.44 | 366, 295sh, 265 | 285.0403 | 287.0544 | tr | + | + | + | + | + | + | [6,79,91,94,95] |
44 | β-Styrylacrilic acid (cinnamylideneacetic acid) b,c | 19.52 | 311, 240sh | 173.0613 | 175.0757 | − | − | ++ | − | tr | − | tr | [94,110] |
45 | 1,3-Di-p-coumaroylglycerol b,c | 19.57 | 312, 300sh | 383.1129 | −/407.1096 | + | − | − | + | + | + | + | [60,79] |
46 | Isorahmnetin (quercetin 3′-methyl ether) a,b,c | 19.72 | 371, 268sh, 256 | 315.0502 | 317.0661 | + | + | + | + | + | + | + | [6,79,91,95,96] |
47 | p-Coumaroyl-feruloylglycerol b,c | 19.85 | 316, 298sh | 413.124 | −/437.1196 | + | − | + | + | + | + | tr | [60,86] |
48 | 2-Acetyl-1,3-di-caffeoylglycerol b,c | 19.92 | 328, 298sh | 457.1133 | −/481.1099 | + | − | + | + | + | + | + | [95,97] |
49 | Caffeic acid butenoic or isobutenoic ester b,c | 19.98 | 326, 298sh, 245 | 233.0827 | 235.0969/ 257.0800 | − | − | + | − | + | − | + | [60,111] |
50 | Luteolin-5-methyl ether b,c | 20.06 | 350, 298sh, 267 | 299.0549 | −/323.0543 | + | + | + | + | + | + | + | [94] |
51 | Di-1,3-feruloylglycerol b, c | 20.07 | 323, 298sh | 443.1329 | −/467.1300 | + | − | − | − | − | ++ | − | [60,79,95] |
52 | *Quercetin-dimethyl ether b,c | 20.23 | 358, 260 | 329.066 | 331.0808 | + | + | + | + | tr | − | + | [91,94,96] |
53 | Galangin-5-methyl ether b,c | 20.26 | 352, 300sh, 260 | 283.0602 | 285.0726 | tr | + | + | + | tr | − | + | [94,96] |
54 | Quercetin-3,3′-dimethyl ether b,c | 20.36 | 356, 269sh, 255 | 329.0651 | 331.0809 | + | tr | + | tr | tr | tr | + | [94,95] |
55 | Myricetin 3,7,4′-trimethyl ether b, c | 20.63 | 344, 266 | 359.0772 | 361.0922 | + | − | − | − | − | − | − | [112] |
56 | *Hydroxy-tetramethoxyflavone c | 20.63 | 370, 282 | 357.0976 | 359.1118/ 381.0954 | − | − | + | − | − | tr | tr | − |
57 | Caffeic acid prenyl or isoprenyl ester I b,c | 20.69 | 324, 298sh | 247.0987 | 249.1634 | tr | − | + | + | + | − | + | [91,94,95,96,98] |
58 | Caffeic acid butyl or isobutyl ester b, c | 20.73 | 326, 298sh | 235.0972 | − | − | tr | + | + | + | − | + | [79,113] |
59 | *p-Coumaric acid derivative b | 20.77 | 312, 282 | 445.1651 | −/469.1612 | − | − | − | − | − | + | − | − |
60 | Rhamnetin (quercetin 7-methyl ether) b,c | 20.91 | 356, 268sh, 256 | 315.0504 | 317.0639 | + | + | + | + | + | + | + | [6,95,114] |
61 | Caffeic acid prenyl or isoprenyl ester II b,c | 21.04 | 325, 298sh | 247.0979 | 249.1273 | tr | tr | ++ | + | ++ | tr | ++ | [91,94,95,96,98] |
62 | 2-Acetyl-1-caffeoyl-3-p-coumaroylglycerol b,c | 21.22 | 316, 299sh | 441.1182 | −/465.1147 | + | − | − | + | − | + | − | [79,95,97,99] |
63 | Caffeic acid prenyl or isoprenyl ester III b,c | 21.23 | 324, 298sh | 247.0976 | −/271.1105 | tr | tr | ++ | + | ++ | + | ++ | [91,94,95,96,98] |
64 | Caffeic acid prenyl or isoprenyl ester IV b,c | 21.33 | 325, 298sh | 247.0973 | 249.1123/271.099 | tr | tr | ++ | + | ++ | tr | ++ | [91,94,95,96,98] |
65 | *Quercetin dimethyl ether b,c | 21.43 | 368, 254 | 329.0659 | 331.0801 | tr | + | tr | + | − | tr | + | [91,94,95,96,98] |
66 | 2-Acetyl-1-caffeoyl-3-feruloylglycerol b,c | 21.50 | 322, 300sh | 471.1300 | 495.1259 | tr | − | − | tr | tr | + | tr | [97,99] |
67 | Caffeic acid benzyl ester b,c | 21.65 | 328, 298sh | 269.0818 | 271.0971 | tr | + | + | + | + | tr | + | [94,95,96] |
68 | Quercetin-3,7-dimethyl ether b,c | 21.66 | 356, 268sh, 256 | 329.0674 | 331.0827 | + | tr | tr | tr | tr | tr | tr | [91,95] |
69 | *3,5,2′-Trihydroxy-7,8,4′-trimethoxyflavone b,c | 21.79 | 360, 256 | 359.0768 | 361.0927 | + | tr | − | tr | tr | + | + | [115] |
70 | Chrysin a,b,c | 21.93 | 312sh, 268 | 253.0505 | 255.0659 | tr | + | + | + | ++ | + | ++ | [79,91,94,95,96,98] |
71 | Pinocembrin a,b,c | 22.12 | 290 | 255.0666 | 257.0799 | + | tr | ++ | + | + | tr | + | [91,94,95,96,98] |
72 | Caffeic acid phenethyl ester b,c | 22.36 | 325, 295 | 283.0984 | 285.0940 | tr | − | ++ | tr | + | tr | tr | [91,94,95,96,98] |
73 | Sakuranetin b,c | 22.38 | 290 | 285.0773 | 287.0908 | tr | + | + | ++ | + | ++ | ++ | [91,95,108] |
74 | Galangin a,b,c | 22.43 | 360, 266 | 269.0454 | 271.0761 | tr | tr | + | tr | tr | tr | tr | [79,91,95,96,98] |
75 | *p-Coumaric derivative c | 22.52 | 311 | 325.109 | −/349.1033 | − | − | − | − | − | + | − | − |
76 | *Pinobanksin-7-methyl ether b, c | 22.62 | 290 | 285.0777 | 287.0898 | − | tr | + | + | + | tr | + | [94] |
77 | 2-Acetyl-1,3-di-p-coumaroylglycerol b,c | 22.72 | 312, 300 | 425.1232 | −/449.1202 | + | − | − | + | tr | ++ | tr | [79,95,99] |
78 | Pinobanksin 3-O-acetate b,c | 22.80 | 295 | 313.0713 | 315.0875 | tr | tr | ++ | tr | + | tr | + | [79,94,95,96] |
79 | Kaempferide (kaempferol 4′-methyl ether) b,c | 22.93 | 365, 267 | 299.0555 | 301.0698 | tr | ++ | + | + | tr | tr | + | [91] |
80 | p-Coumaric acid prenyl or isoprenyl ester I b,c | 23.11 | 311, 299sh | 231.1028 | 233.1178 | − | tr | + | + | + | − | + | [94,96,98] |
81 | 2-Acetyl-3-p-coumaroyl-1-feruloylglycerol b,c | 23.12 | 318, 299sh | 455.134 | 479.1310 | + | − | − | + | + | ++ | + | [79,97] |
82 | Methoxychrysin b,c | 23.21 | 310sh, 266, 245sh | 283.0611 | 285.0714 | − | tr | + | tr | tr | − | + | [94,96,110] |
83 | p-Coumaric acid prenyl or isoprenyl ester II b,c | 23.38 | 310, 299sh | 231.1025 | −/255.1003 | − | tr | + | + | + | + | tr | [94,96,98] |
84 | 2-Acetyl-1,3-di-feruloylglycerol b,c | 23.62 | 328, 298sh | 485.1423 | 487.1578 | + | − | − | + | − | + | − | [97,100] |
85 | Kaempferol 3,4′-dimethyl ether b,c | 23.72 | 350, 267 | 313.0722 | 315.0854 | + | ++ | − | + | − | tr | + | [116,117] |
86 | Cupressic acid b,c | 23.82 | − | 319.2287 | 321.2437 | tr | + | − | − | − | − | − | [75] |
87 | p-Coumaric acid benzyl ester b,c | 23.88 | 312, 298sh | 253.0870 | −/277.0826 | + | − | + | + | tr | ++ | + | [79,94,96] |
88 | *15-Hydroxy-cis-clerodan-3-ene-18-oic acid b,c | 23.95 | − | 321.2442 | 323.2589 | + | − | − | − | − | − | − | [75] |
89 | 18-Hydroxy-cis-clerodan-3-ene-15-oic acid b,c | 24.14 | − | 321.2449 | −/305.2481 | + | − | − | − | − | − | − | [75] |
90 | Isocupressic acid b,c | 24.20 | − | 319.2284 | 321.2445/ 303.2332 | − | + | − | − | − | − | − | [75] |
91 | Caffeic acid cinnamyl ester b,c | 24.32 | 326, 300sh | 295.0971 | −/319.0945 | − | − | ++ | tr | + | tr | + | [94,95,110] |
92 | Ferulic acid benzyl ester* b,c | 24.65 | 326, 298 | 283.0968 | 285.0725 | + | − | + | ++ | + | ++ | + | [79,86,111] |
93 | 3,7,4′-Trimethylquercetin (ayanin) b,c | 24.78 | 355, 255 | 343.0825 | 345.0977 | + | − | − | − | − | − | − | [90] |
94 | Pinobanksin 3-O-propanoate b,c | 25.05 | 294 | 327.0876 | 329.1023/ 351.0835 | − | tr | ++ | tr | + | tr | + | [94,95,96] |
95 | p-Coumaric acid phenethyl ester b,c | 25.06 | 310, 300sh | 267.1033 | −/291.0991 | − | tr | + | + | + | + | + | [98] |
96 | *Hydroxydehydroabietic acid isomer b,c | 25.00 | − | 315.1969 | 317.2118 | + | tr | − | tr | tr | − | − | [106] |
97 | Myricetin-3,7,4′,5′-tetramethyl-ether b,c | 25.11 | 344, 265 | 373.0937 | 375.1088 | ++ | − | − | − | − | − | − | [75,90,118,119,95] |
98 | p-Coumaric acid cinnamyl ester b,c | 26.83 | 312, 300sh | 279.1024 | −/303.0986 | − | tr | + | tr | tr | tr | tr | [95] |
99 | *Trihydroxytriterpene carboxylic acid c | 26.41 | − | 487.3439 | 489.3595 | − | ++ | − | ++ | − | ++ | ++ | − |
100 | *Hydroxyditerpene carboxylic acid b,c | 26.80 | − | 321.2439 | −/345.2411 | + | − | − | − | − | − | − | [120] |
101 | Pinobanksin 3-O-butanoate or isobutanoate b,c | 26.93 | 293 | 341.1022 | 343.1178 | − | + | + | + | − | + | + | [94,96] |
102 | Pinostrobin chalcone b,c | 26.94 | 339, 287sh | 269.0811 | 271.0972 | tr | − | ++ | + | + | + | + | [95] |
103 | *Trihydroxyflavanone | 27.03 | 267, 290 | 271.0977 | 273.1115 | tr | − | ++ | + | + | − | + | − |
104 | Pinobanksin 3-O-pentenoate or isopentenoate I b,c | 27.06 | 295 | 353.1038 | 355.1181 | − | − | ++ | − | tr | tr | + | [95,96,121] |
105 | Pinostrobin (pinocembrin-7-methyl ether) a,b,c | 27.20 | 289 | 269.2126 | −/293.2093 | − | tr | tr | + | tr | tr | + | [95] |
106 | *8-Hydroxylabdan-15-oic acid b,c | 27.26 | − | 323.2601 | −/347.2569 | ++ | − | − | − | − | − | − | [84] |
107 | Pinobanksin 3-O-pentanoate or isopentanoate II b,c | 27.68 | 292 | 355.1198 | 357.1342/ 379.1159 | − | + | + | + | + | tr | + | [94,95,96] |
108 | Methoxycinnamic acid cinnamyl ester b,c | 27.74 | 280 | 293.2131 | 295.2278/ 317.2098 | − | − | + | + | + | + | + | [94,110] |
109 | *18-Acetoxy-cis-clerodan-3-ene-15-oic acid b,c | 28.08 | − | 363.2544 | −/387.2521 | + | − | − | − | − | − | − | [84] |
110 | Dehydroabietic acid isomer b,c | 28.16 | − | 299.2023 | 301.2173 | ++ | + | tr | + | + | + | tr | [122] |
111 | Pinobanksin 3-O-hexanoate b,c | 28.21 | 282 | 369.1349 | 371.1497 | − | − | + | − | − | − | tr | [94,96,110,121] |
112 | Abietic or pimaric acid isomer I b,c | 28.59 | − | 301.2175 | 303.2327 | + | + | − | tr | + | tr | − | [106] |
113 | Abietic or pimaric acid isomer II b,c | 28.70 | − | 301.2173 | 303.2328 | + | + | − | tr | tr | − | − | [106] |
114 | Abietic or pimaric acid isomer III b,c | 28.83 | − | 301.2180 | 303.2326 | ++ | + | − | tr | − | − | − | [106] |
115 | Abietic or pimaric acid isomer IV b,c | 29.06 | − | 301.2180 | 303.2318 | + | − | − | − | + | − | − | [106] |
116 | *Oleanoic acid b,c | 29.39 | − | 453.3372 | 455.3549 | + | ++ | − | ++ | − | ++ | + | [85] |
117 | *Moronic acid b,c | 29.60 | − | 453.3372 | 455.3549 | − | + | − | + | − | + | + | [85] |
118 | *Masticadienonic acid b,c | 29.70 | − | 453.3372 | 455.3549 | tr | + | − | + | − | + | + | [85] |
No. | Compound | Rt [min] | |||||||
---|---|---|---|---|---|---|---|---|---|
BP | KP | RP | PP | K1P | K2P | K3P | |||
[mg/g] | |||||||||
1 | Caffeic acid | 11.02 | tr | tr | 6.80 | 0.15 | 0.68 | 0.22 | 0.51 |
2 | Vanillin | 12.41 | tr | tr | tr | 1.89 | tr | 8.71 | tr |
3 | Benzoic acid | 13.46 | tr | tr | 8.11 | tr | tr | 17.96 | tr |
4 | p-Coumaric acid | 13.81 | 0.17 | tr | 2.60 | 0.41 | 0.54 | 4.22 | 0.48 |
5 | Ferulic acid | 14.63 | 0.34 | tr | 1.78 | 0.54 | 0.34 | 4.10 | 0.31 |
6 | Isoferulic acid | 14.74 | tr | nd | 8.30 | 0.17 | 0.80 | 0.09 | 0.67 |
7 | Dimethylcaffeic acida | 16.40 | nd | tr | 11.57 | 0.47 | 4.01 | tr | 2.59 |
8 | Cinnamic acid | 16.75 | tr | nd | 6.12 | tr | tr | 1.93 | tr |
9 | Pinobanksin 5-methyletherb | 17.32 | nd | nd | 17.80 | tr | tr | tr | 0.83 |
10 | Quercetin | 17.89 | 0.38 | 0.88 | 1.82 | 0.66 | tr | 0.47 | 0.76 |
11 | Pinobanksin | 18.45 | tr | 0.20 | 13.53 | 0.21 | 0.16 | tr | 0.43 |
12 | Chrysin-5-methyl etherc | 18.70 | tr | tr | 0.19 | tr | tr | tr | tr |
13 | Naringenin | 18.92 | tr | 1.43 | 0.71 | 0.90 | tr | 0.46 | 0.73 |
14 | Apigenin | 19.26 | tr | tr | 3.80 | tr | 0.10 | 0.34 | tr |
15 | Kaempferol | 19.44 | tr | 1.40 | 3.01 | 1.64 | 0.13 | 1.76 | 1.72 |
16 | Isorhamnetin | 19.72 | 0.20 | 0.44 | 1.76 | 0.35 | 0.05 | 0.14 | 0.29 |
17 | Luteolin-5-methyl etherd | 20.06 | 0.24 | 0.32 | 12.28 | 2.91 | 1.74 | 0.54 | 1.54 |
18 | Galangin 5-methyl ethere | 20.26 | tr | 0.85 | 1.66 | 0.02 | tr | nd | 0.20 |
19 | Quercetin 3,3′-dimethyl etherf | 20.36 | 0.52 | tr | 1.26 | tr | tr | tr | 0.03 |
20 | Myricetin 3,7,4′-trimethyl etherf | 20.63 | 0.67 | nd | nd | nd | nd | nd | nd |
21 | Rhamnetin (quercetin-7-methyl ether) | 20.91 | 0.08 | 0.09 | 1.94 | 0.18 | 0.15 | 0.14 | 0.35 |
22 | Caffeic acid prenyl or isoprenyl ester IIa | 21.04 | tr | tr | 14.07 | 0.28 | 3.36 | tr | 1.66 |
23 | Caffeic acid prenyl or isoprenyl ester IIIa | 21.23 | tr | tr | 20.05 | 0.73 | 6.19 | 1.56 | 3.06 |
24 | Caffeic acid prenyl or isoprenyl ester IVa | 21.33 | tr | tr | 3.62 | 0.15 | 1.94 | nd | 1.20 |
25 | *Quercetin dimethyl etherf | 21.43 | tr | 0.63 | tr | 0.53 | nd | tr | 0.67 |
26 | Caffeic acid benzyl estera | 21.65 | tr | 0.05 | 12.11 | 0.16 | 0.85 | tr | 0.75 |
27 | Quercetin-3,7-dimethyl etherf | 21.66 | 0.15 | tr | tr | tr | tr | tr | tr |
28 | Chrysin | 21.93 | tr | 0.04 | 30.71 | 0.70 | 7.50 | 0.17 | 5.72 |
29 | Pinocembrin | 22.12 | 0.11 | tr | 39.86 | 0.81 | 3.50 | tr | 2.03 |
30 | Caffeic acid phenethyl estera | 22.36 | tr | nd | 9.31 | tr | 4.69 | tr | tr |
31 | Sakuranetin | 22.38 | tr | 4.45 | 6.95 | 16.36 | 1.70 | 10.03 | 17.08 |
32 | Galangin | 22.43 | tr | tr | 16.67 | tr | tr | tr | tr |
33 | *Pinobanksin-7-methyl etherb | 22.62 | nd | tr | 10.78 | 0.17 | 3.43 | tr | 1.61 |
34 | 2-Acetyl-1,3-di-p-coumaroylglycerolg | 22.72 | 0.64 | nd | nd | 2.01 | tr | 13.04 | tr |
35 | Pinobanksin-3-O-acetateb | 22.80 | tr | tr | 43.92 | tr | 1.11 | tr | 0.99 |
36 | Kaempferide (4′-methylkaempferol)h | 22.93 | tr | 0.82 | 1.48 | 1.07 | tr | tr | 1.85 |
37 | p-Coumaric acid prenyl or isoprenyl ester Ig | 23.11 | nd | tr | 1.57 | 0.35 | 0.26 | nd | 0.08 |
38 | Methoxychrysinc | 23.21 | nd | tr | 3.87 | tr | tr | nd | 0.06 |
39 | p-Coumaric acid prenyl or isoprenyl ester IIg | 23.38 | nd | tr | 2.88 | 0.09 | 0.48 | 0.45 | tr |
40 | p-Coumaric acid benzyl esterg | 23.88 | 0.35 | nd | 1.35 | 0.81 | tr | 8.17 | 0.08 |
41 | Ferulic acid benzyl esteri | 24.65 | 0.33 | nd | 3.09 | 0.61 | 0.40 | 4.78 | 0.40 |
42 | Pinobanksin 3-O-propanoateb | 25.05 | nd | tr | 6.50 | tr | 0.88 | tr | 0.34 |
43 | Myricetin-3,7,4′,5′-tetramethyl-etherf | 25.11 | 4.29 | nd | nd | nd | nd | nd | nd |
44 | p-Coumaric acid cinnamyl esterg | 26.83 | nd | tr | 1.65 | tr | tr | tr | tr |
45 | Pinobanksin 3-O-pentenoate or isopentenoateb | 27.06 | nd | nd | 15.70 | nd | tr | tr | 2.85 |
46 | Pinostrobin | 27.20 | nd | tr | tr | 0.50 | tr | tr | 4.16 |
TP a | TF b | DPPH c | FRAP d | |||||
---|---|---|---|---|---|---|---|---|
Propolis | [mg GAE/g] | ±SD | [mg QE/g] | ±SD | [mg GAE/g] | ±SD | [mmol Fe2+/g] | ±SD |
BP | 14.0 | 0.9 | 8.8 | 0.1 | 2.6 | 0.1 | 0.1 | 0.0 |
KP | 15.9 | 0.9 | 11.1 | 0.3 | 2.7 | 0.1 | 0.2 | 0.0 |
RP | 189.7 | 1.5 | 103.9 | 4.2 | 81.6 | 5.2 | 0.8 | 0.0 |
PP | 22.5 | 1.2 | 11.1 | 0.2 | 6.3 | 0.2 | 0.3 | 0.0 |
K1P | 36.7 | 1.8 | 14.9 | 0.3 | 31.8 | 2.2 | 0.5 | 0.1 |
K2P | 33.2 | 0.3 | 7.2 | 0.4 | 11.2 | 0.2 | 0.4 | 0.0 |
K3P | 26.1 | 0.8 | 18.0 | 0.6 | 12.7 | 0.4 | 0.4 | 0.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svečnjak, L.; Marijanović, Z.; Okińczyc, P.; Marek Kuś, P.; Jerković, I. Mediterranean Propolis from the Adriatic Sea Islands as a Source of Natural Antioxidants: Comprehensive Chemical Biodiversity Determined by GC-MS, FTIR-ATR, UHPLC-DAD-QqTOF-MS, DPPH and FRAP Assay. Antioxidants 2020, 9, 337. https://doi.org/10.3390/antiox9040337
Svečnjak L, Marijanović Z, Okińczyc P, Marek Kuś P, Jerković I. Mediterranean Propolis from the Adriatic Sea Islands as a Source of Natural Antioxidants: Comprehensive Chemical Biodiversity Determined by GC-MS, FTIR-ATR, UHPLC-DAD-QqTOF-MS, DPPH and FRAP Assay. Antioxidants. 2020; 9(4):337. https://doi.org/10.3390/antiox9040337
Chicago/Turabian StyleSvečnjak, Lidija, Zvonimir Marijanović, Piotr Okińczyc, Piotr Marek Kuś, and Igor Jerković. 2020. "Mediterranean Propolis from the Adriatic Sea Islands as a Source of Natural Antioxidants: Comprehensive Chemical Biodiversity Determined by GC-MS, FTIR-ATR, UHPLC-DAD-QqTOF-MS, DPPH and FRAP Assay" Antioxidants 9, no. 4: 337. https://doi.org/10.3390/antiox9040337
APA StyleSvečnjak, L., Marijanović, Z., Okińczyc, P., Marek Kuś, P., & Jerković, I. (2020). Mediterranean Propolis from the Adriatic Sea Islands as a Source of Natural Antioxidants: Comprehensive Chemical Biodiversity Determined by GC-MS, FTIR-ATR, UHPLC-DAD-QqTOF-MS, DPPH and FRAP Assay. Antioxidants, 9(4), 337. https://doi.org/10.3390/antiox9040337