Comparison of SARS-CoV-2 Antibody Levels after a Third Heterologous and Homologous BNT162b2 Booster Dose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Groups and Sampling
2.2. Evaluation of Anti-S-RBD IgG and nAb IH%
2.3. Statistical Analysis
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Centers for Disease Control and Prevention (CDC). COVID-19 Vaccine Booster Shots. Available online: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/booster-shot.html (accessed on 16 November 2021).
- Sağlık Bakanlığı, T.C. COVID-19 Aşısı Bilgilendirme Platformu. “COVID-19 Aşısı Ulusal Uygulama Stratejisi”. Available online: https://covid19asi.saglik.gov.tr/TR-77706/covid-19-asisi-ulusal-uygulama-stratejisi.html (accessed on 14 June 2021).
- Monto, A.S. The Future of SARS-CoV-2 Vaccination—Lessons from Influenza. N. Engl. J. Med. 2021, 385, 1825–1827. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, Y.; Mandel, M.; Bar-On, Y.M.; Bodenheimer, O.; Freedman, L.; Haas, E.J.; Milo, R.; Alroy-Preis, S.; Ash, N.; Huppert, A. Waning Immunity after the BNT162b2 Vaccine in Israel. N. Engl. J. Med. 2021, 385, e85. [Google Scholar] [CrossRef] [PubMed]
- Chansaenroj, J.; Yorsaeng, R.; Puenpa, J.; Wanlapakorn, N.; Chirathaworn, C.; Sudhinaraset, N.; Sripramote, M.; Chalongviriyalert, P.; Jirajariyavej, S.; Kiatpanabhikul, P.; et al. Long-term persistence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein-specific and neutralizing antibodies in recovered COVID-19 patients. PLoS ONE 2022, 17, e0267102. [Google Scholar] [CrossRef]
- Kim, N.; Shin, S.; Minn, D.; Park, S.; An, D.; Park, J.H.; Roh, E.Y.; Yoon, J.H.; Park, H. SARS-CoV-2 Infectivity and Antibody Titer Reduction for 6 Months After Second Dose of BNT162b2 mRNA Vaccine in Healthcare Workers: A Prospective Cohort Study. J. Infect. Dis. 2022, 226, 32–37. [Google Scholar] [CrossRef]
- Au, W.Y.; Cheung, P.P. Effectiveness of heterologous and homologous covid-19 vaccine regimens: Living systematic review with network meta-analysis. BMJ 2022, 377, e069989. [Google Scholar] [CrossRef]
- Atmar, R.L.; Lyke, K.E.; Deming, M.E.; Jackson, L.A.; Branche, A.R.; El Sahly, H.M.; Rostad, C.A.; Martin, J.M.; Johnston, C.; Rupp, R.E.; et al. Homologous and Heterologous Covid-19 Booster Vaccinations. N. Engl. J. Med. 2022, 386, 1046–1057. [Google Scholar] [CrossRef]
- Mattiuzzi, C.; Lippi, G. Primary COVID-19 vaccine cycle and booster doses efficacy: Analysis of Italian nationwide vaccination campaign. Eur. J. Public Health 2022, 32, 328–330. [Google Scholar] [CrossRef] [PubMed]
- Levin, E.G.; Lustig, Y.; Cohen, C.; Fluss, R.; Indenbaum, V.; Amit, S.; Doolman, R.; Asraf, K.; Mendelson, E.; Ziv, A.; et al. Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months. N. Engl. J. Med. 2021, 385, e84. [Google Scholar] [CrossRef]
- Costa Clemens, S.A.; Weckx, L.; Clemens, R.; Almeida Mendes, A.V.; Ramos Souza, A.; Silveira, M.B.V.; da Guarda, S.N.F.; de Nobrega, M.M.; de Moraes Pinto, M.I.; Gonzales, I.G.S.; et al. Heterologous versus homologous COVID-19 booster vaccination in previous recipients of two doses of CoronaVac COVID-19 vaccine in Brazil (RHH-001): A phase 4, non-inferiority, single blind, randomised study. Lancet 2022, 399, 521–529. [Google Scholar] [CrossRef]
- Pérez-Then, E.; Lucas, C.; Monteiro, V.S.; Miric, M.; Brache, V.; Cochon, L.; Vogels, C.B.F.; Malik, A.A.; De la Cruz, E.; Jorge, A.; et al. Neutralizing antibodies against the SARS-CoV-2 Delta and Omicron variants following heterologous CoronaVac plus BNT162b2 booster vaccination. Nat. Med. 2022, 28, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Suah, J.L.; Tng, B.H.; Tok, P.S.K.; Husin, M.; Thevananthan, T.; Peariasamy, K.M.; Sivasampu, S. Real-world effectiveness of homologous and heterologous BNT162b2, CoronaVac, and AZD1222 booster vaccination against Delta and Omicron SARS-CoV-2 infection. Emerg. Microbes Infect. 2022, 11, 1343–1345. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.M.; Xu, Q.Y.; Jia, Z.J.; Wu, M.J.; Liu, Y.Y.; Lin, L.R.; Liu, L.L.; Yang, T.C.A. Third Dose of an Inactivated Vaccine Dramatically Increased the Levels and Decay Times of Anti-SARS-CoV-2 Antibodies, but Disappointingly Declined Again: A Prospective, Longitudinal, Cohort Study at 18 Serial Time Points Over 368 Days. Front. Immunol. 2022, 13, 876037. [Google Scholar] [CrossRef] [PubMed]
- Karaba, A.H.; Zhu, X.; Liang, T.; Wang, K.H.; Rittenhouse, A.G.; Akinde, O.; Eby, Y.; Ruff, J.E.; Blankson, J.N.; Abedon, A.T.; et al. A Third Dose of SARS-CoV-2 Vaccine Increases Neutralizing Antibodies Against Variants of Concern in Solid Organ Transplant Recipients. Am. J. Transplant. 2022, 22, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira-Silva, T.; de Araujo Oliveira, V.; Paixão, E.S.; Júnior, J.B.; Penna, G.O.; Werneck, G.L.; Pearce, N.; Barreto, M.L.; Boaventura, V.S.; Barral-Netto, M. Duration of protection of CoronaVac plus heterologous BNT162b2 booster in the Omicron period in Brazil. Nat. Commun. 2022, 13, 4154. [Google Scholar] [CrossRef] [PubMed]
- Jara, A.; Undurraga, E.A.; Zubizarreta, J.R.; González, C.; Pizarro, A.; Acevedo, J.; Leo, K.; Paredes, F.; Bralic, T.; Vergara, V.; et al. Effectiveness of homologous and heterologous booster doses for an inactivated SARS-CoV-2 vaccine: A large-scale prospective cohort study. Lancet Global Health 2022, 10, e798–e806. [Google Scholar] [CrossRef]
- Assawakosri, S.; Kanokudom, S.; Suntronwong, N.; Auphimai, C.; Nilyanimit, P.; Vichaiwattana, P.; Thongmee, T.; Duangchinda, T.; Chantima, W.; Pakchotanon, P.; et al. Neutralizing Activities against the Omicron Variant after a Heterologous Booster in Healthy Adults Receiving Two Doses of CoronaVac Vaccination. J. Infect. Dis. 2022; ahead of print. [Google Scholar] [CrossRef]
(a) | |
---|---|
Data | n (%) |
Gender (F/M) | 59 (39.3%)/91 (60.7%) |
Comorbidity (no/yes) | 118 (78.7%)/32 (21.3%) |
Prior COVID-19 infections (no/yes) | 107 (71.3%)/43 (28.7%) |
(b) | |
Data | Median (IQR25–IQR75) |
Age (median (IQR25/IQR75)) | 40.00 (29.00–47.00) |
First anti-S-RBD IgG AU/mL (median (IQR25/IQR75)) * | 1178.85 (204.80–7653.75) |
Second anti-S-RBD IgG AU/mL (median (IQR25/IQR75)) * | 9080.45 (3694.33–15,230.20) |
First nAb IH% (median (IQR25/IQR75)) * | 65.60 (9.86–99.30) |
Second nAb IH% (median (IQR25/IQR75)) * | 99.44 (98.40–99.53) |
Groups | Two Doses BNT162b2 + One BNT162b2 Booster Dose (n:75) | Two Doses CoronaVac + One BNT162b2 Booster Dose (n:75) | |
---|---|---|---|
(a) | |||
Data | n (%) | n (%) | p |
Gender (F/M) n (%) | 9 (12%)/66 (88%) | 50 (66.7%)/25 (33.3%) | <0.05 |
Comorbidity (no/yes) n (%) | 70 (93.3%)/5 (6.7%) | 48 (64%)/27 (36%) | <0.05 |
Prior COVID-19 infections (no/yes) n (%) | 49 (65.3%)/26 (34.7%) | 58 (77.3%)/17 (22.7%) | 0.105 |
(b) | |||
Median (IQR25–IQR 75) | Median (IQR25–IQR75) | p | |
Age (median (IQR25/IQR75)) | 34 (28–42) | 43 (34–51) | <0.05 |
First anti-S-RBD IgG AU/mL * | 7461.30 (2601.40–14,803.20) | 231.80 (127.00–471.60) | <0.05 |
Second anti-S-RBD IgG AU/mL ** | 5331.20 (2044.00–12,253.90) | 10,696.30 (6919.20–17,670.40) | <0.05 |
First nAb IH% * | 99.24 (79.33–99.49) | 10.77 (2.54–24.57) | <0.05 |
Second nAb IH% ** | 99.14 (89.55–99.44) | 99.53 (99.48–99.58) | <0.05 |
Groups | Two Dose BNT162b2 + One BNT162b2 Booster Dose (n:49) | Two Dose CoronaVac + One BNT162b2 Booster Dose (n:58) | |
---|---|---|---|
Median (IQR25–IQR75) | Median (IQR25–IQR75) | p | |
Age (median (IQR25/IQR75)) | 33 (27–41.5) | 43 (32–51) | <0.05 |
First anti-S-RBD IgG AU/mL * | 7643.70 (3188.10–14,948.60) | 195.90 (115.28–317.23) | <0.05 |
Second anti-S-RBD IgG AU/Ml ** | 3291.00 (1673.00–10,420.10) | 11,271.20 (6871,80–18,165.03) | <0.05 |
First nAb IH% * | 99.34 (83.33–99.49) | 6.26 (1.90–19.27) | <0.05 |
Second nAb IH% ** | 98.28 (85.34–99.39) | 99.52 (99.42–99.58) | <0.05 |
Groups | Two Dose BNT162b2 + One BNT162b2 Booster Dose (n:26) | Two Dose CoronaVac + One BNT162b2 Booster Dose (n:17) | |
---|---|---|---|
Median (IQR25–IQR75) | Median (IQR25–IQR75) | p | |
Age (Median (IQR25/IQR75)) | 37 (31.75–43) | 44 (34–52) | <0.05 |
First anti-S-RBD IgG AU/mL * | 5560.25 (1905.08–14,662.30) | 1097.80 (322.30–2725.25) | <0.05 |
Second anti-S-RBD IgG AU/mL ** | 8676.50 (3872.95–18,322.25) | 9202.00 (6792.75–13,770.95) | 0.585 |
First nAb IH% * | 96.80 (62.49–99.45) | 68.70 (22.35–89.85) | <0.05 |
Second nAb IH% ** | 99.39 (96.92–99.50) | 99.54 (99.51–99.59) | <0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gareayaghi, N.; Demirci, M.; Ozbey, D.; Dasdemir, F.; Dinc, H.O.; Balkan, I.I.; Saribas, S.; Saltoglu, N.; Kocazeybek, B. Comparison of SARS-CoV-2 Antibody Levels after a Third Heterologous and Homologous BNT162b2 Booster Dose. Vaccines 2022, 10, 1672. https://doi.org/10.3390/vaccines10101672
Gareayaghi N, Demirci M, Ozbey D, Dasdemir F, Dinc HO, Balkan II, Saribas S, Saltoglu N, Kocazeybek B. Comparison of SARS-CoV-2 Antibody Levels after a Third Heterologous and Homologous BNT162b2 Booster Dose. Vaccines. 2022; 10(10):1672. https://doi.org/10.3390/vaccines10101672
Chicago/Turabian StyleGareayaghi, Nesrin, Mehmet Demirci, Dogukan Ozbey, Ferhat Dasdemir, Harika Oyku Dinc, Ilker Inanc Balkan, Suat Saribas, Neşe Saltoglu, and Bekir Kocazeybek. 2022. "Comparison of SARS-CoV-2 Antibody Levels after a Third Heterologous and Homologous BNT162b2 Booster Dose" Vaccines 10, no. 10: 1672. https://doi.org/10.3390/vaccines10101672
APA StyleGareayaghi, N., Demirci, M., Ozbey, D., Dasdemir, F., Dinc, H. O., Balkan, I. I., Saribas, S., Saltoglu, N., & Kocazeybek, B. (2022). Comparison of SARS-CoV-2 Antibody Levels after a Third Heterologous and Homologous BNT162b2 Booster Dose. Vaccines, 10(10), 1672. https://doi.org/10.3390/vaccines10101672