COVID-19 Vaccines for Adults and Children with Autoimmune Gut or Liver Disease
Abstract
:1. Introduction
2. Autoimmune Gut Diseases and COVID-19 Vaccines
3. Autoimmune Liver Diseases and COVID-19 Vaccines
4. Pediatric Point of View on COVID-19 Vaccines in Children with Gut and Liver Autoimmune Diseases
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tepasse, P.R.; Vollenberg, R.; Nowacki, T.M. Vaccination against SARS-CoV-2 in Patients with Inflammatory Bowel Diseases: Where Do We Stand? Life 2021, 11, 1220. [Google Scholar] [CrossRef] [PubMed]
- Cummings, M.J.; Baldwin, M.R.; Abrams, D.; Jacobson, S.D.; Meyer, B.J.; Balough, E.M.; Aaron, J.G.; Claassen, J.; Rabbani, L.E.; Hastie, J.; et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: A prospective cohort study. Lancet 2020, 395, 1763–1770. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Jena, A.; Kumar-M, P.; Sharma, V.; Sebastian, S. Risk and outcomes of coronavirus disease in patients with inflammatory bowel disease: A systematic review and meta-analysis. United Eur. Gastroenterol. J. 2020, 9, 159–176. [Google Scholar] [CrossRef] [PubMed]
- Kim, L.; Garg, S.; O’Halloran, A.; Whitaker, M.; Pham, H.; Anderson, E.J.; Armistead, I.; Bennett, N.M.; Billing, L.; Como-Sabetti, K.; et al. Risk Factors for Intensive Care Unit Admission and In-hospital Mortality Among Hospitalized Adults Identified through the US Coronavirus Disease 2019 (COVID-19)-Associated Hospi-talization Surveillance Network (COVID-NET). Clin. Infect. Dis. 2021, 72, e206–e214. [Google Scholar] [CrossRef] [PubMed]
- Rabaan, A.A.; Al Mutair, A.; Hajissa, K.; Alfaraj, A.H.; Al-Jishi, J.M.; Alhajri, M.; Alwarthan, S.; Alsuliman, S.A.; Al-Najjar, A.H.; Al Zaydani, I.A.; et al. A Comprehensive Review on the Current Vaccines and Their Efficacies to Combat SARS-CoV-2 Variants. Vaccines 2022, 10, 1655. [Google Scholar] [CrossRef] [PubMed]
- Prates-Syed, W.A.; Chaves, L.C.S.; Crema, K.P.; Vuitika, L.; Lira, A.; Côrtes, N.; Kersten, V.; Guimarães, F.E.G.; Sadraeian, M.; da Silva, F.L.B.; et al. VLP-Based COVID-19 Vaccines: An Adaptable Technology against the Threat of New Variants. Vaccines 2021, 9, 1409. [Google Scholar] [CrossRef] [PubMed]
- Velikova, T.; Georgiev, T. SARS-CoV-2 vaccines and autoimmune diseases amidst the COVID-19 crisis. Rheumatol. Int. 2021, 41, 509–518. [Google Scholar] [CrossRef]
- Ferretti, F.; Cannatelli, R.; Benucci, M.; Carmagnola, S.; Clementi, E.; Danelli, P.; Dilillo, D.; Fiorina, P.; Galli, M.; Gallieni, M.; et al. How to Manage COVID-19 Vaccination in Im-mune-Mediated Inflammatory Diseases: An Expert Opinion by IMIDs Study Group. Front. Immunol. 2021, 12, 656362. [Google Scholar] [CrossRef]
- Sen, P.; Gupta, L.; Lilleker, J.B.; Aggarwal, V.; Kardes, S.; Milchert, M.; Gheita, T.; Salim, B.; Velikova, T.; Gracia-Ramos, A.E.; et al. COVID-19 vaccination in autoimmune disease (COVAD) survey protocol. Rheumatol. Int. 2021, 42, 23–29. [Google Scholar] [CrossRef]
- COVAD Study Group; Lilleker, J.B.; Chinoy, H. Vaccine Hesitancy in Patients with Autoimmune Diseases: Data from the COVID-19 Vaccination in Autoimmune Diseases (COVAD) Study. Indian J. Rheumatol. 2021; in press. [Google Scholar]
- Wu, X.; Lin, J.; Buch, H.; Ding, Q.; Zhang, F.; Cui, B.; Ji, G. The COVID-19 Vaccination Hesitancy Among the People with Inflammatory Bowel Disease in China: A Questionnaire Study. Front. Public Health 2021, 9, 731578. [Google Scholar] [CrossRef] [PubMed]
- Hejrati, A.; Rafiei, A.; Soltanshahi, M.; Hosseinzadeh, S.; Dabiri, M.; Taghadosi, M.; Taghiloo, S.; Bashash, D.; Khorshidi, F.; Zafari, P. Innate immune response in systemic autoimmune diseases: A potential target of therapy. Inflammopharmacology 2020, 28, 1421–1438. [Google Scholar] [PubMed]
- Gershwin, M.E.; Borchers, A.T.; Keen, C.L. Phenotypic and Functional Considerations in the Evaluation of Immunity in Nutritionally Compromised Hosts. J. Infect. Dis. 2000, 182, S108–S114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, M.; Al-Ani, A.; Mitchell, H.; Hendy, P.; Christensen, B. Low population mortality from COVID-19 in countries south of lat-itude 35 degrees North-supports vitamin D as a factor determining severity. Aliment Pharmacol. Ther. 2020, 51, 1438–1439. [Google Scholar] [CrossRef] [PubMed]
- Velikova, T.; Fabbri, A.; Infante, M. The role of vitamin D as a potential adjuvant for COVID-19 vaccines. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 5323–5327. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Vallarino, C.; Lissoos, T.; Darr, U.; Luo, M. Risk of infection and types of infection among elderly patients with inflam-matory bowel disease: A retrospective database analysis. Inflamm. Bowel Dis. 2020, 26, 462–468. [Google Scholar]
- Al-Ani, A.H.; Prentice, R.E.; Rentsch, C.A.; Johnson, D.; Ardalan, Z.; Heerasing, N.; Garg, M.; Campbell, S.; Sasadeusz, J.; Macrae, F.A.; et al. Review article: Prevention, diagnosis and management of COVID-19 in the IBD patient. Aliment. Pharmacol. Ther. 2020, 52, 54–72. [Google Scholar] [CrossRef]
- Spiera, E.; Agrawal, M.; Ungaro, R.C. COVID-19 mRNA Vaccine Short-Term Safety in Patients with Inflammatory Bowel Disease. Gastroenterology 2022, 162, 987–988. [Google Scholar] [CrossRef]
- Botwin, G.J.; Li, D.; Figueiredo, J.; Cheng, S.; Braun, J.; McGovern, D.P.; Melmed, G.Y. Adverse Events after SARS-CoV-2 mRNA Vaccination among Patients with Inflam-matory Bowel Disease. Am. J. Gastroenterol. 2021, 116, 1746–1751. [Google Scholar]
- Weaver, K.N.; Zhang, X.; Dai, X.; Watkins, R.; Adler, J.; Dubinsky, M.C.; Kastl, A.; Bousvaros, A.; Strople, J.A.; Cross, R.K.; et al. Impact of SARS-CoV-2 Vaccination on Inflammatory Bowel Disease Activity and Development of Vaccine-Related Adverse Events: Results From PREVENT-COVID. Inflamm. Bowel. Dis. 2022, 28, 1497–1505. [Google Scholar] [CrossRef]
- Wong, S.-Y.; Dixon, R.; Pazos, V.M.; Gnjatic, S.; Colombel, J.-F.; Cadwell, K.; Gold, S.; Helmus, D.; Neil, J.A.; Sota, S.; et al. Serologic Response to Messenger RNA Coronavirus Disease 2019 Vaccines in Inflammatory Bowel Disease Patients Receiving Biologic Therapies. Gastroenterology 2021, 161, 715–718.e4. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.L.; Liu, Z.; Sandoval, D.M.; Reynolds, C.; Ibraheim, H.; Anandabaskaran, S.; Saifuddin, A.; Seoane, R.C.; Anand, N.; Nice, R.; et al. COVID-19 vaccine-induced antibody and T-cell responses in immunosuppressed patients with inflammatory bowel disease after the third vaccine dose (VIP): A multicentre, prospective, case-control study. Lancet Gastroenterol. Hepatol. 2022, 7, 1005–1015. [Google Scholar] [CrossRef] [PubMed]
- Lev-Tzion, R.; Focht, G.; Lujan, R.; Mendelovici, A.; Friss, C.; Greenfeld, S.; Kariv, R.; Ben-Tov, A.; Matz, E.; Nevo, D.; et al. COVID-19 Vaccine Is Effective in Inflammatory Bowel Disease Patients and Is Not Associated with Disease Exacerbation. Clin. Gastroenterol. Hepatol. 2022, 20, e1263–e1282. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, N.A.; Lin, S.; Goodhand, J.R.; Chanchlani, N.; Hamilton, B.; Bewshea, C.; Nice, R.; Chee, D.; Cummings, J.F.; Fraser, A.; et al. Contributors to the CLARITY IBD study. Infliximab is associated with attenuated immunogenicity to BNT162b2 and ChAdOx1 nCoV-19 SARS-CoV-2 vaccines in patients with IBD. Gut 2021, 70, 1884–1893. [Google Scholar] [CrossRef]
- Khan, N.; Mahmud, N. Effectiveness of SARS-CoV-2 Vaccination in a Veterans Affairs Cohort of Patients with Inflammatory Bowel Disease with Diverse Exposure to Immunosuppressive Medications. Gastroenterology 2021, 161, 827–836. [Google Scholar] [CrossRef]
- Hadi, Y.B.; Thakkar, S.; Shah-Khan, S.M.; Hutson, W.; Sarwari, A.; Singh, S. COVID-19 Vaccination Is Safe and Effective in Patients with Inflammatory Bowel Disease: Analysis of a Large Multi-institutional Research Network in the United States. Gastroenterology 2021, 161, 1336–1339.e3. [Google Scholar] [CrossRef]
- Ben-Tov, A.; Banon, T.; Chodick, G.; Kariv, R.; Assa, A.; Gazit, S. BNT162b2 Messenger RNA COVID-19 Vaccine Effectiveness in Patients with Inflammatory Bowel Disease: Preliminary Real-World Data During Mass Vaccination Campaign. Gastroenterology 2021, 161, 1715–1717.e1. [Google Scholar] [CrossRef] [PubMed]
- Dailey, J.; Kozhaya, L.; Dogan, M.; Hopkins, D.; Lapin, B.; Herbst, K.; Brimacombe, M.; Grandonico, K.; Karabacak, F.; Schreiber, J.; et al. Antibody Responses to SARS-CoV-2 After Infection or Vaccination in Children and Young Adults with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2021, 28, 1019–1026. [Google Scholar] [CrossRef]
- Kappelman, M.D.; Weaver, K.N.; Boccieri, M.; Firestine, A.; Zhang, X.; Long, M.D.; Chun, K.; Fernando, M.; Zikry, M.; Dai, X.; et al. Humoral Immune Response to Messenger RNA COVID-19 Vaccines Among Patients with Inflammatory Bowel Disease. Gastroenterology 2021, 161, 1340–1343.e2. [Google Scholar] [CrossRef]
- Simon, D.; Tascilar, K.; Fagni, F.; Krönke, G.; Kleyer, A.; Meder, C.; Atreya, R.; Leppkes, M.; Kremer, A.E.; Ramming, A.; et al. SARS-CoV-2 vaccination responses in untreated, conventionally treated and anticytokine-treated patients with immune-mediated inflammatory diseases. Ann. Rheum. Dis. 2021, 80, 1312–1316. [Google Scholar] [CrossRef]
- James, D.; Jena, A.; Bharath, P.N.; Choudhury, A.; Singh, A.K.; Sebastian, S.; Sharma, V. Safety of SARS-CoV-2 vaccination in patients with inflammatory bowel disease: A systematic review and meta-analysis. Dig. Liver Dis. 2022, 54, 713–721. [Google Scholar] [CrossRef]
- Pozdnyakova, V.; Botwin, G.J.; Sobhani, K.; Prostko, J.; Braun, J.; Mcgovern, D.P.; Melmed, G.Y.; Appel, K.; Banty, A.; Feldman, E.; et al. Decreased Antibody Responses to Ad26.COV2.S Relative to SARS-CoV-2 mRNA Vaccines in Patients with Inflammatory Bowel Disease. Gastroenterology 2021, 161, 2041–2043.e1. [Google Scholar] [CrossRef]
- Ellul, P.; Revés, J.; Abreu, B.; Chaparro, M.; Gisbert, J.P.; Allocca, M.; Fiorino, G.; Barberio, B.; Zingone, F.; Pisani, A.; et al. Implementation and Short-term Adverse Events of Anti-SARS-CoV-2 Vaccines in Inflammatory Bowel Disease Patients: An International Web-based Survey. J. Crohn’s Colitis 2022, 16, 1070–1078. [Google Scholar] [CrossRef]
- Caldera, F.; Knutson, K.L.; Saha, S.; Wald, A.; Phan, H.S.; Chun, K.; Grimes, I.; Lutz, M.; Hayney, M.S.; Farraye, F.A. Humoral Immunogenicity of mRNA COVID-19 Vaccines Among Patients with Inflammatory Bowel Disease and Healthy Controls. Am. J. Gastroenterol. 2021, 117, 176–179. [Google Scholar] [CrossRef]
- Cerna, K.; Duricova, D.; Lukas, M.; Machkova, N.; Hruba, V.; Mitrova, K.; Kubickova, K.; Kostrejova, M.; Teplan, V.; Vasatko, M.; et al. Anti-SARS-CoV-2 vaccination and antibody response in patients with inflammatory bowel disease on immune-modifying therapy: Prospective single-tertiary study. Inflamm. Bowel Dis. 2022, 28, 1506–1512. [Google Scholar] [CrossRef]
- Classen, J.M.; Muzalyova, A.; Nagl, S.; Fleischmann, C.; Ebigbo, A.; Römmele, C.; Messmann, H.; Schnoy, E. Antibody Response to SARS-CoV-2 Vaccination in Patients with Inflammatory Bowel Disease: Results of a Single-Center Cohort Study in a Tertiary Hospital in Germany. Dig. Dis. 2021, 40, 719–727. [Google Scholar] [CrossRef]
- Edelman-Klapper, H.; Zittan, E.; Shitrit, A.B.-G.; Rabinowitz, K.M.; Goren, I.; Avni-Biron, I.; Ollech, J.E.; Lichtenstein, L.; Banai-Eran, H.; Yanai, H.; et al. Lower Serologic Response to COVID-19 mRNA Vaccine in Patients with Inflammatory Bowel Diseases Treated with Anti-TNFα. Gastroenterology 2022, 162, 454–467. [Google Scholar] [CrossRef]
- Garrido, I.; Lopes, S.; Macedo, G. Safety of COVID-19 Vaccination in Inflammatory Bowel Disease Patients on Biologic Therapy. J. Crohn’s Colitis 2021, 16, 687–688. [Google Scholar] [CrossRef]
- Levine, I.; Swaminath, A.; Roitman, I.; Sultan, K. COVID-19 Vaccination and Inflammatory Bowel Disease: Desired Antibody Responses, Future Directions, and a Note of Caution. Gastroenterology 2022, 162, 349–350. [Google Scholar] [CrossRef]
- Rodríguez-Martinó, E.; Medina-Prieto, R.; Santana-Bagur, J.; Santé, M.; Pantoja, P.; Espino, A.M.; Sariol, C.A.; Torres, E.A. Early immunologic response to mRNA COVID-19 vaccine in patients receiving biologics and/or immunomodulators. medRxiv 2021, 78, 625. [Google Scholar]
- Shehab, M.; Alrashed, F.; Alfadhli, A.; Alotaibi, K.; Alsahli, A.; Mohammad, H.; Cherian, P.; Al-Khairi, I.; Thanaraj, T.A.; Channanath, A.; et al. Serological Response to BNT162b2 and ChAdOx1 nCoV-19 Vaccines in Patients with Inflammatory Bowel Disease on Biologic Therapies. Vaccines 2021, 9, 1471. [Google Scholar] [CrossRef]
- Esquivel-Valerio, J.A.; Skinner-Taylor, C.M.; Moreno-Arquieta, I.A.; la Garza, J.A.C.-D.; Garcia-Arellano, G.; Gonzalez-Garcia, P.L.; Almaraz-Juarez, F.d.R.; Galarza-Delgado, D.A. Adverse events of six COVID-19 vaccines in patients with autoimmune rheumatic diseases: A cross-sectional study. Rheumatol. Int. 2021, 41, 2105–2108. [Google Scholar] [CrossRef]
- Fagni, F.; Simon, D.; Tascilar, K.; Schoenau, V.; Sticherling, M.; Neurath, M.F.; Schett, G. COVID-19 and immune-mediated inflam-matory diseases: Effect of disease and treatment on COVID-19 outcomes and vaccine responses. Lancet Rheumatol. 2021, 3, e724–e736. [Google Scholar] [CrossRef]
- Chron’s and Colitis Foundations COVID-19 Vaccine Statement. Available online: https://www.crohnscolitisfoundation.org/sites/default/files/2021-01/COVID-19%20Vaccine%20Position%20Statement.pdf (accessed on 30 November 2022).
- Freund, O.; Tau, L.; Weiss, T.E.; Zornitzki, L.; Frydman, S.; Jacob, G.; Bornstein, G. Associations of vaccine status with characteristics and outcomes of hospitalized severe COVID-19 patients in the booster era. PLoS ONE 2022, 17, e0268050. [Google Scholar] [CrossRef]
- D’Amico, F.; Rabaud, C.; Peyrin-Biroulet, L.; Danese, S. SARS-CoV-2 vaccination in IBD: More pros than cons. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 211–213. [Google Scholar] [CrossRef]
- ACR COVID-19 Vaccine Guidance Recommends Vaccination, Addresses Immunosuppressant Drugs & Patient Concerns. Available online: https://www.rheumatology.org/About-Us/Newsroom/Press-Releases/ID/1138 (accessed on 30 November 2022).
- Sung, K.-Y.; Chang, T.-E.; Wang, Y.-P.; Lin, C.-C.; Chang, C.-Y.; Hou, M.-C.; Lu, C.-L. SARS-CoV-2 vaccination in patients with inflammatory bowel disease: A systemic review and meta-analysis. J. Chin. Med. Assoc. 2021, 85, 421–430. [Google Scholar] [CrossRef]
- Doherty, J.; Fennessy, S.; Stack, R.; Morain, N.O.; Cullen, G.; Ryan, E.J.; De Gascun, C.; Doherty, G.A. Review Article: Vaccination for patients with inflammatory bowel disease during the COVID-19 pandemic. Aliment. Pharmacol. Ther. 2021, 54, 1110–1123. [Google Scholar] [CrossRef]
- Jena, A.; James, D.; Singh, A.K.; Dutta, U.; Sebastian, S.; Sharma, V. Effectiveness and Durability of COVID-19 Vaccination in 9447 Patients with IBD: A Systematic Review and Meta-Analysis. Clin. Gastroenterol. Hepatol. 2022, 20, 1456–1479.e18. [Google Scholar] [CrossRef]
- Tabesh, E.; Soheilipour, M.; Rezaeisadrabadi, M.; Zare-Farashbandi, E.; Mousavi-Roknabadi, R.S. Comparison the effects and side effects of COVID-19 vaccination in patients with inflammatory bowel disease (IBD): A systematic scoping review. BMC Gastroenterol. 2022, 22, 393. [Google Scholar] [CrossRef]
- Wellens, J.; Colombel, J.-F.; Satsangi, J.J.; Wong, S.-Y. SARS-CoV-2 Vaccination in IBD: Past Lessons, Current Evidence, and Future Challenges. J. Crohn’s Colitis 2021, 15, 1376–1386. [Google Scholar] [CrossRef]
- Kubas, A.; Malecka-Wojciesko, E. COVID-19 Vaccination in Inflammatory Bowel Disease (IBD). J. Clin. Med. 2022, 11, 2676. [Google Scholar] [CrossRef] [PubMed]
- Duong, T.A.; Bryant, R.V.; Andrews, J.M.; Lynch, K.D. Attitudes towards COVID -19 vaccination in patients with inflammatory bowel disease. Intern. Med. J. 2022, 52, 1070–1074. [Google Scholar] [CrossRef] [PubMed]
- Hudhud, D.; Caldera, F.; Cross, R.K. Addressing COVID-19 Vaccine Hesitancy in Patients with IBD. Inflamm. Bowel Dis. 2021, 28, 492–493. [Google Scholar] [CrossRef] [PubMed]
- Floreani, A.; De Martin, S. COVID-19 and Autoimmune Liver Diseases. J. Clin. Med. 2022, 11, 2681. [Google Scholar] [CrossRef] [PubMed]
- Taneva, G.; Dimitrov, D.; Velikova, T. Liver dysfunction as a cytokine storm manifestation and prognostic factor for severe COVID-19. World J. Hepatol. 2021, 13, 2005–2012. [Google Scholar] [CrossRef]
- Efe, C.; Lammert, C.; Taşçılar, K.; Dhanasekaran, R.; Ebik, B.; la Tijera, F.H.; Calışkan, A.R.; Peralta, M.; Gerussi, A.; Massoumi, H.; et al. Effects of immunosuppressive drugs on COVID-19 severity in patients with autoimmune hepatitis. Liver Int. 2021, 42, 607–614. [Google Scholar] [CrossRef]
- Dotan, A.; Muller, S.; Kanduc, D.; David, P.; Halpert, G.; Shoenfeld, Y. The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmun. Rev. 2021, 20, 102792. [Google Scholar] [CrossRef]
- Singh, S.; Khan, A. Clinical Characteristics and Outcomes of Coronavirus Disease 2019 Among Patients with Preexisting Liver Disease in the United States: A Multicenter Research Network Study. Gastroenterology 2020, 159, 768–771.e3. [Google Scholar] [CrossRef]
- Piano, S.; Brocca, A.; Mareso, S.; Angeli, P. Infections complicating cirrhosis. Liver Int. 2018, 38, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Marjot, T.; Moon, A.M.; Cook, J.A.; Abd-Elsalam, S.; Aloman, C.; Armstrong, M.J.; Pose, E.; Brenner, E.J.; Cargill, T.; Catana, M.-A.; et al. Outcomes following SARS-CoV-2 infection in patients with chronic liver disease: An international registry study. J. Hepatol. 2020, 74, 567–577. [Google Scholar] [CrossRef]
- Marjot, T.; Webb, G.J.; Barritt, A.S.; Ginès, P.; Lohse, A.W.; Moon, A.M.; Pose, E.; Trivedi, P.; Barnes, E. SARS-CoV-2 vaccination in patients with liver disease: Responding to the next big question. Lancet Gastroenterol. Hepatol. 2021, 6, 156–158. [Google Scholar] [CrossRef]
- Peng, X.G.; Li, Y.Y.; Chen, H.T.; Zhou, Y.; Ma, J.G.; Yin, H.M. Evolution of correlation between Helicobacter pylori infection and auto-immune liver disease. Exp. Ther. Med. 2017, 14, 1487–1490. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, A.; Paranji, N.; Chen, P.H.; Niu, B. COVID-19 in Chronic Liver Disease and Liver Transplantation: A Clinical Review. J. Clin. Gastroenterol. 2021, 55, 187–194. [Google Scholar] [CrossRef]
- Di Giorgio, A.; Nicastro, E.; Speziani, C.; De Giorgio, M.; Pasulo, L.; Magro, B.; Fagiuoli, S.; D’ Antiga, L. Health status of patients with autoimmune liver disease during SARS-CoV-2 outbreak in northern Italy. J. Hepatol. 2020, 73, 702–705. [Google Scholar] [CrossRef]
- Alhumaid, S.; Al Mutair, A.; Rabaan, A.A.; Alshakhs, F.M.; Choudhary, O.P.; Yong, S.J.; Nainu, F.; Khan, A.; Muhammad, J.; Alhelal, F.; et al. New-onset and relapsed liver diseases following COVID-19 vaccination: A systematic review. BMC Gastroenterol. 2022, 22, 433. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. COVE Study Group. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Duengelhoef, P.; Hartl, J.; Rüther, D.; Steinmann, S.; Brehm, T.T.; Weltzsch, J.P.; Glaser, F.; Schaub, G.M.; Sterneck, M.; Sebode, M.; et al. SARS-CoV-2 vaccination response in patients with autoimmune hepatitis and autoimmune cholestatic liver disease. United Eur. Gastroenterol. J. 2022, 10, 319–329. [Google Scholar] [CrossRef]
- Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Oxford COVID Vaccine Trial Group. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. [Google Scholar] [CrossRef]
- Alqahtani, S.; Barry, M.; Memish, Z.; Hashim, A.; Alfares, M.; Alghamdi, S.; Al-Hamoudi, W.; Al-Judaibi, B.; Alhazzani, W.; Al-Tawfiq, J.; et al. Use of COVID-19 vaccines in patients with liver disease and post-liver transplantation: Position statement of the Saudi association for the study of liver diseases and transplantation. Saudi J. Gastroenterol. 2021, 27, 201. [Google Scholar] [CrossRef]
- Mahmud, N.; Chapin, S.E.; Kaplan, D.E.; Serper, M. Identifying Patients at Highest Risk of Remaining Unvaccinated Against Severe Acute Respiratory Syndrome Coronavirus 2 in a Large Veterans Health Administration Cohort. Liver Transplant. 2021, 27, 1665–1668. [Google Scholar] [CrossRef] [PubMed]
- Torrente, S.; Castiella, A.; Garmendia, M.; Zapata, E. Probable autoimmune hepatitis reactivated after COVID-19 vaccination. Gastroenterol. Hepatol. 2022, 45 (Suppl. 1), 115–116. [Google Scholar] [CrossRef]
- Cao, Z.; Gui, H.; Sheng, Z.; Xin, H.; Xie, Q. Letter to the editor: Exacerbation of autoimmune hepatitis after COVID-19 vaccination. Hepatology 2021, 75, 757–759. [Google Scholar] [CrossRef]
- Callaghan, C.J.; Mumford, L.; Curtis, R.M.K.; Williams, S.V.; Whitaker, H.; Andrews, N.; Lopez Bernal, J.; Ushiro-Lumb, I.; Pettigrew, G.J.; Thorburn, D.; et al. NHSBT Organ and Tissue Donation and Transplantation Clinical Team. Real-world Effectiveness of the Pfizer-BioNTech BNT162b2 and Oxford-AstraZeneca ChAdOx1-S Vaccines Against SARS-CoV-2 in Solid Organ and Islet Transplant Recipients. Transplantation 2022, 106, 436–446. [Google Scholar] [CrossRef]
- Cornberg, M.; Buti, M.; Eberhardt, C.S.; Grossi, P.A.; Shouval, D. EASL position paper on the use of COVID-19 vaccines in patients with chronic liver diseases, hepatobiliary cancer and liver transplant recipients. J. Hepatol. 2021, 74, 944–951. [Google Scholar] [CrossRef]
- Fix, O.K.; Blumberg, E.A.; Chang, K.-M.; Chu, J.; Chung, R.T.; Goacher, E.K.; Hameed, B.; Kaul, D.R.; Kulik, L.M.; Kwok, R.M.; et al. American Association for the Study of Liver Diseases Expert Panel Consensus Statement: Vaccines to Prevent Coronavirus Disease 2019 Infection in Patients with Liver Disease. Hepatology 2021, 74, 1049–1064. [Google Scholar] [CrossRef]
- Pellegrino, P.; Clementi, E.; Radice, S. On vaccine’s adjuvants and autoimmunity: Current evidence and future perspectives. Autoimmun. Rev. 2015, 14, 880–888. [Google Scholar] [CrossRef]
- Gershwin, L.J. Adverse Reactions to Vaccination. Veter Clin. North. Am. Small Anim. Pract. 2017, 48, 279–290. [Google Scholar] [CrossRef]
- Bril, F.; Al Diffalha, S.; Dean, M.; Fettig, D.M. Autoimmune hepatitis developing after coronavirus disease 2019 (COVID-19) vac-cine: Causality or casualty? J. Hepatol. 2021, 75, 222–224. [Google Scholar] [CrossRef]
- Rocco, A.; Sgamato, C.; Compare, D.; Nardone, G. Autoimmune hepatitis following SARS-CoV-2 vaccine: May not be a casuality. J. Hepatol. 2021, 75, 728–729. [Google Scholar] [CrossRef]
- McShane, C.; Kiat, C.; Rigby, J.; Crosbie, Ó. The mRNA COVID-19 vaccine—A rare trigger of autoimmune hepatitis? J. Hepatol. 2021, 75, 1252–1254. [Google Scholar] [CrossRef]
- Liang, Z.; Zhu, H.; Wang, X.; Jing, B.; Li, Z.; Xia, X.; Sun, H.; Yang, Y.; Zhang, W.; Shi, L.; et al. Adjuvants for Coronavirus Vaccines. Front. Immunol. 2020, 11, 589833. [Google Scholar] [CrossRef]
- Mahmud, S.M.; Bozat-Emre, S.; Mostaço-Guidolin, L.C.; Marrie, R.A. Registry Cohort Study to Determine Risk for Multiple Sclerosis after Vaccination for Pandemic Influenza A(H1N1) with Arepanrix, Manitoba, Canada. Emerg. Infect. Dis. 2018, 24, 1267–1274. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Sawalha, A.H.; Lu, Q. COVID-19 and autoimmune diseases. Curr. Opin. Rheumatol. 2020, 33, 155–162. [Google Scholar] [CrossRef]
- Akobeng, A.K.; Grafton-Clarke, C.; Abdelgadir, I.; Twum-Barimah, E.; Gordon, M. Gastrointestinal manifestations of COVID-19 in children: A systematic review and meta-analysis. Front. Gastroenterol. 2020, 12, 332–337. [Google Scholar] [CrossRef]
- Xiao, F.; Tang, M.; Zheng, X.; Liu, Y.; Li, X.; Shan, H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology 2020, 158, 1831–1833. [Google Scholar] [CrossRef]
- Lo Vecchio, A.; Garazzino, S.; Smarrazzo, A.; Venturini, E.; Poeta, M.; Berlese, P.; Denina, M.; Meini, A.; Bosis, S.; Galli, L.; et al. Italian SITIP-SIP Paediatric SARS-CoV-2 Infection Study Group. Factors Associated with Severe Gastrointestinal Diagnoses in Children with SARS-CoV-2 Infection or Multisystem Inflammatory Syndrome. JAMA Netw. Open 2021, 4, e2139974. [Google Scholar] [CrossRef]
- Lazova, S.; Alexandrova, T.; Gorelyova-Stefanova, N.; Atanasov, K.; Tzotcheva, I.; Velikova, T. Liver Involvement in Children with COVID-19 and Multisystem Inflammatory Syndrome: A Single-Center Bulgarian Observational Study. Microorganisms 2021, 9, 1958. [Google Scholar] [CrossRef]
- Turner, D.; Huang, Y.; Martín-De-Carpi, J.; Aloi, M.; Focht, G.; Kang, B.; Zhou, Y.; Sanchez, C.; Kappelman, M.D.; Uhlig, H.H.; et al. Corona Virus Disease 2019 and Paediatric Inflammatory Bowel Diseases: Global Experience and Provisional Guidance (March 2020) from the Paediatric IBD Porto Group of European Society of Paediatric Gastroenterology, Hepatology, and Nutrition. J. Craniofacial Surg. 2020, 70, 727–733. [Google Scholar] [CrossRef]
- Shire, Z.J.; Reicherz, F.; Lawrence, S.; Sudan, H.; Golding, L.; Majdoubi, A.; Levett, P.N.; Lavoie, P.M.; Jacobson, K. Antibody response to the BNT162b2 SARS-CoV-2 vaccine in paediatric patients with inflammatory bowel disease treated with anti-TNF therapy. Gut 2021, 71, 1922–1924. [Google Scholar] [CrossRef]
- Spencer, E.A.; Klang, E.; Dolinger, M.; Pittman, N.; Dubinsky, M.C. Seroconversion Following SARS-CoV-2 Infection or Vaccination in Pediatric IBD Patients. Inflamm. Bowel Dis. 2021, 27, 1862–1864. [Google Scholar] [CrossRef]
- Siegel, C.A.; Melmed, G.Y.; McGovern, D.P.; Rai, V.; Krammer, F.; Rubin, D.T.; Abreu, M.T.; Dubinsky, M.C. SARS-CoV-2 vaccination for patients with inflammatory bowel diseases: Recommendations from an international consensus meeting. Gut 2021, 70, 635–640. [Google Scholar] [CrossRef]
- Dembiński, L.; Dziekiewicz, M.; Banaszkiewicz, A. Immune Response to Vaccination in Children and Young People with Inflammatory Bowel Disease: A Systematic Review and Meta-analysis. J. Craniofacial Surg. 2020, 71, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Recommendations of Crohn’s and Colitis Canada on COVID-19 Vaccines in Children. Available online: https://crohnsandcolitis.ca/About-Crohn-s-Colitis/COVID-19-and-IBD/Vaccines (accessed on 10 February 2022).
- Nicastro, E.; Ebel, N.H.; Kehar, M.; Czubkowski, P.; Ng, V.L.; Michaels, M.G.; Lobritto, S.J.; Martinez, M.; Indolfi, G. The Impact of Severe Acute Respiratory Syndrome Coronavirus Type 2 on Children with Liver Diseases: A Joint European Society for Pediatric Gastroenterology, Hepatology and Nutrition and Society of Pediatric Liver Transplantation Position Paper. J. Pediatr. Gastroenterol. Nutr. 2021, 74, 159–170. [Google Scholar] [CrossRef]
Type of Vaccine | Type of Study | Subjects | Data on Efficacy (% Protection, Other) | Data on Safety (Main Side Effects) | Reference |
---|---|---|---|---|---|
mRNA | Prospective study design | All patients included n = 246 (67% Crohn’s disease, 33% ulcerative colitis) | N/A | After the first dose (injection site reactions in 38%; fatigue/malaise 23%, headaches 14%, fever/chills 5%); After the second dose (injection site reaction 56%; fatigue, malaise 45%, headaches 34%, fever/chills 29%) | Botwin et al. [19] |
mRNA, adenoviral | A prospective, observational cohort study | All patients included n = 3316 with IBD (n = 1908, Pfizer/BioNTech; n = 1272 Moderna, n = 161, Janssen) | N/A | No severe systemic reactions require emergency room visits. After the first dose: adverse reaction injection site (66%); fever (6%), fatigue (46%), headaches (32%), muscle aches (20%); After the second dose: adverse reaction injection site (65%); fever (25%), fatigue (46%), headaches (32%), muscle aches (12%); Low flare rate (2%) | Weaver et al. [20] |
mRNA | Self-reported study | 84 IBD patients (23-with Crohn’s disease, 25 with ulcerative colitis) on anti-TNF therapy | Biologic therapy associated with lower anti-RBD antibodies | N/A | Wong et ICARUS-IBD Working Group [21] |
mRNA | Multicenter, UK prospective, case-control study | 352 IBD patients on immunosuppressive therapy (thiopurine, infliximab, ustekinumab, vedolizumab, tofacitinib) and 72 healthy controls | No significant differences in anti-SARS-CoV-2 S1 RBD antibody concentrations between the healthy control group and patients treated with thiopurine, ustekinumab, or vedolizumab, lower anti-SARS-CoV-2 S1 RBD antibody concentrations independently associated with infliximab, tofacitinib, and thiopurine, but not with ustekinumab or vedolizumab (0.84 [0.54–1.30]; p = 0.43) | N/A | Alexander et al. [22] |
mRNA | Multicenter Israeli population-based cohort study | 12,109 IBD patients, 4946 non-IBD controls, 707 unvaccinated IBD patients | 99.7% protection; patients on TNF inhibitors and/or corticosteroids did not have a higher incidence of infection; risk of exacerbation was 29% in vaccinated vs. 26% in unvaccinated IBD (p = 0.3) | N/A | Lev-Tzion et al. [23] |
mRNA and adenoviral | Prospective, CLARITY IBD multicenter cohort study | 1293 vaccinated IBD patients | anti-SARS-CoV-2 antibody concentrations reduced in patients treated with infliximab than vedolizumab | N/A | Kennedy et al. [24] |
mRNA | Retrospective | 7321 vaccinated IBD, 7376 unvaccinated IBD patients | Full vaccination associated with 69% reduced risk for COVID-19 and 80.4% effectiveness | N/A | Khan and Mahmud [25] |
mRNA | Retrospective | 5562 vaccinated IBD, 859,017 vaccinated non-IBD patients | N/A | 2.2% adverse events in IBD patients on biologics/immunomodulatory therapy vs. 1.67 without such treatment; special adverse events | Hadi et al. [26] |
mRNA | Retrospective cohort | 12,231 vaccinated IBD, 36,254 vaccinated non-IBD patients | 0.19% breakthrough infections after the second dose (7 days) and 0.14% (14 days) | N/A | Ben-Tov et al. [27] |
mRNA, adenovirus vector | Prospective | 33 vaccinated IBD—children and young adults | 15 times higher levels of IgG antibodies compared to natural infection, all participants developed neutralizing antibodies | For mRNA vaccine—sore arm, chills, fever, etc.; vector vaccine—the same; no one has contracted COVID-19 2–6 months following vaccination | Dailey et al. [28] |
mRNA | Prospective single-center | 317 vaccinated IBD patients | Detectable antibodies in 300/317 IBD patients; 85% in patients on corticosteroids | N/A | Kappelman et al. [29] |
mRNA | Prospective, multicenter | 84 patients with immune-mediated disease, 8 vaccinated IBD patients | 90.5% of all patients with immune-mediated diseases develop IgG antibodies to SARS-CoV-2 | Less frequent mild adverse effects (injection site pain, headache, chills, arthralgia) | Simon et al. [30] |
mRNA | Prospective, multicenter | 133 patients with chronic inflammatory disease, 42 vaccinated IBD patients | N/A | Incidence rate of overall adverse events—0.55; local—0.64; mainly fatigue, headache, myalgia, fever and chills; severe adverse reactions incidence rate 0.02, requiring hospitalization—0.00 and IBD flares—0.01 | James et al. [31] |
mRNA, adenovirus vector | Prospective, multicenter | 353 vaccinated IBD patients | Higher quantitative log10 antispike IgG after mRNA vs. adenovirus | N/A | Pozdnyakova et al. [32] |
mRNA | International web-based survey | 3272 IBD patients | N/A | 72.4% local symptoms, 51.4% systemic symptoms | Ellul et al. [33] |
mRNA | Cohort study | 122 IBD patients and 60 controls, on immunomodulating therapy | 97% of IBD patients developed antibodies, lower in patients than in controls, higher after Moderna vs. Pfizer; lower when on immunosuppressive therapy; | OR = 0.97 significant side effects associations after full vaccination | Caldera et al. [34] |
mRNA, adenovirus vector | Prospective single-tertiary study | 602 IBD patients on immunosuppressive therapy | Lower Ig concentrations in patients on treatment; 97.8% seropositivity in IBD patients | N/A | Cerna et al. [35] |
mRNA, adenovirus vector | Retrospective observational | 72 IBD patients; | 100% antibody response in patients group; reduced antibody levels in IBD vs. controls, no differences between vaccines; all IBD patients developed an immune response | Local and systemic mild reactions | Classen et al. [36] |
mRNA | Prospective controlled | 185 IBD patients, 73 healthy controls | 100% response following vaccination, lower in older and on anti-TNF therapy | Local pain, headache | Edelman-Klapper et al. [37] |
mRNA, adenovirus vector | Cohort/ real-life survey: telephone questionnaire | 239 IBD patients on biologics | N/A | High acceptance rate and mild and transitory adverse reaction | Garrido et al. [38] |
mRNA | Prospective study | 19 IBD patients on biologics | 95% immune response rate | N/A | Levine et al. [39] |
mRNA | Prospective study | 19 patients on biologics | 21.13-fold increase of total IgG antibodies after 1st dose, and 90-fold after second dose; % virus neutralizing antibodies was lower in IBD patients | N/A | Rodriguez-Martino et al. [40] |
mRNA, adenovirus vector | Prospective study | 126 IBD patients on biologics | 74.5–81.2% immune response in patients on anti-TNF vs. 92.8–100% on vedolizumab and ustekinumab, resp.; fewer virus-neutralizing antibody titers in patients treated with anti-TNF | N/A | Shehab et al. [41] |
Type of Vaccine | Type of Study | Subjects | Data on Efficacy (% Protection, Other) | Data on Safety (Main Side Effects) | Reference |
---|---|---|---|---|---|
mRNA | Placebo-controlled, observer-blinded, pivotal efficacy trial (randomized 1:1 vaccine vs. placebo) | All patients included n = 43,548 Patients with liver disease n = 217 (0.6%) | 95% efficacy (9 vaccinated vs. 169 controls with COVID-19)10 cases of severe COVID-19 infection vs. 9 in the placebo group | Systemic AEs:
Flares: NR | Polack et al. [68] |
mRNA | Phase 3 randomized, observer-blinded, placebo-controlled trial was conducted at 99 centers across the United States (randomized 1:1 vaccine vs. placebo) | All patients included n= 30420 Patients with liver disease n = 196 (0.6%) | 94.1% efficacy (11 vaccinated vs. 185 controls with COVID-19)None of the patients were with COVID-19 infection vs. 30 cases of severe COVID-19 in the placebo groupFlares: NR | Systemic AEs:
Low rate after the first dose and increased to around 16% after the second dose | Baden et al. [69] |
mRNA, adenovirus vector | Observational study | 103 patients with autoimmune hepatitis, 64 with primary sclerosing cholangitis, 61 with primary biliary cholangitis, 95 healthy controls | Anti-SARS-CoV-2 antibodies were relatively lower in patients with autoimmune hepatitis vs. healthy control and comparably low in patients on immunosuppression; a spike-specific T cell responses were undetectable in 45% of patients despite a positive serology in hepatitis patients and 87% in primary sclerosing cholangitis and primary biliary cholangitis | N/A | Duengelhoef et al. [70] |
Adenoviral vector | Blinded, randomized, controlled trials conducted across the U.K., Brazil, and South Africa. | All patients included n = 11,636 Patients with liver disease—NR | 70.4% efficacy (30 vaccine recipients vs. 101 placebo-group) | 84 serious AEs in the vaccine group | Voysey et al. [71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peshevska-Sekulovska, M.; Bakalova, P.; Snegarova, V.; Lazova, S.; Velikova, T. COVID-19 Vaccines for Adults and Children with Autoimmune Gut or Liver Disease. Vaccines 2022, 10, 2075. https://doi.org/10.3390/vaccines10122075
Peshevska-Sekulovska M, Bakalova P, Snegarova V, Lazova S, Velikova T. COVID-19 Vaccines for Adults and Children with Autoimmune Gut or Liver Disease. Vaccines. 2022; 10(12):2075. https://doi.org/10.3390/vaccines10122075
Chicago/Turabian StylePeshevska-Sekulovska, Monika, Plamena Bakalova, Violeta Snegarova, Snezhina Lazova, and Tsvetelina Velikova. 2022. "COVID-19 Vaccines for Adults and Children with Autoimmune Gut or Liver Disease" Vaccines 10, no. 12: 2075. https://doi.org/10.3390/vaccines10122075
APA StylePeshevska-Sekulovska, M., Bakalova, P., Snegarova, V., Lazova, S., & Velikova, T. (2022). COVID-19 Vaccines for Adults and Children with Autoimmune Gut or Liver Disease. Vaccines, 10(12), 2075. https://doi.org/10.3390/vaccines10122075