Identification of Potential SARS-CoV-2 CD8+ T Cell Escape Mutants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acquisition of SARS-CoV-2 Epitope Data
2.2. Acquisition of SARS-CoV-2 Sequence Data
2.3. Identification of Epitope Mutants
2.4. Prediction of Peptide–HLA Binding Prediction
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rotondo, J.C.; Martini, F.; Maritati, M.; Mazziotta, C.; Di Mauro, G.; Lanzillotti, C.; Barp, N.; Gallerani, A.; Tognon, M.; Contini, C. SARS-CoV-2 infection: New molecular, phylogenetic, and pathogenetic Insights. Efficacy of current vaccines and the potential risk of variants. Viruses 2021, 13, 1687. [Google Scholar] [CrossRef] [PubMed]
- Abdool Karim, S.S.; de Oliveira, T. New SARS-CoV-2 variants—clinical, public health, and vaccine implications. N. Engl. J. Med. 2021, 384, 1866–1868. [Google Scholar] [CrossRef] [PubMed]
- Planas, D.; Saunders, N.; Maes, P.; Guivel-Benhassine, F.; Planchais, C.; Buchrieser, J.; Bolland, W.-H.; Porrot, F.; Staropoli, I.; Lemoine, F.; et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 2022, 602, 671–675. [Google Scholar] [CrossRef]
- Planas, D.; Bruel, T.; Grzelak, L.; Guivel-Benhassine, F.; Staropoli, I.; Porrot, F.; Planchais, C.; Buchrieser, J.; Rajah, M.M.; Bishop, E.; et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat. Med. 2021, 27, 917–924. [Google Scholar] [CrossRef]
- Quadeer, A.A.; Ahmed, S.F.; McKay, M.R. Landscape of epitopes targeted by T cells in 852 individuals recovered from COVID-19: Meta-analysis, immunoprevalence, and web platform. Cell Rep. Med. 2021, 2, 100312. [Google Scholar] [CrossRef] [PubMed]
- Tarke, A.; Sidney, J.; Methot, N.; Yu, E.D.; Zhang, Y.; Dan, J.M.; Goodwin, B.; Rubiro, P.; Sutherland, A.; Wang, E.; et al. Impact of SARS-CoV-2 variants on the total CD4+ and CD8+ T cell reactivity in infected or vaccinated individuals. Cell Rep. Med. 2021, 2, 100355. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Quadeer, A.A.; McKay, M.R. SARS-CoV-2 T cell responses elicited by COVID-19 vaccines or infection are expected to remain robust against Omicron. Viruses 2022, 14, 79. [Google Scholar] [CrossRef]
- Keeton, R.; Tincho, M.B.; Ngomti, A.; Baguma, R.; Benede, N.; Suzuki, A.; Khan, K.; Cele, S.; Bernstein, M.; Karim, F.; et al. T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature 2022, 603, 488–492. [Google Scholar] [CrossRef]
- Naranbhai, V.; Nathan, A.; Kaseke, C.; Berrios, C.; Khatri, A.; Choi, S.; Getz, M.A.; Tano-Menka, R.; Ofoman, O.; Gayton, A.; et al. T-cell reactivity to the SARS-CoV-2 Omicron variant is preserved in most but not all individuals. Cell 2022, 185, 1041–1051.E6. [Google Scholar] [CrossRef]
- Dolton, G.; Rius, C.; Hasan, M.S.; Wall, A.; Szomolay, B.; Behiry, E.; Whalley, T.; Southgate, J.; Fuller, A.; The COVID-19 Genomics UK (COG-UK) consortium; et al. Emergence of immune escape at dominant SARS-CoV-2 killer T-cell epitope. medRxiv 2021. preprint. [Google Scholar] [CrossRef]
- Agerer, B.; Koblischke, M.; Gudipati, V.; Montaño-Gutierrez, L.F.; Smyth, M.; Popa, A.; Genger, J.-W.; Endler, L.; Florian, D.M.; Mühlgrabner, V.; et al. SARS-CoV-2 mutations in MHC-I-restricted epitopes evade CD8+ T cell responses. Sci. Immunol. 2021, 6, eabg6461. [Google Scholar] [CrossRef] [PubMed]
- Rydyznski Moderbacher, C.; Ramirez, S.I.; Dan, J.M.; Grifoni, A.; Hastie, K.M.; Weiskopf, D.; Belanger, S.; Abbott, R.K.; Kim, C.; Choi, J.; et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell 2020, 183, 996–1012.e19. [Google Scholar] [CrossRef] [PubMed]
- Kalimuddin, S.; Tham, C.Y.L.; Qui, M.; de Alwis, R.; Sim, J.X.Y.; Lim, J.M.E.; Tan, H.-C.; Syenina, A.; Zhang, S.L.; Le Bert, N.; et al. Early T cell and binding antibody responses are associated with COVID-19 RNA vaccine efficacy onset. Med 2021, 2, 682–688.e4. [Google Scholar] [CrossRef] [PubMed]
- Moss, P. The T cell immune response against SARS-CoV-2. Nat. Immunol. 2022, 23, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Bushman, M.; Kahn, R.; Taylor, B.P.; Lipsitch, M.; Hanage, W.P. Population impact of SARS-CoV-2 variants with enhanced transmissibility and/or partial immune escape. Cell 2021, 184, 6229–6242.e18. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software Version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Reynisson, B.; Alvarez, B.; Paul, S.; Peters, B.; Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 2020, 48, W449–W454. [Google Scholar] [CrossRef]
- Bui, H.-H.; Sidney, J.; Dinh, K.; Southwood, S.; Newman, M.J.; Sette, A. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinform. 2006, 7, 153. [Google Scholar] [CrossRef] [Green Version]
- Wucherpfennig, K.W.; Sethi, D. T cell receptor recognition of self and foreign antigens in the induction of autoimmunity. Semin. Immunol. 2011, 23, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Sohail, M.S.; Ahmed, S.F.; Quadeer, A.A.; McKay, M.R. In silico T cell epitope identification for SARS-CoV-2: Progress and perspectives. Adv. Drug Deliv. Rev. 2021, 171, 29–47. [Google Scholar] [CrossRef]
- Peters, B.; Nielsen, M.; Sette, A. T cell epitope predictions. Annu. Rev. Immunol. 2020, 38, 123–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ladell, K.; Hashimoto, M.; Iglesias, M.C.; Wilmann, P.G.; McLaren, J.E.; Gras, S.; Chikata, T.; Kuse, N.; Fastenackels, S.; Gostick, E.; et al. A molecular basis for the control of preimmune escape variants by HIV-Specific CD8+ T cells. Immunity 2013, 38, 425–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Epitope 1 | HLA | Epitope Mutant 2 | Count |
---|---|---|---|
S | |||
691SIIAYTMSL699 | A*02:01 | SIIVYTMSL | 720 |
SIIAYTMLL | 655 | ||
PIIAYTMSL | 205 | ||
SIIAYTMAL | 181 | ||
SFIAYTMSL | 38 | ||
SIVAYTMSL | 24 | ||
SIIAYAMSL | 7 | ||
SIIAYTMSF | 7 | ||
TIIAYTMSL | 5 | ||
SIIFYTMSL | 5 | ||
1208QYIKWPWYI1216 | A*24:02 | QYIKWPWYT | 314 |
QHIKWPWYI | 15 | ||
QYIKWPWYS | 13 | ||
1000RLQSLQTYV1008 | A*02:01 | RFQSLQTYV | 20 |
RLQSLQTYA | 10 | ||
269YLQPRTFLL277 | A*02:01 | CLQPRTFLL | 6 |
M | |||
26FLFLTWICL34 | A*02:01 | FLFLTWICF | 1478 |
FLFLIWICL | 1394 | ||
FLFLTCICL | 154 | ||
LLFLTWICL | 85 | ||
FIFLTWICL | 33 | ||
CLFLTWICL | 17 | ||
FVFLTWICL | 14 | ||
FLFLTWICI | 13 | ||
VLFLTWICL | 8 | ||
FLLLIWICL | 7 | ||
N | |||
338KLDDKDPNF346 | A*02:01 | KLDDKDSNF | 633 |
KLDNKDPNF | 226 | ||
KLNDKDPNF | 177 | ||
KFDDKDPNF | 118 | ||
KLDYKDPNF | 78 | ||
KLDHKDPNF | 62 | ||
KLGDKDPNF | 38 | ||
KLDDKDQNF | 35 | ||
KLDVKDPNF | 13 | ||
KLEDKDPNF | 11 | ||
KLDGKDPNF | 10 | ||
KLADKDPNF | 6 | ||
KLVDKDPNF | 6 | ||
KLDAKDPNF | 6 | ||
KLDDKDPNS | 5 | ||
361KTFPPTEPK369 | A*03:01 | KKFPPTEPK | 300 |
KTFPPTEPN | 107 | ||
KTFPPTEPI | 57 | ||
KRFPPTEPK | 30 | ||
KTFPPTEPE | 16 | ||
KTFPPTEPT | 14 | ||
KTFPPTEPL | 6 | ||
361KTFPPTEPK369 | A*11:01 | KKFPPTEPK | 300 |
KTFPPTEPN | 107 | ||
KTFPPTEPI | 57 | ||
KRFPPTEPK | 30 | ||
KTFPPTEPE | 16 | ||
KTFPPTEPT | 14 | ||
KTFPPTEPL | 6 | ||
134ATEGALNTPK143 | A*11:01 | AIEGALNTPK | 9685 |
VTEGALNTPK | 1162 | ||
AAEGALNTPK | 196 | ||
ANEGALNTPK | 101 | ||
APEGALNTPK | 36 | ||
TTEGALNTPK | 27 | ||
361KTFPPTEPKK370 | A*03:01 | KKFPPTEPKK | 300 |
KRFPPTEPKK | 30 | ||
KTFPSTEPKN | 28 | ||
105SPRWYFYYL113 | B*07:02 | SSRWYFYYL | 23 |
ORF3a | |||
112VYFLQSINF120 | A*24:02 | VHFLQSINF | 339 |
VYFLQSINC | 112 | ||
VYFLQSINS | 50 | ||
139LLYDANYFL147 | A*02:01 | LFYDANYFL | 2582 |
LLYDANYFF | 1276 | ||
207FTSDYYQLY215 | A*01:01 | FTSDYYQLC | 121 |
FTSDYYQLH | 64 | ||
ORF1a | |||
1637TTDPSFLGRYM1647 | A*01:01 | TTNPSFLGRYM | 2106 |
TIDPSFLGRYM | 1368 | ||
TNDPSFLGRYM | 102 | ||
ITDLSFLGRYM | 55 | ||
TIDLSFLGRYM | 5 | ||
1321PTDNYITTY1329 | A*01:01 | PPDNYITTY | 141 |
PKDNYITTY | 13 | ||
PTDNYITTH | 10 | ||
2332ILFTRFFYV2340 | A*02:01 | IFFTRFFYV | 696 |
ILCTRFFYV | 10 | ||
1636HTTDPSFLGRY1646 | A*01:01 | HTTDPSFLGRH | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, S.F.; Sohail, M.S.; Quadeer, A.A.; McKay, M.R. Identification of Potential SARS-CoV-2 CD8+ T Cell Escape Mutants. Vaccines 2022, 10, 542. https://doi.org/10.3390/vaccines10040542
Ahmed SF, Sohail MS, Quadeer AA, McKay MR. Identification of Potential SARS-CoV-2 CD8+ T Cell Escape Mutants. Vaccines. 2022; 10(4):542. https://doi.org/10.3390/vaccines10040542
Chicago/Turabian StyleAhmed, Syed Faraz, Muhammad Saqib Sohail, Ahmed Abdul Quadeer, and Matthew R. McKay. 2022. "Identification of Potential SARS-CoV-2 CD8+ T Cell Escape Mutants" Vaccines 10, no. 4: 542. https://doi.org/10.3390/vaccines10040542
APA StyleAhmed, S. F., Sohail, M. S., Quadeer, A. A., & McKay, M. R. (2022). Identification of Potential SARS-CoV-2 CD8+ T Cell Escape Mutants. Vaccines, 10(4), 542. https://doi.org/10.3390/vaccines10040542