Immunoinformatics Approach for Epitope Mapping of Immunogenic Regions (N, F and H Gene) of Small Ruminant Morbillivirus and Its Comparative Analysis with Standard Vaccinal Strains for Effective Vaccine Development
Abstract
:1. Introduction:
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Retrieval of Protein Sequences and Consensus Sequence Generation
2.3. Prediction of B Cell Peptides and Their Antigenicity
2.4. Prediction of T Cell Peptides
2.5. Prediction of MHC Class I and II Binding Peptides
2.6. Conservancy, Immunogenicity, Allergenicity, and Toxicity of Peptides
2.7. Comparative Analysis
3. Results
3.1. Prediction of B Cell Peptides
3.2. Prediction of T Cell Epitopes
3.3. Conservancy, Immunogenicity, Allergenicity, and Toxicity of Peptides
3.4. Comparative Residue Analysis
3.4.1. Substitution Analysis of Nucleocapsid Protein of Studied Isolates and Vaccinal Strains
3.4.2. Substitution Analysis of Fusion Protein of Studied Isolates and Vaccinal Strains
3.4.3. Substitution Analysis of Hemagglutinin Protein of Studied Isolates and Vaccinal Strains
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elzein, E.A.; Housawi, F.M.T.; Bashareek, Y.; Gameel, A.; Al-Afaleq, A.I.; Anderson, E. Severe PPR Infection in Gazelles kept under semi-free range conditions. J. Vet. Med. Ser. B 2004, 51, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, P.J.; Taylor, W.P.; Lawman, M.J.; Bryant, J. Classification of peste des petits ruminants virus as the fourth member of the genus Morbillivirus. Intervirology 1979, 11, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Munir, M.; Zohari, S.; Berg, M. Molecular Biology and Pathogenesis of Peste des Petits Ruminants Virus; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Bailey, D.; Banyard, A.; Dash, P.; Ozkul, A.; Barrett, T. Full genome sequence of peste des petits ruminants virus, a member of the Morbillivirus genus. Virus Res. 2005, 110, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, B.S.; Morin, B.; Rahmeh, A.A.; Whelan, S.P.J. Structural properties of the C terminus of vesicular stomatitis virus N protein dictate N-RNA complex assembly, encapsidation, and RNA synthesis. J. Virol. 2012, 86, 8720–8729. [Google Scholar] [CrossRef] [Green Version]
- Das, S.C.; Baron, M.D.; Barrett, T. Recovery and characterization of a chimeric rinderpest virus with the glycoproteins of peste-des-petits-ruminants virus: Homologous F and H proteins are required for virus viability. J. Virol. 2000, 74, 9039–9047. [Google Scholar] [CrossRef] [Green Version]
- Amjad, H.; Forsyth, M.; Barrett, T.; Rossiter, P.B. Peste des petits ruminants in goats in Pakistan. Vet. Rec. 1996, 139, 118–119. [Google Scholar]
- Shabbir, M.Z.; Ul-Rahman, A.; Zahid, M.N.; Munir, M. Genetic characterization of small ruminant morbillivirus from recently emerging wave of outbreaks in Pakistan. Transbound. Emerg. Dis. 2018, 65, 2032–2038. [Google Scholar] [CrossRef] [Green Version]
- Anees, M.; Shabbir, M.Z.; Muhammad, K.; Nazir, J.; Wensman, J.J.; Munir, M. Genetic analysis of peste des petits ruminants virus from Pakistan. BMC Vet. Res. 2013, 9, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Shabbir, M.Z.; Rahman, A.U.; Munir, M. A comprehensive global perspective on phylogenomics and evolutionary dynamics of Small ruminant morbillivirus. Sci. Rep. 2020, 10, 17. [Google Scholar] [CrossRef] [Green Version]
- Muniraju, M.; Munir, M.; Parthiban, A.R.; Banyard, A.C.; Bao, J.; Wang, Z.; Ayebazibwe, C.; Ayelet, G.; El Harrak, M.; Mahapatra, M.; et al. Molecular evolution of peste des petits ruminants virus. Emerg. Infect. Dis. 2014, 20, 2023. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Raghava, G.P.S. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins Struct. Funct. Bioinform. 2006, 65, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Yasmin, T.; Akter, S.; Debnath, M.; Ebihara, A.; Nakagawa, T.; Nabi, A.H.M. In silico proposition to predict cluster of B-and T-cell epitopes for the usefulness of vaccine design from invasive, virulent and membrane associated proteins of C. jejuni. Silico Pharmacol. 2016, 4, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doytchinova, I.A.; Flower, D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 2007, 8, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, S.; Sidney, J.; Sette, A.; Peters, B. TepiTool: A pipeline for computational prediction of T cell epitope candidates. Curr. Protoc. Immunol. 2016, 114, 18.19.1–18.19.24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moutaftsi, M.; Peters, B.; Pasquetto, V.; Tscharke, D.; Sidney, J.; Bui, H.-H.; Grey, H.M.; Sette, A. A consensus epitope prediction approach identifies the breadth of murine TCD8+-cell responses to vaccinia virus. Nat. Biotechnol. 2006, 24, 817–819. [Google Scholar] [CrossRef] [PubMed]
- Southwood, S.; Sidney, J.; Kondo, A.; Del Guercio, M.F.; Appella, E.; Hoffman, S.; Kubo, R.T.; Chesnut, R.W.; Grey, H.M.; Sette, A. Several common HLA-DR types share largely overlapping peptide binding repertoires. J. Immunol. 1998, 160, 3363–3373. [Google Scholar]
- Drake, J.W.; Holland, J.J. Mutation rates among RNA viruses. Proc. Natl. Acad. Sci. USA 1999, 96, 13910–13913. [Google Scholar] [CrossRef] [Green Version]
- Denison, M.R.; Graham, R.L.; Donaldson, E.F.; Eckerle, L.D.; Baric, R.S. Coronaviruses: An RNA proofreading machine regulates replication fidelity and diversity. RNA Biol. 2011, 8, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Soria-Guerra, R.E.; Nieto-Gomez, R.; Govea-Alonso, D.O.; Rosales-Mendoza, S. An overview of bioinformatics tools for epitope prediction: Implications on vaccine development. J. Biomed. Inform. 2015, 53, 405–414. [Google Scholar] [CrossRef] [Green Version]
- Pandey, R.K.; Ojha, R.; Aathmanathan, V.S.; Krishnan, M.; Prajapati, V.K. Immunoinformatics approaches to design a novel multi-epitope subunit vaccine against HIV infection. Vaccine 2018, 36, 2262–2272. [Google Scholar] [CrossRef]
- Klingen, T.R.; Reimering, S.; Guzmán, C.A.; McHardy, A.C. In silico vaccine strain prediction for human influenza viruses. Trends Microbiol. 2018, 26, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Sabetian, S.; Nezafat, N.; Dorosti, H.; Zarei, M.; Ghasemi, Y. Exploring dengue proteome to design an effective epitope-based vaccine against dengue virus. J. Biomol. Struct. Dyn. 2019, 37, 2546–2563. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook; Springer: Berlin/Heidelberg, Germany, 2005; pp. 571–607. [Google Scholar]
- Rahman, A.-U.; Munir, M.; Shabbir, M.Z. A comparative phylogenomic analysis of peste des petits ruminants virus isolated from wild and unusual hosts. Mol. Biol. Rep. 2019, 46, 5587–5593. [Google Scholar] [CrossRef] [PubMed]
- Ishida, H.; Kato, T.; Takehana, K.; Tatsumi, T.; Hosui, A.; Nawa, T.; Kodama, T.; Shimizu, S.; Hikita, H.; Hiramatsu, N.; et al. Valine, the branched-chain amino acid, suppresses hepatitis C virus RNA replication but promotes infectious particle formation. Biochem. Biophys. Res. Commun. 2013, 437, 127–133. [Google Scholar] [CrossRef]
- Gray, V.E.; Hause, R.J.; Fowler, D.M. Using large-scale mutagenesis to guide single amino acid scanning experiments. bioRxiv 2017. [Google Scholar] [CrossRef] [Green Version]
- Meyer, G.; Diallo, A. The nucleotide sequence of the fusion protein gene of the peste des petits ruminants virus: The long untranslated region in the 5′-end of the F-protein gene of morbilliviruses seems to be specific to each virus. Virus Res. 1995, 37, 23–35. [Google Scholar] [CrossRef]
- Rajak, K.; Sreenivasa, B.; Hosamani, M.; Singh, R.; Singh, S.; Bandyopadhyay, S. Experimental studies on immunosuppressive effects of peste des petits ruminants (PPR) virus in goats. Comp. Immunol. Microbiol. Infect. Dis. 2005, 28, 287–296. [Google Scholar] [CrossRef]
- Qin, J.; Huang, H.; Ruan, Y.; Hou, X.; Yang, S.; Wang, C.; Huang, G.; Wang, T.; Feng, N.; Gao, Y.; et al. A novel recombinant Peste des petits ruminants-canine adenovirus vaccine elicits long-lasting neutralizing antibody response against PPR in goats. PLoS ONE 2012, 7, e37170. [Google Scholar] [CrossRef]
- Yu, M.; Wang, L.F.; Shiell, B.; Eaton, B.T.; Hansson, E.; Michalski, W. Sequence analysis of the Hendra virus nucleoprotein gene: Comparison with other members of the subfamily Paramyxovirinae. J. Gen. Virol. 1998, 79, 1775–1780. [Google Scholar] [CrossRef]
- Sinnathamby, G.; Renukaradhya, G.; Rajasekhar, M.; Nayak, R.; Shaila, M. Immune responses in goats to recombinant hemagglutinin-neuraminidase glycoprotein of Peste des petits ruminants virus: Identification of a T cell determinant. Vaccine 2001, 19, 4816–4823. [Google Scholar] [CrossRef]
- Liang, Z.; Yuan, R.; Chen, L.; Zhu, X.; Dou, Y. Molecular evolution and characterization of hemagglutinin (H) in peste des petits ruminants virus. PLoS ONE 2016, 11, e0152587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Zhao, Z.; Bi, Y.; Sun, L.; Liu, X.; Liu, W. Tyrosine 132 phosphorylation of influenza A virus M1 protein is crucial for virus replication by controlling the nuclear import of M1. J. Virol. 2013, 87, 6182–6191. [Google Scholar] [CrossRef] [PubMed]
- Goldblum, N.; Ravid, Z.; Becker, Y. Effect of withdrawal of arginine and other amino acids on the synthesis of tumour and viral antigens of SV 40 virus. J. Gen. Virol. 1968, 3, 143–146. [Google Scholar] [CrossRef] [PubMed]
Sr. No. | Strain | Peptide | Substitution |
---|---|---|---|
Residue Analysis of Peptides Found in B Cells and MHC Class I | |||
1 | Nigeria 75/1 | 355SYFDPAYFRLGQEM368 | - |
Study isolate | |||
Sungri 96 | |||
2 | Nigeria 75/1 | 328AYPLLWSYAMGVGV341 | - |
Study isolate | |||
Sungri 96 | |||
3 | Nigeria 75/1 | 406TVRGTGPRQAQVSF419 | V 407 A |
Study isolate | TARGTGPRQAQVSF | ||
Sungri 96 | TARGTGPRQAQVSF | ||
Residue Analysis of Peptides Found in B Cells and MHC Class II | |||
4 | Nigeria 75/1 | 404ERTVRGTGPRQAQVS418 | V 407 A |
Study isolate | ERTARGTGPRQAQVS | ||
Sungri 96 | ERTARGTGPRQAQVS | ||
5 | Nigeria 75/1 | 328AYPLLWSYAMGVGVE342 | G 342 E |
Study isolate | AYPLLWSYAMGVGVE | ||
Sungri 96 | AYPLLWSYAMGVGVG | ||
Residue Analysis of Peptides Found in B Cells, MHC Class I, and MHC Class II | |||
6 | Nigeria 75/1 | 328AYPLLWSYAMGVGVEL343 | |
Study isolate | AYPLLWSYAMGVGVEL | G 342 E | |
Sungri 96 | AYPLLWSYAMGVGVGL | ||
7 | Nigeria 75/1 | 404ERTVRGTGPRQAQVSF419 | V 407 A |
Study isolate | ERTARGTGPRQAQVSF | ||
Sungri 96 | ERTARGTGPRQAQVSF |
Sr. No. | Strain | Peptide | Substitution |
---|---|---|---|
Residue Analysis of Peptides Found in B Cells and MHC Class I | |||
1 | Nigeria 75/1 | 155QAIEEIRLANKETI168 | - |
Study isolate | |||
Sungri 96 | |||
2 | Nigeria 75/1 | 264RVTYVDTRDYFIIL277 | - |
Study isolate | |||
Sungri 96 | |||
3 | Nigeria 75/1 | 431REYPDSVYLHEIDL444 | |
Study isolate | REYPDSVYLHKIDL | E441 K | |
Sungri 96 | REYPDSVYLHKIDL | ||
Residue Analysis of Peptides Found in B Cells and MHC Class II | |||
4 | Nigeria 75/1 | 99TLTPGRRTRRFVGAV113 | V 110 A |
Study isolate | TLTPGRRTRRFAGAV | ||
Sungri 96 | TLTPGRRTRRFAGAV | ||
5 | Nigeria 75/1 | 274FIILSIAYPTLSEIK288 | - |
Study isolate | |||
Sungri 96 | |||
6 | Nigeria 75/1 | 431REYPDSVYLHEIDLG445 | E 441 K |
Study isolate | REYPDSVYLHKIDLG | ||
Sungri 96 | REYPDSVYLHKIDLG | ||
Residue Analysis of Peptides Found in B Cells, MHC Class I, and MHC Class II | |||
7 | Nigeria 75/1 | 431REYPDSVYLHEIDLGP446 | E 441 K |
Study isolate | REYPDSVYLHKIDLGP | ||
Sungri 96 | REYPDSVYLHKIDLGP |
Sr. No. | Strain | Peptide | Substitution |
---|---|---|---|
Residue Analysis of Peptides Found in B Cells and MHC Class I | |||
1 | Nigeria 75/1 | 102EVGIRIPQKFSDLV115 | - |
Study isolate | |||
Sungri 96 | |||
2 | Nigeria 75/1 | 311SGVPKREPLVVVIL 324 | S311R, K317E |
Study isolate | RGVPKREPLVVVIL | ||
Sungri 96 | SGVPKRKPLVVVIL | ||
3 | Nigeria 75/1 | 466MINTIGFPDRAEVM479 | D474N, A476T |
Study isolate | MINTIGFPNRTEVM | ||
Sungri 96 | MINTIGFPNRAEVM | ||
4 | Nigeria 75/1 | 539VYYIYDTGRSSSYF552 | L547R, Y552F |
Study isolate | VYYIYDTGRSSSYF | ||
Sungri 96 | VYYIYDTGLSSSYY | ||
5 | Nigeria 75/1 | 548SSSYFYPVRLNFRG561 | Y552F, R560K |
Study isolate | SSSYFYPVRLNFKG | ||
Sungri 96 | SSSYYYPVRLNFRG | ||
6 | Nigeria 75/1 | 570CFPWYHKVWCYHDC583 | Y574R |
Study isolate | CFPWRHKVWCYHDC | ||
Sungri 96 | CFPWRHKVWCYHDC | ||
Residue Analysis of Peptides Found in B Cells and MHC Class II | |||
7 | Nigeria 75/1 | 539VYYIYDTGRSSSYFY 553 | L547R, Y552F |
Study isolate | VYYIYDTGRSSSYFY | ||
Sungri 96 | VYYIYDTGLSSSYYY | ||
Residue Analysis of Peptides Found in B Cells, MHC Class I, and MHC Class II | |||
8 | Nigeria 75/1 | 539VYYIYDTGRSSSYFYP554 | L547R, Y552F |
Study isolate | VYYIYDTGRSSSYFYP | ||
Sungri 96 | VYYIYDTGLSSSYYYP |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aziz, M.H.; Shabbir, M.Z.; Ali, M.M.; Asif, Z.; Ijaz, M.U. Immunoinformatics Approach for Epitope Mapping of Immunogenic Regions (N, F and H Gene) of Small Ruminant Morbillivirus and Its Comparative Analysis with Standard Vaccinal Strains for Effective Vaccine Development. Vaccines 2022, 10, 2179. https://doi.org/10.3390/vaccines10122179
Aziz MH, Shabbir MZ, Ali MM, Asif Z, Ijaz MU. Immunoinformatics Approach for Epitope Mapping of Immunogenic Regions (N, F and H Gene) of Small Ruminant Morbillivirus and Its Comparative Analysis with Standard Vaccinal Strains for Effective Vaccine Development. Vaccines. 2022; 10(12):2179. https://doi.org/10.3390/vaccines10122179
Chicago/Turabian StyleAziz, Muhammad Hasaan, Muhammad Zubair Shabbir, Muhammad Muddassir Ali, Zian Asif, and Muhammad Usman Ijaz. 2022. "Immunoinformatics Approach for Epitope Mapping of Immunogenic Regions (N, F and H Gene) of Small Ruminant Morbillivirus and Its Comparative Analysis with Standard Vaccinal Strains for Effective Vaccine Development" Vaccines 10, no. 12: 2179. https://doi.org/10.3390/vaccines10122179
APA StyleAziz, M. H., Shabbir, M. Z., Ali, M. M., Asif, Z., & Ijaz, M. U. (2022). Immunoinformatics Approach for Epitope Mapping of Immunogenic Regions (N, F and H Gene) of Small Ruminant Morbillivirus and Its Comparative Analysis with Standard Vaccinal Strains for Effective Vaccine Development. Vaccines, 10(12), 2179. https://doi.org/10.3390/vaccines10122179