Extraction of Antioxidants from Winemaking Byproducts: Effect of the Solvent on Phenolic Composition, Antioxidant and Anti-Cholinesterase Activities, and Electrochemical Behaviour
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standards and Reagents
2.2. Samples
2.3. Phenolic Extraction
2.4. Total Phenolic Content
2.5. Chromatographic Analyses
2.6. DPPH Free Radical Scavenging Assay
2.7. Oxygen Radical Absorbance Capacity (ORAC) Assay
2.8. In Vitro Cholinesterases Inhibition Assay
2.9. Electrochemical Assays
2.10. Statistical Analysis
3. Results
3.1. Extraction Yields
3.2. Total Phenolic Content
3.3. Determination of Phenolic Compounds
3.4. Antioxidant Activity
3.5. In Vitro Cholinesterases Inhibition
3.6. Electrochemical Behavior by Cyclic Voltammetry
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Halliwell, B. Antioxidants in Human Health and Disease. Ann. Rev. Nut. 1996, 16, 33–50. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Mills, K.; le Cessie, S.; Noordam, R.; van Heemst, D. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Res. Rev. 2020, 57, 100982. [Google Scholar] [CrossRef] [PubMed]
- Siti, H.N.; Kamisah, Y.; Kamsiah, J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul. Pharmacol. 2015, 71, 40–56. [Google Scholar] [CrossRef] [PubMed]
- Andrisic, L.; Dudzik, D.; Barbas, C.; Milkovic, L.; Grune, T.; Zarkovic, N. Short overview on metabolomics approach to study pathophysiology of oxidative stress in cancer. Redox Biol. 2018, 14, 47–58. [Google Scholar] [CrossRef]
- Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C.J.; Valko, M. Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends Pharmacol. Sci. 2017, 38, 592–607. [Google Scholar] [CrossRef]
- Cobley, J.N.; Fiorello, M.L.; Bailey, D.M. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 2018, 15, 490–503. [Google Scholar] [CrossRef]
- Gonçalves, S.; Mansinhos, I.; Romano, A. Neuroprotective compounds from plant sources and their mode of action: An update. In Plant-derived Bioactives: Chemistry and Mode of Action; Swamy, M.K., Ed.; Springer: Singapore, 2020; Chapter 19; ISBN 978-981-15-2360-1. [Google Scholar] [CrossRef]
- Wang, J.; Song, Y.; Chen, Z.; Leng, S.X. Connection between Systemic Inflammation and Neuroinflammation Underlies Neuroprotective Mechanism of Several Phytochemicals in Neurodegenerative Diseases. Oxid. Med. Cell. Longev. 2018, 2018, 1972714. [Google Scholar] [CrossRef] [Green Version]
- Tkacz, K.; Wojdyło, A.; Nowicka, P.; Turkiewicz, I.; Golis, T. Characterization in vitro potency of biological active fractions of seeds, skins and flesh from selected Vitis vinifera L. cultivars and interspecific hybrids. J. Funct. Foods 2019, 56, 353–363. [Google Scholar] [CrossRef]
- Pope, C.N.; Brimijoin, S. Cholinesterases and the fine line between poison and remedy. Biochem. Pharmacol. 2018, 153, 205–216. [Google Scholar] [CrossRef]
- Akomolafe, S.F.; Akinyemi, A.J.; Ogunsuyi, O.B.; Oyeleye, S.I.; Oboh, G.; Adeoyo, O.O.; Allismith, Y.R. Effect of caffeine, caffeic acid and their various combinations on enzymes of cholinergic, monoaminergic and purinergic systems critical to neurodegeneration in rat brain—In vitro. NeuroToxicology 2017, 62, 6–13. [Google Scholar] [CrossRef]
- Roseiro, L.B.; Rauter, A.P.; Serralheiro, M.L.M. Polyphenols as acetylcholinesterase inhibitors: Structural specificity and impact on human disease. Nutr. Aging 2012, 1, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Costa, P.; Gonçalves, S.; Valentão, P.; Andrade, P.B.; Romano, A. Accumulation of phenolic compounds in in vitro cultures and wild plants of Lavandula viridis L’Hér and their antioxidant and anti-cholinesterase potential. Food Chem. Toxicol. 2013, 57, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.; Grevenstuk, T.; Rosa da Costa, A.M.; Gonçalves, S.; Romano, A. Antioxidant and anti-cholinesterase activities of Lavandula viridis L’Hér extracts after in vitro gastrointestinal digestion. Ind. Crops Prod. 2014, 55, 83–89. [Google Scholar] [CrossRef]
- Renaud, J.; Martinoli, M.G. Considerations for the use of polyphenols as therapies in neurodegenerative diseases. Int. J. Mol. Sci. 2019, 20, 1883. [Google Scholar] [CrossRef] [Green Version]
- Jara-Palacios, M.J.; Hernanz, D.; González-Manzano, S.; Santos-Buelga, C.; Escudero-Gilete, M.L.; Heredia, F.J. Detailed phenolic composition of white grape by-products by RRLC/MS and measurement of the antioxidant activity. Talanta 2014, 125, 51–57. [Google Scholar] [CrossRef]
- Jara-Palacios, M.J.; Escudero-Gilete, M.L.; Hernández-Hierro, J.M.; Heredia, F.J.; Hernanz, D. Cyclic voltammetry to evaluate the antioxidant potential in winemaking by-products. Talanta 2017, 165, 211–215. [Google Scholar] [CrossRef]
- Jara-Palacios, M.J. Wine lees as a source of antioxidant compounds. Antioxidants 2019, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards integral utilization of grape pomace from winemaking process: A review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef]
- García-Lomillo, J.; González-SanJosé, M.L. Applications of Wine Pomace in the Food Industry: Approaches and Functions. Compr. Rev. Food Sci. Food Saf. 2017, 16, 3–22. [Google Scholar] [CrossRef]
- Drosou, C.; Kyriakopoulou, K.; Bimpilas, A.; Tsimogiannis, D.; Krokida, M. A comparative study on different extraction techniques to recover red grape pomace polyphenols from vinification byproducts. Ind. Crops Prod. 2015, 75, 141–149. [Google Scholar] [CrossRef]
- Monroy, Y.M.; Rodrigues, R.A.F.; Sartoratto, A.; Cabral, F.A. Influence of ethanol, water, and their mixtures as co-solvents of the supercritical carbon dioxide in the extraction of phenolics from purple corn cob (Zea mays L.). J. Supercrit. Fluids 2016, 118, 11–18. [Google Scholar] [CrossRef]
- Aybastıer, Ö.; Dawbaa, S.; Demir, C. Investigation of antioxidant ability of grape seeds extract to prevent oxidatively induced DNA damage by gas chromatography-tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1072, 328–335. [Google Scholar] [CrossRef]
- Bender, A.B.B.; Speroni, C.S.; Moro, K.I.B.; Morisso, F.D.P.; dos Santos, D.R.; da Silva, L.P.; Penna, N.G. Effects of micronization on dietary fiber composition, physicochemical properties, phenolic compounds, and antioxidant capacity of grape pomace and its dietary fiber concentrate. LWT 2020, 117. [Google Scholar] [CrossRef]
- Delgado Adámez, J.; Gamero Samino, E.; Valdés Sánchez, E.; González-Gómez, D. In vitro estimation of the antibacterial activity and antioxidant capacity of aqueous extracts from grape-seeds (Vitis vinifera L.). Food Control 2012, 24, 136–141. [Google Scholar] [CrossRef]
- Stój, A.; Szwajgier, D.; Baranowska-Wójcik, E.; Domagała, D. Gentisic acid, salicylic acid, total phenolic content and cholinesterase inhibitory activities of red wines made from various grape varieties. S. Afr. J. Enol. Vitic. 2019, 40. [Google Scholar] [CrossRef]
- Granato, D.; Shahidi, F.; Wrolstad, R.; Kilmartin, P.; Melton, L.D.; Hidalgo, F.J.; Miyashita, K.; van Camp, J.; Alasalvar, C.; Ismail, A.B.; et al. Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods? Food Chem. 2018, 264, 471–475. [Google Scholar] [CrossRef]
- Finley, J.W.; Kong, A.N.; Hintze, K.J.; Jeffery, E.H.; Ji, L.L.; Lei, X.G. Antioxidants in foods: State of the science important to the food industry. J. Agric. Food Chem. 2011, 59, 6837–6846. [Google Scholar] [CrossRef]
- Oh, Y.; Heien, M.L.; Park, C.; Kang, Y.M.; Kim, J.; Boschen, S.L.; Shin, H.; Cho, H.U.; Blaha, C.D.; Bennet, K.E.; et al. Tracking tonic dopamine levels in vivo using multiple cyclic square wave voltammetry. Biosens. Bioelectron. 2018, 121, 174–182. [Google Scholar] [CrossRef]
- Shin, H.; Oh, Y.; Park, C.; Kang, Y.; Cho, H.U.; Blaha, C.D.; Bennet, K.E.; Heien, M.L.; Kim, I.Y.; Lee, K.H.; et al. Sensitive and Selective Measurement of Serotonin in Vivo Using Fast Cyclic Square-Wave Voltammetry. Anal. Chem. 2019, 92, 774–781. [Google Scholar] [CrossRef]
- Gonçalves, S.; Moreira, E.; Andrade, P.B.; Valentão, P.; Romano, A. Effect of in vitro gastrointestinal digestion on the total phenolic contents and antioxidant activity of wild Mediterranean edible plant extracts. Eur. Food Res. Technol. 2019, 245, 753–762. [Google Scholar] [CrossRef]
- Jara-Palacios, M.J.; Gonçalves, S.; Hernanz, D.; Heredia, F.J.; Romano, A. Effects of in vitro gastrointestinal digestion on phenolic compounds and antioxidant activity of different white winemaking byproducts extracts. Food Res. Int. 2018, 109, 433–439. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7. [Google Scholar] [CrossRef]
- Jara-Palacios, M.J.; Hernanz, D.; Escudero-Gilete, M.L.; Heredia, F.J. Antioxidant potential of white grape pomaces: Phenolic composition and antioxidant capacity measured by spectrophotometric and cyclic voltammetry methods. Food Res. Int. 2014, 66, 150–157. [Google Scholar] [CrossRef]
- Stalikas, C.D. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 2007, 30, 3268–3295. [Google Scholar] [CrossRef]
- Bucić-Kojić, A.; Planinić, M.; Tomas, S.; Jakobek, L.; Šeruga, M. Influence of solvent and temperature on extraction of phenolic compounds from grape seed, antioxidant activity and colour of extract. Int. J. Food Sci. Technol. 2009, 44, 2394–2401. [Google Scholar] [CrossRef]
- Naczk, M.; Shahidi, F. Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. J. Pharm. Biomed. Anal. 2006, 41, 1523–1542. [Google Scholar] [CrossRef]
- Jensen, J.S.; Blachez, B.; Egebo, M.; Meyer, A.S. Rapid Extraction of Polyphenols from Red Grapes. Am. J. Enol. Vitic. 2007, 58, 451. [Google Scholar]
- Chirinos, R.; Rogez, H.; Campos, D.; Pedreschi, R.; Larondelle, Y. Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers. Sep. Purif. Technol. 2007, 55, 217–225. [Google Scholar] [CrossRef]
- Sant’Anna, V.; Brandelli, A.; Marczak, L.D.F.; Tessaro, I.C. Kinetic modeling of total polyphenol extraction from grape marc and characterization of the extracts. Sep. Purif. Technol. 2012, 100, 82–87. [Google Scholar] [CrossRef]
- Nguang, S.L.; Yeong, Y.L.; Pang, S.F.; Gimbun, J. Optimisation of Gallic Acid and Quercetin Extraction from Phyllanthus Niruri. Int. J. Res. Eng. Technol. 2018, 7, 90–94. [Google Scholar]
- Yilmaz, Y.; Toledo, R.T. Oxygen radical absorbance capacities of grape/wine industry byproducts and effect of solvent type on extraction of grape seed polyphenols. J. Food Compos. Anal. 2006, 19, 41–48. [Google Scholar] [CrossRef]
- Yates, K.; Pohl, F.; Busch, M.; Mozer, A.; Watters, L.; Shiryaev, A.; Kong Thoo Lin, P. Determination of sinapine in rapeseed pomace extract: Its antioxidant and acetylcholinesterase inhibition properties. Food Chem. 2019, 276, 768–775. [Google Scholar] [CrossRef]
- Szwajgier, D.; Borowiec, K. Phenolic acids from malt are efficient acetylcholinesterase and butyrylcholinesterase inhibitors. J. Inst. Brew. 2012, 118, 40–48. [Google Scholar] [CrossRef]
- Marco, L.; do Carmo Carreiras, M. Galanthamine, a natural product for the treatment of Alzheimer’s disease. Recent Pat. CNS Drug Discov. 2006, 1, 105–111. [Google Scholar] [CrossRef] [PubMed]
Seeds | Skins | Stems | Pomace | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ethanol | Ethanol/ Water | Water | Ethanol | Ethanol/ Water | Water | Ethanol | Ethanol/ Water | Water | Ethanol | Ethanol/ Water | Water | |
Phenolic acids | ||||||||||||
Gallic acid | 7.42 ± 0.39 a | 16.66 ± 0.30 b | 41.45 ± 0.27 c | 3.88 ± 0.27 a | 4.18 ± 0.40 a | 1.65 ± 0.28 b | 3.70 ± 0.02 a | 12.36 ± 1.47 b | 14.98 ± 5.10 b | 6.57 ± 0.08 a | 17.85 ± 1.10 b | 12.65 ± 0.23 c |
Protocatechic acid | 2.61 ± 0.00 a | 3.66 ± 0.07 b | 1.54 ± 0.04 c | 2.65 ± 0.33 a | 2.62 ± 0.30 a | 5.22 ± 0.91 b | 2.15 ± 0.06 a | 5.22 ± 0.67 b | 2.64 ± 0.26 a | 2.88 ± 0.11 a | 5.72 ± 0.42 b | 2.82 ± 0.00 a |
Flavanols | ||||||||||||
Catechin | 22.06 ± 2.04 a | 33.04 ± 6.25 b | 26.73 ± 2.33 a,b | 3.31 ± 4.67 a | 6.81 ± 0.29 a | NQ | NQ | 23.42 ± 1.01 a | 6.90 ± 0.19 b | 7.98 ± 0.07 a | 17.45 ± 0.22 b | 4.72 ± 0.40 c |
Epicatechin | 27.47 ± 0.17 a | 40.02 ± 2.04 b | 23.75 ± 2.07 c | NQ | 6.22 ± 0.97 | NQ | NQ | 17.09 ± 0.13 a | 6.76 ± 0.00 b | 6.59 ± 0.00 a | 16.75 ± 0.77 b | 5.91 ± 0.76 a |
Pc B1 | 22.53 ± 3.24 a,b | 29.36 ± 6.32 a | 18.09 ± 1.84 b | 2.96 ± 0.00 a | 9.53 ± 0.06 b | NQ | NQ | 28.33 ± 2.90 a | 10.38 ± 5.79 b | 8.44 ± 0.14 a | 18.07 ± 0.44 b | 7.42 ± 0.40 c |
Flavonols | ||||||||||||
Q-3-O-rutin | 0.54 ± 0.18 a | 0.95 ± 0.03 b | 0.30 ± 0.06 c | 5.11 ± 0.21 a | 6.28 ± 1.39 a | 0.23 ± 0.03 b | 0.30 ± 0.01 a | 6.62 ± 0.67 b | 0.59 ± 0.13 a | 1.54 ± 0.12 a | 5.77 ± 1.05 b | 0.35 ± 0.06 c |
Q-3-O-gluc | 1.19 ± 0.36 a | 3.76 ± 0.07 b | 1.18 ± 0.18 a | 28.97 ± 5.46 a | 48.85 ± 6.54 b | 0.53 ± 0.14 c | 0.77 ± 0.01 a | 45.05 ± 7.73 b | 5.64 ± 1.97 a | 10.87 ± 0.50 a | 47.81 ± 5.38 b | 2.91 ± 0.01 c |
K-3-O-gluc | 0.20 ± 0.05 a | 0.49 ± 0.01 b | 0.18 ± 0.00 a | 6.90 ± 1.10 a | 7.38 ± 0.03 a | 4.77 ± 0.00 b | NQ | 3.73 ± 0.47 a | 0.56 ± 0.03 b | 1.87 ± 0.03 a | 6.18 ± 0.46 b | 0.43 ± 0.00 c |
DPPH | ORAC | |
---|---|---|
Seeds | ||
Ethanol | 38.01 ± 2.59 a | 20.44 ± 2.50 a |
Ethanol/water | 50.44 ± 4.32 b | 45.87 ± 8.12 b |
Water | 7.96 ± 5.30 c | 25.39 ± 0.20 a |
Skins | ||
Ethanol | 0.77 ± 0.03 a | 24.38 ± 1.24 a |
Ethanol/water | 34.96 ± 2.47 b | 103.50 ± 15.36 b |
Water | 3.07 ± 0.08 a | 68.01 ± 12.93 c |
Stems | ||
Ethanol | 1.65 ± 0.10 a | 5.59 ± 1.04 a |
Ethanol/water | 28.10 ± 1.49 b | 33.85 ± 2.25 b |
Water | 4.02 ± 0.10 c | 12.26 ± 0.30 c |
Pomace | ||
Ethanol | 5.20 ± 0.27 a | 21.92 ± 3.16 a |
Ethanol/water | 35.43 ± 3.24 b | 83.53 ± 4.89 b |
Water | 3.08 ± 0.04 a | 37.85 ± 3.21 c |
Peak a | Peak c | ||||
---|---|---|---|---|---|
Q | Ep,a | Ip,a | Ep,c | Ip,c | |
Seeds | |||||
Ethanol | 2.03 ± 0.19 a | 0.46 ± 0.00 a | 2.66 ± 0.39 a | 0.32 ± 0.00 a | −1.16 ± 0.20 a |
Ethanol/water | 2.15 ± 0.00 a | 0.48 ± 0.00 b | 2.79 ± 0.08 a | 0.31 ± 0.00 a | −1.13 ± 0.02 a |
Water | 2.03 ± 0.07 a | 0.41 ± 0.00 c | 3.00 ± 0.14 b | 0.35 ± 0.00 b | −1.49 ± 0.03 b |
Skins | |||||
Ethanol | 1.06 ± 0.04 a | 0.48 ± 0.00 a | 1.31 ± 0.04 a | 0.45 ± 0.00 a | −0.43 ± 0.05 a |
Ethanol/water | 1.73 ± 0.03 b | 0.49 ± 0.00 b | 2.25 ± 0.15 b | 0.27 ± 0.00 b | −1.06 ± 0.15 b |
Water | 1.11 ± 0.08 a | 0.44 ± 0.00 c | 1.14 ± 0.09 a | 0.34 ± 0.00 c | −0.81 ± 0.10 c |
Stems | |||||
Ethanol | 1.65 ± 0.01 a | 0.41 ± 0.01 a | 1.63 ± 0.05 a | 0.27 ± 0.00 a | −0.79 ± 0.01 a |
Ethanol/water | 2.22 ± 0.02 b | 0.47 ± 0.00 b | 2.45 ± 0.01 b | 0.29 ± 0.00 a | −1.17 ± 0.01 b |
Water | 1.46 ± 0.01 c | 0.42 ± 0.00 a | 1.56 ± 0.03 a | 0.29 ± 0.00 a | −0.86 ± 0.00 c |
Pomace | |||||
Ethanol | 1.34 ± 0.02 a | 0.49 ± 0.00 a | 2.21 ± 0.01 a | 0.27 ± 0.00 a | −0.95 ± 0.02 a |
Ethanol/water | 1.48 ± 0.02 b | 0.48 ± 0.00 b | 2.02 ± 0.00 b | 0.27 ± 0.00 a | −0.98 ± 0.03 a |
Water | 0.72 ± 0.00 c | 0.42 ± 0.01 a | 1.23 ± 0.03 c | 0.33 ± 0.00 b | −0.67 ± 0.00 c |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jara-Palacios, M.J.; Gonçalves, S.; Heredia, F.J.; Hernanz, D.; Romano, A. Extraction of Antioxidants from Winemaking Byproducts: Effect of the Solvent on Phenolic Composition, Antioxidant and Anti-Cholinesterase Activities, and Electrochemical Behaviour. Antioxidants 2020, 9, 675. https://doi.org/10.3390/antiox9080675
Jara-Palacios MJ, Gonçalves S, Heredia FJ, Hernanz D, Romano A. Extraction of Antioxidants from Winemaking Byproducts: Effect of the Solvent on Phenolic Composition, Antioxidant and Anti-Cholinesterase Activities, and Electrochemical Behaviour. Antioxidants. 2020; 9(8):675. https://doi.org/10.3390/antiox9080675
Chicago/Turabian StyleJara-Palacios, María José, Sandra Gonçalves, Francisco J. Heredia, Dolores Hernanz, and Anabela Romano. 2020. "Extraction of Antioxidants from Winemaking Byproducts: Effect of the Solvent on Phenolic Composition, Antioxidant and Anti-Cholinesterase Activities, and Electrochemical Behaviour" Antioxidants 9, no. 8: 675. https://doi.org/10.3390/antiox9080675
APA StyleJara-Palacios, M. J., Gonçalves, S., Heredia, F. J., Hernanz, D., & Romano, A. (2020). Extraction of Antioxidants from Winemaking Byproducts: Effect of the Solvent on Phenolic Composition, Antioxidant and Anti-Cholinesterase Activities, and Electrochemical Behaviour. Antioxidants, 9(8), 675. https://doi.org/10.3390/antiox9080675