Immunogenicity, Immune Dynamics, and Subsequent Response to the Booster Dose of Heterologous versus Homologous Prime-Boost Regimens with Adenoviral Vector and mRNA SARS-CoV-2 Vaccine among Liver Transplant Recipients: A Prospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. Laboratory Assessment
2.2.1. Anti-SARS-CoV-2 Antibodies
2.2.2. Surrogate SARS-CoV-2 Neutralising Antibodies
2.2.3. T-Cell Response Assessment
2.3. Statistical Analyses
2.4. Ethical Considerations
3. Results
3.1. Baseline Characteristics
3.2. SARS-CoV-2 Specific Humoral Response
3.2.1. Anti-SARS-CoV-2 RBD Antibodies and Post-Vaccination Antibody Kinetics
3.2.2. Neutralising Antibody against SARS-CoV-2
3.3. SARS-CoV-2 Specific Cellular Response
3.4. Safety
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coll, E.; Fernández-Ruiz, M.; Sánchez-Álvarez, J.E.; Martínez-Fernández, J.R.; Crespo, M.; Gayoso, J.; Bada-Bosch, T.; Oppenheimer, F.; Moreso, F.; López-Oliva, M.O.; et al. COVID-19 in transplant recipients: The Spanish experience. Am. J. Transpl. 2021, 21, 1825–1837. [Google Scholar] [CrossRef] [PubMed]
- Kates, O.S.; Haydel, B.M.; Florman, S.S.; Rana, M.M.; Chaudhry, Z.S.; Ramesh, M.S.; Safa, K.; Kotton, C.N.; Blumberg, E.A.; Besharatian, B.D.; et al. Coronavirus Disease 2019 in Solid Organ Transplant: A Multicenter Cohort Study. Clin. Infect. Dis. 2021, 73, e4090-e9. [Google Scholar] [CrossRef] [PubMed]
- Murdaca, G.; Noberasco, G.; Olobardi, D.; Lunardi, C.; Maule, M.; Delfino, L.; Triggiani, M.; Cardamone, C.; Benfaremo, D.; Moroncini, G.; et al. Current Take on Systemic Sclerosis Patients’ Vaccination Recommendations. Vaccines 2021, 9, 1426. [Google Scholar] [CrossRef]
- Cornberg, M.; Buti, M.; Eberhardt, C.S.; Grossi, P.A.; Shouval, D. EASL position paper on the use of COVID-19 vaccines in patients with chronic liver diseases, hepatobiliary cancer and liver transplant recipients. J. Hepatol. 2021, 74, 944–951. [Google Scholar] [CrossRef]
- Fix, O.K.; Blumberg, E.A.; Chang, K.-M.; Chu, J.; Chung, R.T.; Goacher, E.K.; Hameed, B.; Kaul, D.R.; Kulik, L.M.; Kwok, R.M.; et al. American Association for the Study of Liver Diseases Expert Panel Consensus Statement: Vaccines to Prevent Coronavirus Disease 2019 Infection in Patients With Liver Disease. Hepatology 2021, 74, 1049–1064. [Google Scholar] [CrossRef]
- Davidov, Y.; Tsaraf, K.; Cohen-Ezra, O.; Likhter, M.; Ben Yakov, G.; Levy, I.; Levin, E.G.; Lustig, Y.; Mor, O.; Rahav, G.; et al. Immunogenicity and Adverse Effects of the 2-Dose BNT162b2 Messenger RNA Vaccine Among Liver Transplantation Recipients. Liver Transpl. 2022, 28, 215–223. [Google Scholar] [CrossRef]
- Rabinowich, L.; Grupper, A.; Baruch, R.; Ben-Yehoyada, M.; Halperin, T.; Turner, D.; Katchman, E.; Levi, S.; Houri, I.; Lubezky, N.; et al. Low immunogenicity to SARS-CoV-2 vaccination among liver transplant recipients. J. Hepatol. 2021, 75, 435–438. [Google Scholar] [CrossRef]
- Rashidi-Alavijeh, J.; Frey, A.; Passenberg, M.; Korth, J.; Zmudzinski, J.; Anastasiou, O.; Saner, F.; Jahn, M.; Lange, C.; Willuweit, K. Humoral Response to SARS-Cov-2 Vaccination in Liver Transplant Recipients-A Single-Center Experience. Vaccines 2021, 9, 738. [Google Scholar] [CrossRef]
- Thuluvath, P.J.; Robarts, P.; Chauhan, M. Analysis of antibody responses after COVID-19 vaccination in liver transplant recipients and those with chronic liver diseases. J. Hepatol. 2021, 75, 1434–1439. [Google Scholar] [CrossRef]
- He, Q.; Mao, Q.; An, C.; Zhang, J.; Gao, F.; Bian, L.; Li, C.; Liang, Z.; Xu, M.; Wang, J. Heterologous prime-boost: Breaking the protective immune response bottleneck of COVID-19 vaccine candidates. Emerg. Microbes Infect. 2021, 10, 629–637. [Google Scholar] [CrossRef]
- Garg, I.; Sheikh, A.B.; Pal, S.; Shekhar, R. Mix-and-Match COVID-19 Vaccinations (Heterologous Boost): A Review. Infect. Dis. Rep. 2022, 14, 537–546. [Google Scholar] [CrossRef]
- Liu, X.; Shaw, R.H.; Stuart, A.S.V.; Greenland, M.; Aley, P.K.; Andrews, N.J.; Cameron, J.C.; Charlton, S.; Clutterbuck, A.E.; Collins, A.M.; et al. Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV): A single-blind, randomised, non-inferiority trial. Lancet 2021, 398, 856–869. [Google Scholar] [CrossRef]
- Wanlapakorn, N.; Suntronwong, N.; Phowatthanasathian, H.; Yorsaeng, R.; Vichaiwattana, P.; Thongmee, T.; Auphimai, C.; Srimuan, D.; Thatsanatorn, T.; Assawakosri, S.; et al. Safety and immunogenicity of heterologous and homologous inactivated and adenoviral-vectored COVID-19 vaccine regimens in healthy adults: A prospective cohort study. Hum. Vaccines Immunother. 2022, 18, 2029111. [Google Scholar] [CrossRef]
- Patel, E.U.; Bloch, E.M.; Clarke, W.; Hsieh, Y.H.; Boon, D.; Eby, Y.; Fernandez, R.E.; Baker, O.R.; Keruly, M.; Kirby, C.S.; et al. Comparative Performance of Five Commercially Available Serologic Assays To Detect Antibodies to SARS-CoV-2 and Identify Individuals with High Neutralizing Titers. J. Clin. Microbiol. 2021, 59, e02257-20. [Google Scholar] [CrossRef]
- Jochum, S.; Kirste, I.; Hortsch, S.; Grunert, V.P.; Legault, H.; Eichenlaub, U.; Kashlan, B.; Pajon, R. Clinical Utility of Elecsys Anti-SARS-CoV-2 S Assay in COVID-19 Vaccination: An Exploratory Analysis of the mRNA-1273 Phase 1 Trial. Front. Immunol. 2021, 12, 798117. [Google Scholar] [CrossRef]
- De Santis, G.C.; Mendrone, A.; Langhi, D., Jr.; Covas, D.T.; Fabron, A., Jr.; Cortez, A.J.P.; Dinordo, C.L.; Ubiali, E.M.A.; Marques, J.F.C., Jr.; Bordin, J.O.; et al. Suggested guidelines for convalescent plasma therapy for the treatment of COVID-19. Hematol. Transfus. Cell Ther. 2021, 43, 212–213. [Google Scholar] [CrossRef]
- Thailand Medicines Regulation Division. 2022. Available online: https://www.fda.moph.go.th/sites/drug/SitePages/Vaccine_SPC-Name.aspx (accessed on 9 July 2022).
- Ruether, D.F.; Schaub, G.M.; Duengelhoef, P.M.; Haag, F.; Brehm, T.T.; Fathi, A.; Wehmeyer, M.; Jahnke-Triankowski, J.; Mayer, L.; Hoffmann, A.; et al. SARS-CoV2-specific Humoral and T-cell Immune Response After Second Vaccination in Liver Cirrhosis and Transplant Patients. Clin. Gastroenterol. Hepatol. 2022, 20, 162–172.e9. [Google Scholar] [CrossRef]
- Mendizabal, M.; Ducasa, N.; Benencio, P.; Anders, M.; Cairo, F.; Barbero, M.; Etcheves, P.; Alter, A.; Scarton, G.; Abraldes, J.G.; et al. Heterologous adenovirus-vector/messenger RNA regimen is associated with improved severe acute respiratory syndrome coronavirus 2 humoral response in liver transplant recipients. Hepatol. Commun. 2022, 6, 2850–2859. [Google Scholar] [CrossRef]
- Meunier, L.; Sanavio, M.; Dumortier, J.; Meszaros, M.; Faure, S.; Ursic Bedoya, J.; Echenne, M.; Boillot, O.; Debourdeau, A.; Pageaux, G.P.; et al. Mycophenolate mofetil decreases humoral responses to three doses of SARS-CoV-2 vaccine in liver transplant recipients. Liver Int. 2022, 42, 1872–1878. [Google Scholar] [CrossRef]
- Painter, M.M.; Mathew, D.; Goel, R.R.; Apostolidis, S.A.; Pattekar, A.; Kuthuru, O.; Baxter, A.E.; Herati, R.S.; Oldridge, D.A.; Gouma, S.; et al. Rapid induction of antigen-specific CD4(+) T cells is associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA vaccination. Immunity 2021, 54, 2133–2142.e3. [Google Scholar] [CrossRef] [PubMed]
- Meshram, H.S.; Kute, V.; Rane, H.; Dave, R.; Banerjee, S.; Mishra, V.; Chauhan, S. Humoral and cellular response of COVID-19 vaccine among solid organ transplant recipients: A systematic review and meta-analysis. Transpl. Infect. Dis. 2022, e13926. [Google Scholar] [CrossRef] [PubMed]
- Tubjaroen, C.; Prachuapthunyachart, S.; Potjalongsilp, N.; Sodsai, P.; Hirankarn, N.; Jaru-Ampornpan, P.; Chongsrisawat, D. Immunogenicity of an mRNA-Based COVID-19 Vaccine among Adolescents with Obesity or Liver Transplants. Vaccines 2022, 10, 1867. [Google Scholar] [CrossRef] [PubMed]
- WHO. Interim Recommendations for an Extended Primary Series with an Additional Vaccine Dose for COVID-19 Vaccination in Immunocompromised Persons. 2021. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-vaccines-SAGE_recommendation-immunocompromised-persons (accessed on 9 July 2022).
- Garcia-Beltran, W.F.; Denis, K.J.S.; Hoelzemer, A.; Lam, E.C.; Nitido, A.D.; Sheehan, M.L.; Berrios, C.; Ofoman, O.; Chang, C.C.; Hauser, B.M.; et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell 2022, 185, 457–466.e4. [Google Scholar] [CrossRef]
- Jantarabenjakul, W.; Sodsai, P.; Chantasrisawad, N.; Jitsatja, A.; Ninwattana, S.; Thippamom, N.; Ruenjaiman, V.; Tan, C.W.; Pradit, R.; Sophonphan, J.; et al. Dynamics of Neutralizing Antibody and T-Cell Responses to SARS-CoV-2 and Variants of Concern after Primary Immunization with CoronaVac and Booster with BNT162b2 or ChAdOx1 in Health Care Workers. Vaccines 2022, 10, 639. [Google Scholar] [CrossRef]
Parameter | All LT Recipients (n = 89) | ChAdOx1/BNT162b2 (n = 64) | ChAdOx1/ChAdOx1 (n = 25) | p-Value |
---|---|---|---|---|
Age (years) | 57.8 ± 14.2 | 58.9 ± 12.7 | 55.1 ± 17.5 | 0.26 |
Sex, male (%) | 61 (68.5) | 41 (64.1) | 20 (80.0) | 0.21 |
BMI (kg/m2) | 24.6 ± 4.1 | 26.2 ± 3.6 | 24.5 ± 5.1 | 0.93 |
Time after transplantation (years) * | 5.7 (2.5–11.8) | 5.7 (2.9–12.4) | 5.1 (2.7–10.3) | 0.89 |
Aetiology of liver disease (%) | ||||
HBV | 28 (33.7) | 18 (28.1) | 10 (40.0) | 0.10 |
HCV | 19 (21.3) | 15 (23.4) | 4 (16.0) | |
Alcohol | 15 (16.9) | 12 (18.8) | 3 (12.0) | |
NASH | 11 (12.4) | 4 (6.3) | 7 (28.0) | |
Other | 16 (18.0) | 15 (23.4) | 1 (4.0) | |
HCC (%) | 34 (38.2) | 23 (35.9) | 11 (44.0) | 0.63 |
Comorbidity (%) | ||||
HT | 36 (40.4) | 29 (45.3) | 7 (28.0) | 0.16 |
DM | 35 (39.3) | 21 (32.8) | 14 (56.0) | 0.55 |
DLP | 40 (44.9) | 30 (46.9) | 10 (40.0) | 0.64 |
CKD | 16 (18.0) | 9 (14.1) | 7 (28.0) | 0.14 |
Tacrolimus (%) | 59 (66.3) | 39 (60.9) | 20 (80.0) | 0.13 |
Drug level (ng/mL) | 3.4 ± 1.8 | |||
Cyclosporine (%) | 14 (15.7) | 11 (17.2) | 3 (12.0) | 0.55 |
Drug level (ng/mL) | 389.1 ± 240.2 | |||
Mycophenolate mofetil (%) | 49 (55.1) | 38 (59.4) | 11 (44.0) | 0.24 |
Daily dose (mg) * | 1000 (250–1000) | |||
Sirolimus (%) | 15 (16.9) | 12 (18.8) | 3 (12.0) | 0.45 |
Drug level (ng/mL) | 5.1 ± 2.1 | |||
Everolimus (%) | 5 (5.6) | 2 (3.1) | 3 (12.0) | 0.10 |
Drug level (ng/mL) | 3.6 ± 1.1 | |||
Prednisolone | 9 (10.1) | 8 (12.5) | 1 (4.0) | 0.23 |
Daily dose * | 2.5 (2.5–5) | |||
Regimen (%) | ||||
1 immunosuppressant | 12 (13.5) | 8 (12.5) | 4 (16.0) | 0.67 |
2 immunosuppressants | 69 (77.5) | 49 (75.0) | 20 (80.0) | |
3 immunosuppressants | 8 (9.0) | 7 (10.9) | 1 (4.0) | |
TB (mg/dL) | 0.7 ± 0.4 | 0.8 ± 0.4 | 0.7 ± 0.2 | 0.33 |
DB (mg/dL) | 0.3 ± 0.1 | 0.3 ± 0.2 | 0.3 ± 0.1 | 0.08 |
AST (U/L) | 24.1 ± 9.1 | 24.7 ± 10.2 | 22.5 ± 5.4 | 0.31 |
ALT (U/L) | 24.9 ± 16.0 | 25.9 ± 28.2 | 22.1 ± 7.8 | 0.31 |
ALP (U/L) | 88.9 ± 58.4 | 93.8 ± 65.3 | 76.6 ± 32.8 | 0.21 |
Albumin (g/dL) | 4.2 ± 0.4 | 4.2 ± 0.3 | 4.2 ± 0.4 | 0.72 |
Hemoglobin (g/dL) | 13.5 ± 2.9 | 13.6 ± 3.3 | 13.5 ± 1.8 | 0.92 |
White blood cell (103/ul) | 5.9 ± 2.2 | 6.0 ± 2.4 | 5.5 ± 1.8 | 0.35 |
Platelet (103/uL) | 212.9 ± 84.5 | 217.1 ± 88.5 | 202.1 ± 73.9 | 0.46 |
Creatinine (mg/dL) | 1.1 ± 0.5 | 1.1 ±0.4 | 1.3 ± 0.6 | 0.08 |
Creatinine clearance (mL/min) | 72.8 ± 29.7 | 74.2 ± 29.9 | 69.3 ± 29.7 | 0.49 |
Median (IQR) | ChAdOx1/BNT162b | ChAdOx1/ChAdOx1 | p-Value |
---|---|---|---|
Anti-RBD antibody (U/mL) | |||
Week 4 after primary vaccination | 842.9 (34.3–1884.0) | 152.1 (13.6–678.8) | 0.02 |
Week 12 after primary vaccination | 638.5 (142.5–1245.5) | 83.8 (14.2–312.3) | <0.001 |
Week 4 after booster | 10,346.0 (4889.0–15,298.5) | 5134 (852.1–12,352.8) | 0.18 |
Neutralising antibody (% inhibition) | |||
Week 4 after primary vaccination | 91.2 (44.7–96.6) | 39.9 (23.3–75.7) | 0.01 |
Week 4 after booster | 97.6 (96.8–97.8) | 97.3 (69.2–97.6) | 0.06 |
Spike-specific T-cells response (SFU/106 PBMC) | |||
Pool S1 | |||
4 weeks after primary vaccination | 116 (58–198) | 70 (14–105) | 0.02 |
4 weeks after booster | 160 (117–220) | 110 (42–131) | 0.004 |
Pool S2 | |||
4 weeks after primary vaccination | 136 (82–202) | 82 (23–111) | 0.02 |
4 weeks after booster | 160 (92–215) | 110 (46–144) | 0.03 |
Parameter | Univariate OR | p-Value | Multivariate OR | p-Value |
---|---|---|---|---|
Age | 1.03 (0.99–1.06) | 0.084 | ||
Sex (male) | 0.84 (0.33–2.17) | 0.718 | ||
LT duration (year) | 1.12 (1.01–1.23) | 0.023 | 0.85 (0.61–1.18) | 0.324 |
Vaccine regimen | 0.58 (0.22–1.50) | 0.259 | ||
BMI | 1.02 (0.92–1.14) | 0.683 | ||
HT | 0.59 (0.24–1.46) | 0.252 | ||
DM | 1.18 (0.49–2.86) | 0.713 | ||
Tacrolimus | 1.38 (0.54–3.56) | 0.500 | ||
Tacrolimus level | 0.66 (0.47–0.94) | 0.020 | 0.62 (0.28–1.34) | 0.227 |
MMF >500 mg/day | 10.80 (2.54–45.87) | 0.001 | 21.30 (1.46–311.05) | 0.025 |
mTOR inhibitor | 0.15 (0.03–0.71) | 0.017 | N/A | |
Triple immunosuppression | 2.00 (0.46–8.61) | 0.352 | ||
CrCL >60 mL/min | 0.64 (0.26–1.56) | 0.325 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sriphoosanaphan, S.; Suksawatamnuay, S.; Srisoonthorn, N.; Siripon, N.; Thaimai, P.; Ananchuensook, P.; Thanapirom, K.; Nonthasoot, B.; Hansasuta, P.; Komolmit, P. Immunogenicity, Immune Dynamics, and Subsequent Response to the Booster Dose of Heterologous versus Homologous Prime-Boost Regimens with Adenoviral Vector and mRNA SARS-CoV-2 Vaccine among Liver Transplant Recipients: A Prospective Study. Vaccines 2022, 10, 2126. https://doi.org/10.3390/vaccines10122126
Sriphoosanaphan S, Suksawatamnuay S, Srisoonthorn N, Siripon N, Thaimai P, Ananchuensook P, Thanapirom K, Nonthasoot B, Hansasuta P, Komolmit P. Immunogenicity, Immune Dynamics, and Subsequent Response to the Booster Dose of Heterologous versus Homologous Prime-Boost Regimens with Adenoviral Vector and mRNA SARS-CoV-2 Vaccine among Liver Transplant Recipients: A Prospective Study. Vaccines. 2022; 10(12):2126. https://doi.org/10.3390/vaccines10122126
Chicago/Turabian StyleSriphoosanaphan, Supachaya, Sirinporn Suksawatamnuay, Nunthiya Srisoonthorn, Nipaporn Siripon, Panarat Thaimai, Prooksa Ananchuensook, Kessarin Thanapirom, Bunthoon Nonthasoot, Pokrath Hansasuta, and Piyawat Komolmit. 2022. "Immunogenicity, Immune Dynamics, and Subsequent Response to the Booster Dose of Heterologous versus Homologous Prime-Boost Regimens with Adenoviral Vector and mRNA SARS-CoV-2 Vaccine among Liver Transplant Recipients: A Prospective Study" Vaccines 10, no. 12: 2126. https://doi.org/10.3390/vaccines10122126
APA StyleSriphoosanaphan, S., Suksawatamnuay, S., Srisoonthorn, N., Siripon, N., Thaimai, P., Ananchuensook, P., Thanapirom, K., Nonthasoot, B., Hansasuta, P., & Komolmit, P. (2022). Immunogenicity, Immune Dynamics, and Subsequent Response to the Booster Dose of Heterologous versus Homologous Prime-Boost Regimens with Adenoviral Vector and mRNA SARS-CoV-2 Vaccine among Liver Transplant Recipients: A Prospective Study. Vaccines, 10(12), 2126. https://doi.org/10.3390/vaccines10122126