There Is No Evidence That Inactivated COVID-19 Vaccines Increase Risks of Uveitis Flare
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Demographic and the Clinical Features of Uveitis Patients
3.2. Systemic Treatment Regimens in Each Group
3.3. Vaccination Overview
3.4. Flare Rate and Individualized Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hannah Ritchie, E.M.; Rodés-Guirao, L.; Appel, C.; Giattino, C.; Ortiz-Ospina, E.; Hasell, J.; Macdonald, B. Diana Beltekian and Max Roser Coronavirus (COVID-19) Vaccinations. Available online: https://ourworldindata.org/COVID-vaccinations?country=OWID_WRL (accessed on 6 October 2022).
- Wack, S.; Patton, T.; Ferris, L.K. COVID-19 vaccine safety and efficacy in patients with immune-mediated inflammatory disease: Review of available evidence. J. Am. Acad. Dermatol. 2021, 85, 1274–1284. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Perez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Rotstein Grein, I.H.; Pinto, N.F.; Lobo, A.; Groot, N.; Sztajnbok, F.; da Silva, C.A.A.; Paim Marques, L.B.; Appenzeller, S.; Islabao, A.G.; Magalhaes, C.S.; et al. Safety and immunogenicity of the quadrivalent human papillomavirus vaccine in patients with childhood systemic lupus erythematosus: A real-world interventional multi-centre study. Lupus 2020, 29, 934–942. [Google Scholar] [CrossRef]
- Frenck, R.W., Jr.; Klein, N.P.; Kitchin, N.; Gurtman, A.; Absalon, J.; Lockhart, S.; Perez, J.L.; Walter, E.B.; Senders, S.; Bailey, R.; et al. Safety, Immunogenicity, and Efficacy of the BNT162b2 COVID-19 Vaccine in Adolescents. N. Engl. J. Med. 2021, 385, 239–250. [Google Scholar] [CrossRef]
- Heath, P.T.; Galiza, E.P.; Baxter, D.N.; Boffito, M.; Browne, D.; Burns, F.; Chadwick, D.R.; Clark, R.; Cosgrove, C.; Galloway, J.; et al. Safety and Efficacy of NVX-CoV2373 COVID-19 Vaccine. N. Engl. J. Med. 2021, 385, 1172–1183. [Google Scholar] [CrossRef] [PubMed]
- Cutolo, M.; Seriolo, B.; Pizzorni, C.; Secchi, M.E.; Soldano, S.; Paolino, S.; Montagna, P.; Sulli, A. Use of glucocorticoids and risk of infections. Autoimmun. Rev. 2008, 8, 153–155. [Google Scholar] [CrossRef]
- Ng, X.L.; Betzler, B.K.; Ng, S.; Chee, S.P.; Rajamani, L.; Singhal, A.; Rousselot, A.; Pavesio, C.E.; Gupta, V.; de Smet, M.D.; et al. The Eye of the Storm: COVID-19 Vaccination and the Eye. Ophthalmol. Ther. 2022, 11, 81–100. [Google Scholar] [CrossRef]
- Goyal, M.; Murthy, S.I.; Annum, S. Bilateral Multifocal Choroiditis following COVID-19 Vaccination. Ocul. Immunol. Inflamm. 2021, 29, 753–757. [Google Scholar] [CrossRef]
- Pan, L.; Zhang, Y.; Cui, Y.; Wu, X. Bilateral uveitis after inoculation with COVID-19 vaccine: A case report. Int. J. Infect. Dis. 2021, 113, 116–118. [Google Scholar] [CrossRef] [PubMed]
- Mudie, L.I.; Zick, J.D.; Dacey, M.S.; Palestine, A.G. Panuveitis following Vaccination for COVID-19. Ocul. Immunol. Inflamm. 2021, 29, 741–742. [Google Scholar] [CrossRef]
- Garip, A.; Diedrichs-Mohring, M.; Thurau, S.R.; Deeg, C.A.; Wildner, G. Uveitis in a patient treated with Bacille-Calmette-Guerin: Possible antigenic mimicry of mycobacterial and retinal antigens. Ophthalmology 2009, 116, 2457–2462.e2. [Google Scholar] [CrossRef] [PubMed]
- Benage, M.; Fraunfelder, F.W. Vaccine-Associated Uveitis. Mo. Med. 2016, 113, 48–52. [Google Scholar] [PubMed]
- Frisch, M.; Besson, A.; Clemmensen, K.K.B.; Valentiner-Branth, P.; Molbak, K.; Hviid, A. Quadrivalent human papillomavirus vaccination in boys and risk of autoimmune diseases, neurological diseases and venous thromboembolism. Int. J. Epidemiol. 2018, 47, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Grimaldi-Bensouda, L.; Rossignol, M.; Kone-Paut, I.; Krivitzky, A.; Lebrun-Frenay, C.; Clet, J.; Brassat, D.; Papeix, C.; Nicolino, M.; Benhamou, P.Y.; et al. Risk of autoimmune diseases and human papilloma virus (HPV) vaccines: Six years of case-referent surveillance. J. Autoimmun. 2017, 79, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Schattner, A. Consequence or coincidence? The occurrence, pathogenesis and significance of autoimmune manifestations after viral vaccines. Vaccine 2005, 23, 3876–3886. [Google Scholar] [CrossRef] [PubMed]
- Martin Arias, L.H.; Sanz, R.; Sainz, M.; Treceno, C.; Carvajal, A. Guillain-Barre syndrome and influenza vaccines: A meta-analysis. Vaccine 2015, 33, 3773–3778. [Google Scholar] [CrossRef]
- O’Leary, S.T.; Glanz, J.M.; McClure, D.L.; Akhtar, A.; Daley, M.F.; Nakasato, C.; Baxter, R.; Davis, R.L.; Izurieta, H.S.; Lieu, T.A.; et al. The risk of immune thrombocytopenic purpura after vaccination in children and adolescents. Pediatrics 2012, 129, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Andrews, N.; Stowe, J.; Miller, E.; Svanstrom, H.; Johansen, K.; Bonhoeffer, J.; Hviid, A.; Consortium, V. A collaborative approach to investigating the risk of thrombocytopenic purpura after measles-mumps-rubella vaccination in England and Denmark. Vaccine 2012, 30, 3042–3046. [Google Scholar] [CrossRef]
- De Martino, M.; Chiappini, E.; Galli, L. Vaccines and autoimmunity. Int. J. Immunopathol. Pharmacol. 2013, 26, 283–290. [Google Scholar] [CrossRef]
- Rajantie, J.; Zeller, B.; Treutiger, I.; Rosthoj, S.; NOPHO ITP Working group; Five National Study Groups. Vaccination associated thrombocytopenic purpura in children. Vaccine 2007, 25, 1838–1840. [Google Scholar] [CrossRef]
- Li, Z.; Hu, F.; Li, Q.; Wang, S.; Chen, C.; Zhang, Y.; Mao, Y.; Shi, X.; Zhou, H.; Cao, X.; et al. Ocular Adverse Events after Inactivated COVID-19 Vaccination. Vaccines 2022, 10, 918. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Li, H.; Li, M.; Gong, S. Ocular Adverse Events after Inactivated COVID-19 Vaccination in Xiamen. Vaccines 2022, 10, 482. [Google Scholar] [CrossRef] [PubMed]
- Pichi, F.; Aljneibi, S.; Neri, P.; Hay, S.; Dackiw, C.; Ghazi, N.G. Association of Ocular Adverse Events With Inactivated COVID-19 Vaccination in Patients in Abu Dhabi. JAMA Ophthalmol. 2021, 139, 1131–1135. [Google Scholar] [CrossRef] [PubMed]
- Pang, K.; Pan, L.; Guo, H.; Wu, X. Case Report: Associated Ocular Adverse Reactions With Inactivated COVID-19 Vaccine in China. Front. Med. 2021, 8, 823346. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, T.; Li, X.; Liu, G. Ocular Inflammatory Reactions following an Inactivated SARS-CoV-2 Vaccine: A Four Case Series. Ocul. Immunol. Inflamm. 2022, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Jabs, D.A.; Nussenblatt, R.B.; Rosenbaum, J.T.; Standardization of Uveitis Nomenclature Working Group. Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am. J. Ophthalmol. 2005, 140, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Tiew, S.; Lim, C.; Sivagnanasithiyar, T. Using an excel spreadsheet to convert Snellen visual acuity to LogMAR visual acuity. Eye 2020, 34, 2148–2149. [Google Scholar] [CrossRef]
- Schulze-Bonsel, K.; Feltgen, N.; Burau, H.; Hansen, L.; Bach, M. Visual acuities “hand motion” and “counting fingers” can be quantified with the freiburg visual acuity test. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1236–1240. [Google Scholar] [CrossRef]
- Testi, I.; Brandão-de-Resende, C.; Agrawal, R.; Pavesio, C.; The COVID-19 Vaccination Ocular Inflammatory Events Study Group. Ocular inflammatory events following COVID-19 vaccination: A multinational case series. J. Ophthalmic. Inflamm. Infect. 2022, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Ng, X.L.; Betzler, B.K.; Testi, I.; Ho, S.L.; Tien, M.; Ngo, W.K.; Zierhut, M.; Chee, S.P.; Gupta, V.; Pavesio, C.E.; et al. Ocular Adverse Events After COVID-19 Vaccination. Ocul. Immunol. Inflamm. 2021, 29, 1216–1224. [Google Scholar] [CrossRef] [PubMed]
- Hao, T.; Yang, L.I.; Li, B.; Chen, X.; Li, D.; Liu, X. Epidemiology of 2000 Chinese uveitis patients from Northeast China. Br. J. Ophthalmol. 2021, 105, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Zhang, Z.; Zhou, H.; Li, B.; Huang, X.; Gao, Y.; Zhu, L.; Ren, Y.; Klooster, J.; Kijlstra, A. Clinical patterns and characteristics of uveitis in a tertiary center for uveitis in China. Curr. Eye Res. 2005, 30, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Noda, K.; Hirai, K.; Ukichi, T.; Furuya, K.; Kurosaka, D. A case of systemic lupus erythematosus (SLE) following Human papillomavirus (HPV) vaccination. Nihon Rinsho Meneki Gakkai Kaishi 2016, 39, 145–149. [Google Scholar] [CrossRef] [Green Version]
- Pellegrino, P.; Carnovale, C.; Perrone, V.; Salvati, D.; Gentili, M.; Antoniazzi, S.; Clementi, E.; Radice, S. Human papillomavirus vaccine in patients with systemic lupus erythematosus. Epidemiology 2014, 25, 155–156. [Google Scholar] [CrossRef] [PubMed]
- Arnheim-Dahlstrom, L.; Pasternak, B.; Svanstrom, H.; Sparen, P.; Hviid, A. Autoimmune, neurological, and venous thromboembolic adverse events after immunisation of adolescent girls with quadrivalent human papillomavirus vaccine in Denmark and Sweden: Cohort study. BMJ 2013, 347, f5906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, C.; Klein, N.P.; Velicer, C.M.; Sy, L.S.; Slezak, J.M.; Takhar, H.; Ackerson, B.; Cheetham, T.C.; Hansen, J.; Deosaransingh, K.; et al. Surveillance of autoimmune conditions following routine use of quadrivalent human papillomavirus vaccine. J. Intern. Med. 2012, 271, 193–203. [Google Scholar] [CrossRef]
- Infante, V.; Miyaji, K.T.; Soarez, P.C.; Sartori, A.M.C. Systematic review and meta-analysis of HPV vaccination in women with systemic lupus erythematosus (SLE). Expert. Rev. Vaccines 2021, 20, 309–318. [Google Scholar] [CrossRef]
- Mok, C.C.; Ho, L.Y.; Fong, L.S.; To, C.H. Immunogenicity and safety of a quadrivalent human papillomavirus vaccine in patients with systemic lupus erythematosus: A case-control study. Ann. Rheum. Dis. 2013, 72, 659–664. [Google Scholar] [CrossRef]
- Confavreux, C.; Suissa, S.; Saddier, P.; Bourdes, V.; Vukusic, S.; Vaccines in Multiple Sclerosis Study, G. Vaccinations and the risk of relapse in multiple sclerosis. Vaccines in Multiple Sclerosis Study Group. N. Engl. J. Med. 2001, 344, 319–326. [Google Scholar] [CrossRef]
- Ascherio, A.; Zhang, S.M.; Hernan, M.A.; Olek, M.J.; Coplan, P.M.; Brodovicz, K.; Walker, A.M. Hepatitis B vaccination and the risk of multiple sclerosis. N. Engl. J. Med. 2001, 344, 327–332. [Google Scholar] [CrossRef]
- Mailand, M.T.; Frederiksen, J.L. Vaccines and multiple sclerosis: A systematic review. J. Neurol. 2017, 264, 1035–1050. [Google Scholar] [CrossRef] [PubMed]
- Farez, M.F.; Ysrraelit, M.C.; Fiol, M.; Correale, J. H1N1 vaccination does not increase risk of relapse in multiple sclerosis: A self-controlled case-series study. Mult. Scler. 2012, 18, 254–256. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xie, F.; Delzell, E.; Chen, L.; Winthrop, K.L.; Lewis, J.D.; Saag, K.G.; Baddley, J.W.; Curtis, J.R. Association between vaccination for herpes zoster and risk of herpes zoster infection among older patients with selected immune-mediated diseases. JAMA 2012, 308, 43–49. [Google Scholar] [CrossRef] [PubMed]
Parameters | Vaccination Group N = 60 | Control Group N = 60 | p Value |
---|---|---|---|
Age (mean ± SD) | 39 ± 14 | 38 ± 16 | 0.514 |
Sex (male to female ratio) | 29:31 | 30:30 | 0.715 |
Disease course (years) | 6.49 ± 6.57 | 4.34 ± 5.32 | 0.054 |
BCVA at quiescent period # (median, IQR) | 0.222 (0,0.460) | 0 (0,0.222) | 0.894 |
Anatomical classification (no./%) | 0.091 | ||
Anterior uveitis | 27/45.0 | 17/28.3 | |
Intermediate uveitis | 2/3.3 | 0/0 | |
Posterior uveitis | 3/5.0 | 5/8.3 | |
Panuveitis | 28/46.7 | 38/63.4 | |
Etiological classification (no./%) | 0.001 | ||
Bechet’s disease | 8/13.3 | 18/30.0 | |
VKH | 7/11.7 | 14/23.3 | |
Fuchs uveitis syndrome | 7/11.7 | 0/0 | |
PSS | 4/6.6 | 0/0 | |
TINU | 1/1.7 | 0/0 | |
Sarcoidosis related uveitis | 1/1.7 | 2/3.3 | |
Idiopathic * | 32/53.3 | 26/43.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.; Zhao, C.; Zhang, M. There Is No Evidence That Inactivated COVID-19 Vaccines Increase Risks of Uveitis Flare. Vaccines 2022, 10, 1680. https://doi.org/10.3390/vaccines10101680
Song H, Zhao C, Zhang M. There Is No Evidence That Inactivated COVID-19 Vaccines Increase Risks of Uveitis Flare. Vaccines. 2022; 10(10):1680. https://doi.org/10.3390/vaccines10101680
Chicago/Turabian StyleSong, Hang, Chan Zhao, and Meifen Zhang. 2022. "There Is No Evidence That Inactivated COVID-19 Vaccines Increase Risks of Uveitis Flare" Vaccines 10, no. 10: 1680. https://doi.org/10.3390/vaccines10101680
APA StyleSong, H., Zhao, C., & Zhang, M. (2022). There Is No Evidence That Inactivated COVID-19 Vaccines Increase Risks of Uveitis Flare. Vaccines, 10(10), 1680. https://doi.org/10.3390/vaccines10101680