The Candidate Antigens to Achieving an Effective Vaccine against Staphylococcus aureus
Abstract
:1. Introduction
2. Immunity to S. aureus
3. S. aureus Vaccine Development
On-Going Clinical Human Vaccine Trials
Vaccine Candidate | Antigens | Company | Clinical Trials | Adjuvant | References |
---|---|---|---|---|---|
StaphVax | CP5 & CP8 | Nabi | Failed phase III | No adjuvant | [25,31,32] |
V710 | IsdB | Merck | Failed phase III | No adjuvant | [34,35] |
SA75 | Whole cell vaccine | Vaccine Research International | Phase I | No adjuvant | [36] |
SA4Ag | ClfA, MntC, CP5 & CP8 | Pfizer | Phase IIb | No adjuvant | [31,36,37,38,39,40] |
GSK2392103A | CP5, CP8, tetanus toxoid, mutant forms alpha-hemolysin, and ClfA | GSK | Phase I | AS03B | [41,42,43,44,45] |
NDV-3 | Als3p of the Candida albicans that has sequence and structural homology with Eap, GST-Can, His-Clf on S. aureus | NovaDigm Therapeutics | Phase II | Aluminum hydroxide | [46,47] |
4c-Staph | Hla, FhuD2 and Csa1A, and EsxAB | Novartis | Preclinical | TLR7-dependent | [48,49,50] |
STEBVAX | SEB | Integrated Bio-Therapeutic | Phase I | Alhydrogel | [51,52,53,54] |
Pentastaph | StaphVax + wall teichoic acid, PVL (rLukS-PV/rAT) and Hla | GlaxoSmithKline | Phase I/II | No adjuvant | [36,55] |
4. Virulence Factors of S. aureus
4.1. Capsules
4.2. Protein A
4.3. Adhesins
4.4. Toxins
4.4.1. Pore-Forming Toxins
4.4.2. Superantigens (SAgs)
4.5. Enzymes
References | Current Clinical Trial | Failed Vaccine | Function | Most Important | Antigen |
---|---|---|---|---|---|
[59,60,61,62,63,64,65] | SA4Ag, SA3Ag, Pentastaph and GSK2392103A. | StaphVax | Polysaccharide | CP5 & CP8 | CPs |
[87,88,89] | Surface Protein | FnBPA & FnBPB | FnBP | ||
[73,74,75,76] | SA4Ag, SA3Ag and GSK2392103A. | Surface Protein | ClfA & ClfB | Clf | |
[77,78,79] | Surface Protein | SdrC & SdrD | Sdr | ||
[80,81,82] | Surface Protein | CNA | CNA | ||
[83,84,85] | V710 | Surface Protein | IsdB, IsdA | Isd | |
[90] | Surface Protein | EbpS | |||
[89,91,92,93,94] | SA4Ag | Transporter Protein | MntC | Mnt | |
[95,96,97] | 4c-staph | Extracellular Protein | EsxA& EsxB | ESS | |
[99,100] | 4c-staph | Toxin | Hla | Hla | |
[101,102] | Toxin | LukS, LukF | PVL | ||
[98,101,102,103,104] | Toxin | Delta Hemolysin | PSM | ||
[113,114,115] | Toxin | ETA, ETB & ETD | exfoliative | ||
[109,110,111,112] | STEBVax | Toxin | Enterotoxins, TSST | SAgs | |
[116,117,118] | Enzyme | SspA, SspB & Aur | Protease | ||
[128] | Enzyme | Hyaluronidases | |||
[129] | Enzyme | Catalase | |||
[130] | Enzyme | Coagulase | |||
[131] | Enzyme | Penicillinase | |||
[132] | Enzyme | Staphylokinase | |||
[120,121,122] | Enzyme | SAL1 & SAL2 | Lipase | ||
[123,124,125,126] | Enzyme | FAME | Fatty acid modifying enzyme | ||
[124,127] | Enzyme | AdsA | Nucleotidase |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lowy, F. Staphylococcus aureus infections. N. Engl. J. Med. 1998, 339, 520–532. [Google Scholar] [CrossRef]
- Brook, I.; Frazier, E.H. Clinical features and aerobic and anaerobic microbiological characteristics of cellulitis. Arch. Surg. 1995, 130, 786–792. [Google Scholar] [CrossRef]
- Diekema, D.; Pfaller, M.; Schmitz, F.; Smayevsky, J.; Bell, J.; Jones, R.; Beach, M. Survey of infections due to Staphylococcus species: Frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin. Infect. Dis. 2001, 32 (Suppl. S2), S114–S132. [Google Scholar]
- Spellberg, B.; Daum, R. (Eds.) Development of a Vaccine against Staphylococcus aureus. Seminars in Immunopathology; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Wisplinghoff, H.; Bischoff, T.; Tallent, S.M.; Seifert, H.; Wenzel, R.P.; Edmond, M.B. Nosocomial bloodstream infections in US hospitals: Analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 2004, 39, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.-Y.; Bu, R.; Zhang, Q.; Liang, S.; Wu, J.; Liu, X.-G.Z.S.-W.; Cai, G.-Y.; Chen, X.-M. Clinical, pathological, and prognostic characteristics of glomerulonephritis related to staphylococcal infection. Medicine 2016, 95, e3386. [Google Scholar] [CrossRef]
- Scheuch, M.; von Rheinbaben, S.F.; Kabisch, A.; Engeßer, J.; Ahrendt, S.; Dabers, T.; Kohler, C.; Holtfreter, S.; Bröker, B.M.; Stracke, S. Staphylococcus aureus colonization in hemodialysis patients: A prospective 25 months observational study. BMC Nephrol. 2019, 20, 153. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin. Infect. Dis. 2011, 52, e18–e55. [Google Scholar] [CrossRef] [Green Version]
- Del Rio, A.; Cervera, C.; Moreno, A.; Moreillon, P.; Miró, J.M. Patients at risk of complications of Staphylococcus aureus bloodstream infection. Clin. Infect. Dis. 2009, 48 (Suppl. S4), S246–S253. [Google Scholar] [CrossRef] [Green Version]
- Harkins, C.P.; Pichon, B.; Doumith, M.; Parkhill, J.; Westh, H.; Tomasz, A.; de Lencastre, H.; Bentley, S.D.; Kearns, A.M.; Holden, M.T.G. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol. 2017, 18, 130. [Google Scholar] [CrossRef] [Green Version]
- Kurlenda, J.; Grinholc, M.; Jasek, K.; Wegrzyn, G. RAPD typing of methicillin-resistant Staphylococcus aureus: A 7-year experience in a Polish hospital. Med. Sci. Monit. 2007, 13, MT13–MT18. [Google Scholar]
- Kurlenda, J.; Grinholc, M.; Krzysztoń-Russjan, J.; Wiśniewska, K. Epidemiological investigation of nosocomial outbreak of staphylococcal skin diseases in neonatal ward. Antonie Van Leeuwenhoek 2009, 95, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Plata, K.; Rosato, A.E.; Wegrzyn, G. Staphylococcus aureus as an infectious agent: Overview of biochemistry and molecular genetics of its pathogenicity. Acta Biochim. Pol. 2009, 56, 597–612. [Google Scholar] [CrossRef] [PubMed]
- Proctor, R. Recent developments for Staphylococcus aureus vaccines: Clinical and basic science challenges. Eur. Cell Mater. 2015, 30, 315–326. [Google Scholar] [CrossRef]
- Proctor, R.A. Challenges for a universal Staphylococcus aureus vaccine. Clin. Infect. Dis. 2012, 54, 1179–1186. [Google Scholar] [CrossRef] [Green Version]
- San Sit, P.; Teh, C.S.J.; Idris, N.; Sam, I.-C.; Omar, S.F.S.; Sulaiman, H.; Thong, K.L.; Kamarulzaman, A.; Ponnampalavanar, S. Prevalence of methicillin-resistant Staphylococcus aureus (MRSA) infection and the molecular characteristics of MRSA bacteraemia over a two-year period in a tertiary teaching hospital in Malaysia. BMC Infect. Dis. 2017, 17, 274. [Google Scholar]
- Wilke, M.S.; Lovering, A.L.; Strynadka, N.C. β-Lactam antibiotic resistance: A current structural perspective. Curr. Opin. Microbiol. 2005, 8, 525–533. [Google Scholar] [CrossRef]
- Poorabbas, B.; Mardaneh, J.; Rezaei, Z.; Kalani, M.; Pouladfar, G.; Alami, M.H.; Soltani, J.; Shamsi-Zadeh, A.; Abdoli-Oskooi, S.; Saffar, M.J.; et al. Nosocomial Infections: Multicenter surveillance of antimicrobial resistance profile of Staphylococcus aureus and Gram negative rods isolated from blood and other sterile body fluids in Iran. Iran. J. Microbiol. 2015, 7, 127. [Google Scholar]
- Harro, J.M.; Peters, B.M.; O’May, G.A.; Archer, N.; Kerns, P.; Prabhakara, R.; Shirtliff, M.E. Vaccine development in Staphylococcus aureus: Taking the biofilm phenotype into consideration. FEMS Immunol. Med. Microbiol. 2010, 59, 306–323. [Google Scholar] [CrossRef] [Green Version]
- Middleton, J.R. Staphylococcus aureus antigens and challenges in vaccine development. Expert Rev. Vaccines 2008, 7, 805–815. [Google Scholar] [CrossRef]
- Schaffer, A.C.; Lee, J.C. Vaccination and passive immunisation against Staphylococcus aureus. Int. J. Antimicrob. Agents 2008, 32, S71–S78. [Google Scholar] [CrossRef]
- Suaya, J.A.; Mera, R.M.; Cassidy, A.; O’Hara, P.; Amrine-Madsen, H.; Burstin, S.; Miller, L.G. Incidence and cost of hospitalizations associated with Staphylococcus aureus skin and soft tissue infections in the United States from 2001 through 2009. BMC Infect. Dis. 2014, 14, 296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fournier, B.; Philpott, D.J. Recognition of Staphylococcus aureus by the innate immune system. Clin. Microbiol. Rev. 2005, 18, 521–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karauzum, H.; Datta, S.K. Adaptive immunity against Staphylococcus aureus. Staphylococcus Aureus 2016, 409, 419–439. [Google Scholar]
- Anderson, A.S.; Miller, A.A.; Donald, R.G.; Scully, I.L.; Nanra, J.S.; Cooper, D.; Jansen, K.U. Development of a multicomponent Staphylococcus aureus vaccine designed to counter multiple bacterial virulence factors. Hum. Vaccines Immunother. 2012, 8, 1585–1594. [Google Scholar] [CrossRef] [Green Version]
- Strindelius, L.; Wikingsson, L.D.; Sjöholm, I. Extracellular antigens from Salmonella enteritidis induce effective immune response in mice after oral vaccination. Infect. Immun. 2002, 70, 1434–1442. [Google Scholar] [CrossRef] [Green Version]
- Parker, D.; Ryan, C.L.; Alonzo, I.I.I.F.; Torres, V.J.; Planet, P.J.; Prince, A.S. CD4+ T cells promote the pathogenesis of Staphylococcus aureus pneumonia. J. Infect. Dis. 2015, 211, 835–845. [Google Scholar] [CrossRef] [Green Version]
- Stapleton, M.R.; Wright, L.; Clarke, S.R.; Moseby, H.; Tarkowski, A.; Vendrengh, M.; Foster, S.J. Identification of conserved antigens from staphylococcal and streptococcal pathogens. J. Med. Microbiol. 2012, 61, 766–779. [Google Scholar] [CrossRef] [Green Version]
- Merriman, J.A.; Schlievert, P.M. Are we close to a vaccination against Staphylococcus aureus? Future Microbiol. 2014, 9, 717–720. [Google Scholar] [CrossRef]
- Spaulding, A.R.; Salgado-Pabón, W.; Merriman, J.A.; Stach, C.S.; Ji, Y.; Gillman, A.N.; Peterson, M.L.; Schlievert, P.M. Vaccination against Staphylococcus aureus pneumonia. J. Infect. Dis. 2014, 209, 1955–1962. [Google Scholar] [CrossRef] [Green Version]
- Jansen, K.U.; Girgenti, D.Q.; Scully, I.L.; Anderson, A.S. Vaccine review:“Staphyloccocus aureus vaccines: Problems and prospects”. Vaccine 2013, 31, 2723–2730. [Google Scholar] [CrossRef]
- Stach, C.S.; Vu, B.G.; Merriman, J.A.; Herrera, A.; Cahill, M.P.; Schlievert, P.M.; Salgado-Pabon, W. Novel tissue level effects of the Staphylococcus aureus enterotoxin gene cluster are essential for infective endocarditis. PLoS ONE 2016, 11, e0154762. [Google Scholar] [CrossRef] [PubMed]
- Harro, C.D.; Betts, R.F.; Hartzel, J.S.; Onorato, M.T.; Lipka, J.; Smugar, S.S.; Kartsonis, N.A. The immunogenicity and safety of different formulations of a novel Staphylococcus aureus vaccine (V710): Results of two Phase I studies. Vaccine 2012, 30, 1729–1736. [Google Scholar] [CrossRef] [PubMed]
- McNeely, T.B.; Shah, N.A.; Fridman, A.; Joshi, A.; Hartzel, J.S.; Keshari, R.S.; Lupu, F.; DiNubile, M.J. Mortality among recipients of the Merck V710 Staphylococcus aureus vaccine after postoperative S. aureus infections: An analysis of possible contributing host factors. Hum. Vaccines Immunother. 2014, 10, 3513–3516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paling, F.P.; Olsen, K.; Ohneberg, K.; Wolkewitz, M.; Fowler, V.G., Jr.; DiNubile, M.J.; Jafri, H.S.; Sifakis, F.; Bonten, M.J.M.; Harbarth, S.J.; et al. Risk prediction for Staphylococcus aureus surgical site infection following cardiothoracic surgery; A secondary analysis of the V710-P003 trial. PLoS ONE 2018, 13, e0193445. [Google Scholar] [CrossRef] [PubMed]
- Giersing, B.K.; Dastgheyb, S.S.; Modjarrad, K.; Moorthy, V. Status of vaccine research and development of vaccines for Staphylococcus aureus. Vaccine 2016, 34, 2962–2966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scully, I.L.; Liberator, P.A.; Jansen, K.U.; Anderson, A.S. Covering all the bases: Preclinical development of an effective Staphylococcus aureus vaccine. Front. Immunol. 2014, 5, 109. [Google Scholar] [CrossRef] [Green Version]
- Dupont, C.D.; Scully, I.L.; Zimnisky, R.M.; Monian, B.; Rossitto, C.P.; O’Connell, E.B.; Jansen, K.U.; Anderson, A.S.; Love, J.C. Two vaccines for Staphylococcus aureus induce a B-cell-mediated immune response. MSphere 2018, 3, e00217-18. [Google Scholar] [CrossRef] [Green Version]
- Creech, C.B.; Frenck, R.W.; Fiquet, A.; Feldman, R.; Kankam, M.K.; Pathirana, S.; Baber, J.; Radley, D.; Cooper, D.; Eiden, J.; et al. (Eds.) Persistence of Immune Responses through 36 Months in Healthy Adults after Vaccination with a Novel Staphylococcus Aureus 4-Antigen Vaccine (SA4Ag). Open Forum Infectious Diseases; Oxford University Press: Oxford, MS, USA, 2020. [Google Scholar]
- Inoue, M.; Yonemura, T.; Baber, J.; Shoji, Y.; Aizawa, M.; Cooper, D.; Eiden, J.; Gruber, W.C.; Jansen, K.U.; Anderson, A.S.; et al. Safety, tolerability, and immunogenicity of a novel 4-antigen Staphylococcus aureus vaccine (SA4Ag) in healthy Japanese adults. Hum. Vaccines Immunother. 2018, 14, 2682–2691. [Google Scholar] [CrossRef]
- Scully, I.L.; Timofeyeva, Y.; Illenberger, A.; Lu, P.; Liberator, P.A.; Jansen, K.U.; Anderson, A.S. Performance of a Four-Antigen Staphylococcus aureus Vaccine in Preclinical Models of Invasive S. aureus Disease. Microorganisms 2021, 9, 177. [Google Scholar] [CrossRef]
- Bhakdi, S.; Tranum-Jensen, J. Alpha-toxin of Staphylococcus aureus. Microbiol. Rev. 1991, 55, 733–751. [Google Scholar] [CrossRef]
- Levy, J.; Licini, L.; Haelterman, E.; Moris, P.; Lestrate, P.; Damaso, S.; Van Belle, P.; Boutriau, D. Safety and immunogenicity of an investigational 4-component Staphylococcus aureus vaccine with or without AS03B adjuvant: Results of a randomized phase I trial. Hum. Vaccines Immunother. 2015, 11, 620–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wardenburg, J.B.; Schneewind, O. Vaccine protection against Staphylococcus aureus pneumonia. J. Exp. Med. 2008, 205, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Watts, A.; Ke, D.; Wang, Q.; Pillay, A.; Nicholson-Weller, A.; Lee, J.C. Staphylococcus aureus strains that express serotype 5 or serotype 8 capsular polysaccharides differ in virulence. Infect. Immun. 2005, 73, 3502–3511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, C.S.; White, C.J.; Ibrahim, A.S.; Filler, S.G.; Fu, Y.; Yeaman, M.R.; Edwards, J.E., Jr.; Hennessey, J.P., Jr. NDV-3, a recombinant alum-adjuvanted vaccine for Candida and Staphylococcus aureus, is safe and immunogenic in healthy adults. Vaccine 2012, 30, 7594–7600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeaman, M.R.; Filler, S.G.; Chaili, S.; Barr, K.; Wang, H.; Kupferwasser, D.; Fu, Y.; Schmidt, C.S.; Xiong, Y.Q.; Laera, D.; et al. Mechanisms of NDV-3 vaccine efficacy in MRSA skin versus invasive infection. Proc. Natl. Acad. Sci. USA 2014, 111, E5555–E5563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancini, F.; Monaci, E.; Lofano, G.; Torre, A.; Bacconi, M.; Tavarini, S.; Sammicheli, C.; Arcidiacono, L.; Galletti, B.; Laera, D.; et al. One dose of Staphylococcus aureus 4C-staph vaccine formulated with a novel TLR7-dependent adjuvant rapidly protects mice through antibodies, effector CD4+ T cells, and IL-17A. PLoS ONE 2016, 11, e0147767. [Google Scholar] [CrossRef]
- Torre, A.; Bacconi, M.; Sammicheli, C.; Galletti, B.; Laera, D.; Fontana, M.R.; Grandi, G.; De Gregorio, E.; Bagnoli, F.; Nuti, S.; et al. Four-component Staphylococcus aureus vaccine 4C-staph enhances Fcγ receptor expression in neutrophils and monocytes and mitigates S. aureus infection in neutropenic mice. Infect. Immun. 2015, 83, 3157–3163. [Google Scholar] [CrossRef] [Green Version]
- Wacker, M.; Wang, L.; Kowarik, M.; Dowd, M.; Lipowsky, G.; Faridmoayer, A.; Shields, K.; Park, S.; Alaimo, C.; Kelley, K.A.; et al. Prevention of Staphylococcus aureus infections by glycoprotein vaccines synthesized in Escherichia coli. J. Infect. Dis. 2014, 209, 1551–1561. [Google Scholar] [CrossRef] [Green Version]
- Bavari, S.; Dyas, B.; Ulrich, R.G. Superantigen vaccines: A comparative study of genetically attenuated receptor-binding mutants of staphylococcal enterotoxin A. J. Infect. Dis. 1996, 174, 338–345. [Google Scholar] [CrossRef] [Green Version]
- Boles, J.W.; Pitt, M.L.M.; LeClaire, R.D.; Gibbs, P.H.; Torres, E.; Dyas, B.; Ulrich, R.G.; Bavari, S. Generation of protective immunity by inactivated recombinant staphylococcal enterotoxin B vaccine in nonhuman primates and identification of correlates of immunity. Clin. Immunol. 2003, 108, 51–59. [Google Scholar] [CrossRef]
- Morefield, G.L.; Hawkins, L.D.; Ishizaka, S.T.; Kissner, T.L.; Ulrich, R.G. Synthetic Toll-like receptor 4 agonist enhances vaccine efficacy in an experimental model of toxic shock syndrome. Clin. Vaccine Immunol. 2007, 14, 1499–1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulrich, R.G.; Olson, M.A.; Bavari, S. Development of engineered vaccines effective against structurally related bacterial superantigens. Vaccine 1998, 16, 1857–1864. [Google Scholar] [CrossRef]
- Huda, T.; Nair, H.; Theodoratou, E.; Zgaga, L.; Fattom, A.; El Arifeen, S.; Rubens, C.; Campbell, H.; Rudan, I. An evaluation of the emerging vaccines and immunotherapy against staphylococcal pneumonia in children. BMC Public Health 2011, 11, S27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasparini, R.; Tregnaghi, M.; Keshavan, P.; Ypma, E.; Han, L.; Smolenov, I. Safety and immunogenicity of a quadrivalent meningococcal conjugate vaccine and commonly administered vaccines after coadministration. Pediatric Infect. Dis. J. 2016, 35, 81–93. [Google Scholar] [CrossRef]
- Chen, W. Current advances and challenges in the development of Acinetobacter vaccines. Hum. Vaccines Immunother. 2015, 11, 2495–2500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiarella, P.; Massi, E.; De Robertis, M.; Fazio, V.M.; Signori, E. Recent advances in epitope design for immunotherapy of cancer. Recent Pat. Anti-Cancer Drug Discov. 2009, 4, 227–240. [Google Scholar] [CrossRef]
- Gilbert, I. Dissociation in an encapsulated staphylococcus. J. Bacteriol. 1931, 21, 157–160. [Google Scholar] [CrossRef] [Green Version]
- O’Riordan, K.; Lee, J.C. Staphylococcus aureus capsular polysaccharides. Clin. Microbiol. Rev. 2004, 17, 218–234. [Google Scholar] [CrossRef] [Green Version]
- Crossley, K.B.; Jefferson, K.K.; Archer, G.L.; Fowler, V.G., Jr. Staphylococci in Human Disease; Wiley-Blacjwell: Hoboken, NJ, USA, 2009; pp. 109–204. [Google Scholar]
- Ekstedt, R.D. Studies on Immunity to Staphylococcal Infection in Mice: I. Effect of Dosage, Viability, and Interval between Immunization and Challenge on Resistance to Infection following Injection of Whole Cell Vaccines. J. Infect. Dis. 1963, 112, 143–151. [Google Scholar] [CrossRef]
- Fisher, M.; Devlin, H.; Erlandson, A. A new staphylococcal antigen. Its preparation and immunizing activity against experimental infections. Nature 1963, 199, 1074–1075. [Google Scholar] [CrossRef]
- Fisher, S. A heat stable protective staphylococcal antigen. Aust. J. Exp. Biol. Med. Sci. 1960, 38, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, J.; Lee, J.C. Antibodies to capsular polysaccharides are not protective against experimental Staphylococcus aureus endocarditis. Infect. Immun. 1995, 63, 375–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fattom, A.; Schneerson, R.; Watson, D.; Karakawa, W.; Fitzgerald, D.; Pastan, I.; Li, X.; Shiloach, J.; Bryla, D.A.; Robbins, J.B. Laboratory and clinical evaluation of conjugate vaccines composed of Staphylococcus aureus type 5 and type 8 capsular polysaccharides bound to Pseudomonas aeruginosa recombinant exoprotein A. Infect. Immun. 1993, 61, 1023–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fattom, A.; Schneerson, R.; Szu, S.; Vann, W.; Shiloach, J.; Karakawa, W.; Robbins, J.B. Synthesis and immunologic properties in mice of vaccines composed of Staphylococcus aureus type 5 and type 8 capsular polysaccharides conjugated to Pseudomonas aeruginosa exotoxin A. Infect. Immun. 1990, 58, 2367–2374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falugi, F.; Kim, H.K.; Missiakas, D.M.; Schneewind, O. Role of protein A in the evasion of host adaptive immune responses by Staphylococcus aureus. MBio 2013, 4, e00575-13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, S.R.; Foster, S.J. Surface adhesins of Staphylococcus aureus. Adv. Microb. Physiol. 2006, 51, 187–224. [Google Scholar]
- Foster, T.J.; Geoghegan, J.A.; Ganesh, V.K.; Höök, M. Adhesion, invasion and evasion: The many functions of the surface proteins of Staphylococcus aureus. Nat. Rev. Microbiol. 2014, 12, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Ortega, M.P.; Hagiwara, T.; Watanabe, H.; Sakiyama, T. Factors affecting adhesion of Staphylococcus epidermidis to stainless steel surface. Jap. J. Food Eng. 2008, 9, 251–259. [Google Scholar] [CrossRef]
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [Green Version]
- Hair, P.S.; Ward, M.D.; Semmes, O.J.; Foster, T.J.; Cunnion, K.M. Staphylococcus aureus clumping factor A binds to complement regulator factor I and increases factor I cleavage of C3b. J. Infect. Dis. 2008, 198, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Loughman, A.; Fitzgerald, J.R.; Brennan, M.P.; Higgins, J.; Downer, R.; Cox, D.; Foster, T.J. Roles for fibrinogen, immunoglobulin and complement in platelet activation promoted by Staphylococcus aureus clumping factor A. Mol. Microbiol. 2005, 57, 804–818. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, D.P.; Nanavaty, T.; McDevitt, D.; Gurusiddappa, S.; Höök, M.; Foster, T.J. The fibrinogen-binding MSCRAMM (clumping factor) of Staphylococcus aureus has a Ca2+-dependent inhibitory site. J. Biol. Chem. 1998, 273, 6821–6829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, L.; Kerrigan, S.W.; Kaw, G.; Hogan, M.; Penadés, J.; Litt, D.; Fitzgerald, D.J.; Foster, T.J.; Cox, D. Multiple mechanisms for the activation of human platelet aggregation by Staphylococcus aureus: Roles for the clumping factors ClfA and ClfB, the serine–aspartate repeat protein SdrE and protein A. Mol. Microbiol. 2002, 44, 1033–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabat, A.; Melles, D.C.; Martirosian, G.; Grundmann, H.; van Belkum, A.; Hryniewicz, W. Distribution of the serine-aspartate repeat protein-encoding sdr genes among nasal-carriage and invasive Staphylococcus aureus strains. J. Clin. Microbiol. 2006, 44, 1135–1138. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, J.R.; Foster, T.J.; Cox, D. The interaction of bacterial pathogens with platelets. Nat. Rev. Microbiol. 2006, 4, 445–457. [Google Scholar] [CrossRef]
- Barbu, E.M.; Mackenzie, C.; Foster, T.J.; Höök, M. SdrC induces staphylococcal biofilm formation through a homophilic interaction. Mol. Microbiol. 2014, 94, 172–185. [Google Scholar] [CrossRef]
- Patti, J.M.; Bremell, T.; Krajewska-Pietrasik, D.; Abdelnour, A.; Tarkowski, A.; Rydén, C.; Höök, M. The Staphylococcus aureus collagen adhesin is a virulence determinant in experimental septic arthritis. Infect. Immun. 1994, 62, 152–161. [Google Scholar] [CrossRef] [Green Version]
- Snodgrass, J.L.; Mohamed, N.; Ross, J.M.; Sau, S.; Lee, C.Y.; Smeltzer, M.S. Functional analysis of the Staphylococcus aureus collagen adhesin B domain. Infect. Immun. 1999, 67, 3952–3959. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Rivas, J.M.; Brown, E.L.; Liang, X.; Höök, M. Virulence potential of the staphylococcal adhesin CNA in experimental arthritis is determined by its affinity for collagen. J. Infect. Dis. 2004, 189, 2323–2333. [Google Scholar] [CrossRef]
- Tiedemann, M.T.; Muryoi, N.; Heinrichs, D.E.; Stillman, M.J. Iron Acquisition by the Haem-Binding Isd Proteins in Staphylococcus Aureus: Studies of the Mechanism Using Magnetic Circular Dichroism; Portland Press Ltd.: London, UK, 2008. [Google Scholar]
- Hammer, N.D.; Skaar, E.P. Molecular mechanisms of Staphylococcus aureus iron acquisition. Annu. Rev. Microbiol. 2011, 65, 129–147. [Google Scholar] [CrossRef] [Green Version]
- Mazmanian, S.K.; Skaar, E.P.; Gaspar, A.H.; Humayun, M.; Gornicki, P.; Jelenska, J.; Joachmiak, A.; Missiakas, D.M.; Schneewind, O. Passage of heme-iron across the envelope of Staphylococcus aureus. Science 2003, 299, 906–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuklin, N.A.; Clark, D.J.; Secore, S.; Cook, J.; Cope, L.D.; McNeely, T.; Noble, L.; Brown, M.J.; Zorman, J.K.; Wang, X.M.; et al. A novel Staphylococcus aureus vaccine: Iron surface determinant B induces rapid antibody responses in rhesus macaques and specific increased survival in a murine S. aureus sepsis model. Infect. Immun. 2006, 74, 2215–2223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heilmann, C.; Niemann, S.; Sinha, B.; Hermann, M.; Kehrel, B.E.; Peters, G. Staphylococcus aureus Fibronectin-binding protein (FnBP)—Mediated adherence to platelets, and aggregation of platelets induced by FnBPA but not by FnBPB. J. Infect. Dis. 2004, 190, 321–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinji, H.; Yosizawa, Y.; Tajima, A.; Iwase, T.; Sugimoto, S.; Seki, K.; Mizunoe, Y. Role of fibronectin-binding proteins A and B in in vitro cellular infections and in vivo septic infections by Staphylococcus aureus. Infect. Immun. 2011, 79, 2215–2223. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Xiong, Z.-Y.; Li, H.-P.; Zheng, Y.-L.; Jiang, Y.-Q. An immunogenicity study of a newly fusion protein Cna-FnBP vaccinated against Staphylococcus aureus infections in a mice model. Vaccine 2006, 24, 4830–4837. [Google Scholar] [CrossRef]
- Downer, R.; Roche, F.; Park, P.W.; Mecham, R.P.; Foster, T.J. The elastin-binding protein of Staphylococcus aureus (EbpS) is expressed at the cell surface as an integral membrane protein and not as a cell wall-associated protein. J. Biol. Chem. 2002, 277, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Anderson, A.S.; Scully, I.L.; Timofeyeva, Y.; Murphy, E.; McNeil, L.K.; Mininni, T.; Nuñez, L.; Carriere, M.; Singer, C.; Dilts, D.A.; et al. Staphylococcus aureus manganese transport protein C is a highly conserved cell surface protein that elicits protective immunity against S. aureus and Staphylococcus epidermidis. J. Infect. Dis. 2012, 205, 1688–1696. [Google Scholar] [CrossRef]
- Yang, H.-J.; Zhang, J.-Y.; Wei, C.; Yang, L.-Y.; Zuo, Q.-F.; Zhuang, Y.; Feng, Y.-J.; Srinivas, S.; Zeng, H.; Zou, Q.-M. Immunisation with immunodominant linear B cell epitopes vaccine of manganese transport protein C confers protection against Staphylococcus aureus infection. PLoS ONE 2016, 11, e0149638. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Yao, D.; Yu, S.; Wang, X.; Li, X.; Wang, M.; Liu, S.; Feng, Z.; Chen, X.; Li, W.; et al. Protective humoral and CD4+ T cellular immune responses of Staphylococcus aureus vaccine MntC in a murine peritonitis model. Sci. Rep. 2018, 8, 3580. [Google Scholar] [CrossRef]
- Frenck, R.W., Jr.; Creech, C.B.; Sheldon, E.A.; Seiden, D.J.; Kankam, M.K.; Baber, J.; Zito, E.; Hubler, R.; Eiden, J.; Seversh, J.M.; et al. Safety, tolerability, and immunogenicity of a 4-antigen Staphylococcus aureus vaccine (SA4Ag): Results from a first-in-human randomised, placebo-controlled phase 1/2 study. Vaccine 2017, 35, 375–384. [Google Scholar] [CrossRef]
- Anderson, M.; Chen, Y.-H.; Butler, E.K.; Missiakas, D.M. EsaD, a secretion factor for the Ess pathway in Staphylococcus aureus. J. Bacteriol. 2011, 193, 1583–1589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, M.; Aly, K.A.; Chen, Y.H.; Missiakas, D. Secretion of atypical protein substrates by the ESAT-6 S ecretion S ystem of S taphylococcus aureus. Mol. Microbiol. 2013, 90, 734–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burts, M.L.; DeDent, A.C.; Missiakas, D.M. EsaC substrate for the ESAT-6 secretion pathway and its role in persistent infections of Staphylococcus aureus. Mol. Microbiol. 2008, 69, 736–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grumann, D.; Nübel, U.; Bröker, B.M. Staphylococcus aureus toxins–Their functions and genetics. Infect. Genet. Evol. 2014, 21, 583–592. [Google Scholar] [CrossRef] [Green Version]
- Otto, M. Staphylococcus aureus toxins. Curr. Opin. Microbiol. 2014, 17, 32–37. [Google Scholar] [CrossRef] [Green Version]
- Berube, B.J.; Wardenburg, J.B. Staphylococcus aureus α-toxin: Nearly a century of intrigue. Toxins 2013, 5, 1140–1166. [Google Scholar] [CrossRef] [Green Version]
- Genestier, A.-L.; Michallet, M.-C.; Prévost, G.; Bellot, G.; Chalabreysse, L.; Peyrol, S.; Thivolet, F.; Etienne, J.; Lina, G.; Vallette, F.; et al. Staphylococcus aureus Panton-Valentine leukocidin directly targets mitochondria and induces Bax-independent apoptosis of human neutrophils. J. Clin. Investig. 2005, 115, 3117–3127. [Google Scholar] [CrossRef]
- Diep, B.A.; Chan, L.; Tattevin, P.; Kajikawa, O.; Martin, T.R.; Basuino, L.; Mai, T.T.; Marbach, H.; Braughton, K.R.; Whitney, A.R.; et al. Polymorphonuclear leukocytes mediate Staphylococcus aureus Panton-Valentine leukocidin-induced lung inflammation and injury. Proc. Natl. Acad. Sci. USA 2010, 107, 5587–5592. [Google Scholar] [CrossRef] [Green Version]
- Löffler, B.; Hussain, M.; Grundmeier, M.; Brück, M.; Holzinger, D.; Varga, G.; Roth, J.; Kahl, B.; Proctor, R.A.; Peters, G. Staphylococcus aureus panton-valentine leukocidin is a very potent cytotoxic factor for human neutrophils. PLoS Pathog. 2010, 6, e1000715. [Google Scholar] [CrossRef]
- Voyich, J.M.; Otto, M.; Mathema, B.; Braughton, K.R.; Whitney, A.R.; Welty, D.; Long, R.D.; Dorward, D.W.; Gardner, D.J.; Lina, G.; et al. Is Panton-Valentine leukocidin the major virulence determinant in community-associated methicillin-resistant Staphylococcus aureus disease? J. Infect. Dis. 2006, 194, 1761–1770. [Google Scholar] [CrossRef] [Green Version]
- Kaito, C.; Saito, Y.; Nagano, G.; Ikuo, M.; Omae, Y.; Hanada, Y.; Han, X.; Kuwahara-Arai, K.; Hishinuma, T.; Baba, T.; et al. Transcription and translation products of the cytolysin gene psm-mec on the mobile genetic element SCC mec regulate Staphylococcus aureus virulence. PLoS Pathog. 2011, 7, e1001267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holtfreter, S.; Broker, B. Staphylococcal superantigens: Do they play a role in sepsis. Arch. Immunol. Ther. Exp. 2005, 53, 13–27. [Google Scholar]
- Lina, G.; Bohach, G.A.; Nair, S.P.; Hiramatsu, K.; Jouvin-Marche, E.; Mariuzza, R. Standard nomenclature for the superantigens expressed by Staphylococcus. J. Infect. Dis. 2004, 189, 2334–2336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, D.; Chou, S.; Dauwalder, O.; Lina, G. Diversity in Staphylococcus aureus enterotoxins. Superantigens Superallergens 2007, 93, 24–41. [Google Scholar]
- Denayer, S.; Delbrassinne, L.; Nia, Y.; Botteldoorn, N. Food-borne outbreak investigation and molecular typing: High diversity of Staphylococcus aureus strains and importance of toxin detection. Toxins 2017, 9, 407. [Google Scholar] [CrossRef] [Green Version]
- Felix, B.; Vingadassalon, N.; Grout, J.; Hennekine, J.-A.; Guillier, L.; Auvray, F. Staphylococcus aureus strains associated with food poisoning outbreaks in France: Comparison of different molecular typing methods, including MLVA. Front. Microbiol. 2015, 6, 882. [Google Scholar]
- Martin, M.; Paul, D.; Orwin, M.; Schlievert, P. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 2000, 13, 16–34. [Google Scholar]
- Kulhankova, K.; King, J.; Salgado-Pabón, W. Staphylococcal toxic shock syndrome: Superantigen-mediated enhancement of endotoxin shock and adaptive immune suppression. Immunol. Res. 2014, 59, 182–187. [Google Scholar] [CrossRef]
- Bukowski, M.; Wladyka, B.; Dubin, G. Exfoliative toxins of Staphylococcus aureus. Toxins 2010, 2, 1148–1165. [Google Scholar] [CrossRef] [Green Version]
- Cribier, B.; Piemont, Y.; Grosshans, E. Staphylococcal scalded skin syndrome in adults: A clinical review illustrated with a new case. J. Am. Acad. Dermatol. 1994, 30, 319–324. [Google Scholar] [CrossRef]
- Levine, G.; Norden, C.W. Staphylococcal scalded-skin syndrome in an adult. N. Engl. J. Med. 1972, 287, 1339–1340. [Google Scholar] [CrossRef] [PubMed]
- Arvidson, S. Extracellular enzymes. Gram-Posit. Pathog. 2006, 39, 478–485. [Google Scholar]
- Karlsson, A.; Arvidson, S. Variation in extracellular protease production among clinical isolates of Staphylococcus aureus due to different levels of expression of the protease repressor sarA. Infect. Immun. 2002, 70, 4239–4246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, L.; Golonka, E.; Potempa, J.; Foster, S.J. The role and regulation of the extracellular proteases of Staphylococcus aureus. Microbiology 2004, 150, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Nickerson, N.; Ip, J.; Passos, D.T.; McGavin, M.J. Comparison of Staphopain A (ScpA) and B (SspB) precursor activation mechanisms reveals unique secretion kinetics of proSspB (Staphopain B), and a different interaction with its cognate Staphostatin, SspC. Mol. Microbiol. 2010, 75, 161–177. [Google Scholar] [CrossRef]
- Hu, C.; Xiong, N.; Zhang, Y.; Rayner, S.; Chen, S. Functional characterization of lipase in the pathogenesis of Staphylococcus aureus. Biochem. Biophys. Res. Commun. 2012, 419, 617–620. [Google Scholar] [CrossRef]
- Rollof, J.; Braconier, J.; Söderström, C.; Nilsson-Ehle, P. Interference of Staphylococcus aureus lipase with human granulocyte function. Eur. J. Clin. Microbiol. Infect. Dis. 1988, 7, 505–510. [Google Scholar] [CrossRef]
- Rollof, J.; Vinge, E.; Nilsson-Ehle, P.; Braconier, J. Aggregation of human granulocytes by Staphylococcus aureus lipase. J. Med. Microbiol. 1992, 36, 52–55. [Google Scholar] [CrossRef] [Green Version]
- Chamberlain, N.; Brueggemann, S. Characterisation and expression of fatty acid modifying enzyme produced by Staphylococcus epidermidis. J. Med. Microbiol. 1997, 46, 693–697. [Google Scholar] [CrossRef] [Green Version]
- Chamberlain, N.; Imanoel, B. Genetic regulation of fatty acid modifying enzyme from Staphylococcus aureus. J. Med. Microbiol. 1996, 44, 125–129. [Google Scholar] [CrossRef]
- Engler, H.; Kapral, F. The production of a bactericidal monoglyceride in staphylococcal abscesses. J. Med. Microbiol. 1992, 37, 238–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shryock, T.; Dye, E.; Kapral, F. The accumulation of bactericidal lipids in staphylococcal abscesses. J. Med. Microbiol. 1992, 36, 332–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, J.; Hart, J.; Albers, W.; Kapral, F. The production of fatty acid modifying enzyme (FAME) and lipase by various staphylococcal species. J. Med. Microbiol. 1992, 37, 232–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibberson, C.B.; Jones, C.L.; Singh, S.; Wise, M.C.; Hart, M.E.; Zurawski, D.V.; Horswill, A.R. Staphylococcus aureus hyaluronidase is a CodY-regulated virulence factor. Infect. Immun. 2014, 82, 4253–4264. [Google Scholar] [CrossRef] [Green Version]
- Mandell, G. Catalase, superoxide dismutase, and virulence of Staphylococcus aureus. In vitro and in vivo studies with emphasis on staphylococcal–leukocyte interaction. J. Clin. Investig. 1975, 55, 561–566. [Google Scholar] [CrossRef] [Green Version]
- McAdow, M.; Missiakas, D.M.; Schneewind, O. Staphylococcus aureus secretes coagulase and von Willebrand factor binding protein to modify the coagulation cascade and establish host infections. J. Innate Immun. 2012, 4, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Pollock, M. Origin and function of penicillinase: A problem in biochemical evolution. Br. Med. J. 1967, 4, 71. [Google Scholar] [CrossRef] [Green Version]
- Bokarewa, M.I.; Jin, T.; Tarkowski, A. Staphylococcus aureus: Staphylokinase. Int. J. Biochem. Cell Biol. 2006, 38, 504–509. [Google Scholar] [CrossRef]
- Fowler, V.G., Jr.; Proctor, R.A. Where does a S taphylococcus aureus vaccine stand? Clin. Microbiol. Infect. 2014, 20, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Peton, V.; Le Loir, Y. Staphylococcus aureus in veterinary medicine. Infect. Genet. Evol. 2014, 21, 602–615. [Google Scholar] [CrossRef]
- Delany, I.; Rappuoli, R.; De Gregorio, E. Vaccines for the 21st century. EMBO Mol. Med. 2014, 6, 708–720. [Google Scholar] [CrossRef]
- Sandi, N.A.; Wanahari, T.A.; MacPhillamy, I.; Salasia, S.I.O.; Mappakaya, B.A.; Kusumawati, A. Staphylococcus aureus vaccine candidate from MRSA Isolates: The prospect of a multivalent vaccine. Am. J. Infect. Dis. 2015, 11, 54. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.S.; Pietras, E.M.; Garcia, N.C.; Ramos, R.I.; Farzam, D.M.; Monroe, H.R.; Magorien, J.E.; Blauvelt, A.; Kolls, J.K.; Cheung, A.L.; et al. IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J. Clin. Investig. 2010, 120, 1762–1773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willerslev-Olsen, A.; Krejsgaard, T.; Lindahl, L.M.; Litvinov, I.V.; Fredholm, S.; Petersen, D.L.; Nastasi, C.; Gniadecki, R.; Mongan, N.P.; Sasseville, D.; et al. Staphylococcal enterotoxin A (SEA) stimulates STAT3 activation and IL-17 expression in cutaneous T-cell lymphoma. Blood J. Am. Soc. Hematol. 2016, 127, 1287–1296. [Google Scholar] [CrossRef] [PubMed]
- Pouladfar, K.G.; Kalani, M.; Faezi, S.; Pourmand, M.R.; Hasanzadeh, S.; Mafakher, L.; Aslania, M.M.; Mahdavi, M. Epitope-based immunoinformatics study of a novel Hla-MntC-SACOL0723 fusion protein from Staphylococcus aureus: Induction of multi-pattern immune responses. Mol. Immunol. 2019, 114, 88–99. [Google Scholar]
- Ahmadi, K.; Aslani, M.M.; Pouladfar, G.; Faezi, S.; Kalani, M.; Pourmand, M.R.; Pourmand, M.R.; Ghaedi, T.; Havaei, S.A.; Mahdavi, M. Preparation and preclinical evaluation of two novel Staphylococcus aureus capsular polysaccharide 5 and 8-fusion protein (Hla-MntC-SACOL0723) immunoconjugates. IUBMB Life 2020, 72, 226–236. [Google Scholar] [CrossRef]
- Begier, E.; Seiden, D.J.; Patton, M.; Zito, E.; Severs, J.; Cooper, D.; Eiden, J.; Gruber, W.C.; Jansen, K.U.; Anderson, A.S.; et al. SA4Ag, a 4-antigen Staphylococcus aureus vaccine, rapidly induces high levels of bacteria-killing antibodies. Vaccine 2017, 35, 1132–1139. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jahantigh, H.R.; Faezi, S.; Habibi, M.; Mahdavi, M.; Stufano, A.; Lovreglio, P.; Ahmadi, K. The Candidate Antigens to Achieving an Effective Vaccine against Staphylococcus aureus. Vaccines 2022, 10, 199. https://doi.org/10.3390/vaccines10020199
Jahantigh HR, Faezi S, Habibi M, Mahdavi M, Stufano A, Lovreglio P, Ahmadi K. The Candidate Antigens to Achieving an Effective Vaccine against Staphylococcus aureus. Vaccines. 2022; 10(2):199. https://doi.org/10.3390/vaccines10020199
Chicago/Turabian StyleJahantigh, Hamid Reza, Sobhan Faezi, Mehri Habibi, Mehdi Mahdavi, Angela Stufano, Piero Lovreglio, and Khadijeh Ahmadi. 2022. "The Candidate Antigens to Achieving an Effective Vaccine against Staphylococcus aureus" Vaccines 10, no. 2: 199. https://doi.org/10.3390/vaccines10020199
APA StyleJahantigh, H. R., Faezi, S., Habibi, M., Mahdavi, M., Stufano, A., Lovreglio, P., & Ahmadi, K. (2022). The Candidate Antigens to Achieving an Effective Vaccine against Staphylococcus aureus. Vaccines, 10(2), 199. https://doi.org/10.3390/vaccines10020199