The Associations between Cytokine Levels, Kidney and Heart Function Biomarkers, and Expression Levels of Angiotensin-Converting Enzyme-2 and Neuropilin-1 in COVID-19 Patients
Abstract
:1. Introduction
2. Patients and Methods
2.1. Study Population
2.2. Patients
2.3. Inclusion and Exclusion Criteria
2.4. Demographic Data
2.5. Blood Samples
2.6. Laboratory Assays
2.7. RNA Isolation and qRT-PCR
NRP-1, F-5′ AACAACGGCTCGGACTGGAAGA 3′ and R-5 GGTAGATCCTGATGAATCGCGTG 3′ (NM001024628). ACE-2, F-5′ TCCATTGGTCTTCTGTCACCCG 3′ and R-5′ AGACCATCCACCT CCACTTCTC 3′ (NM021804.3), β–actin, F-5′ GGAACGGTGAAGGTGACAGCAG 3′ and R-5′ TGTGGACTTGGGAGAGGACTGG 3′(XM004268956.3).
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard, 2020. Available online: https://COVID19.who.int/ (accessed on 3 March 2021).
- Monastero, R.N.; Pentyala, S. Cytokines as Biomarkers and Their Respective Clinical Cutoff Levels. Int. J. Inflamm. 2017, 2017, 4309485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agalioti, T.; Lomvardas, S.; Parekh, B.; Yie, J.; Maniatis, T.; Thanos, D. Ordered recruitment of chromatin-modifying and general transcription factors to the IFN-beta promoter. Cell 2000, 103, 667–678. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.-C.; Joosten, L.A.B.; Netea, M.G. The interplay between central metabolism and innate immune responses. Cytokine Growth Factor Rev. 2014, 25, 707–713. [Google Scholar] [CrossRef]
- Sanchez, E.L.; Lagunoff, M. Viral activation of cellular metabolism. Virology 2015, 479–480, 609–618. [Google Scholar] [CrossRef] [Green Version]
- Ortega, L.; Fornoni, A. Role of cytokines in the pathogenesis of acute and chronic kidney disease, glomerulonephritis, and end-stage kidney disease. Int. J. Interferon Cytokine Mediat. Res. 2010, 2, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.N.; Siddiqui, S.A.; Ibrahim, M.; Hakim, M.L.; Ahammed, M.S.; Kabir, A.; Sultana, F. Inflammatory cytokines in the pathogenesis of cardiovascular disease and cancer. SAGE Open Med. 2020, 8, 2050312120965752. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.; Yang, X.; Yang, D.; Bao, J.; Li, R.; Xiao, Y.; Hou, C.; Wang, H.; Liu, J.; Yang, D.; et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit. Care 2020, 24, 422. [Google Scholar] [CrossRef]
- Furuhashi, M.; Moniwa, N.; Takizawa, H.; Ura, N.; Shimamoto, K. Potential differential effects of renin-angiotensin system inhibitors on SARS-CoV-2 infection and lung injury in COVID-19. Hypertens Res. 2020, 43, 837–840. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Siri, M.; Dastghaib, S.; Zamani, M.; Rahmani-Kukia, N.; Geraylow, K.R.; Fakher, S.; Keshvarzi, F.; Mehrbod, P.; Ahmadi, M.; Mokarram, P.; et al. Autophagy, Unfolded Protein Response, and Neuropilin-1 Cross-Talk in SARS-CoV-2 Infection: What Can Be Learned from Other Coronaviruses. Int. J. Mol. Sci. 2021, 22, 5992. [Google Scholar] [CrossRef]
- Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.-L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020, 367, 1260–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantuti-Castelvetri, L.; Ojha, R.; Pedro, L.D.; Djannatian, M.; Franz, J.; Kuivanen, S.; van der Meer, F.; Kallio, K.; Kaya, T.; Anastasina, M.; et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 2020, 370, 856–860. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Estepa, A.; Chan, V.; Jafar, M.S. Acute Renal Failure in Critically Ill COVID-19 Patients With a Focus on the Role of Renal Replacement Therapy: A Review of What We Know So Far. Cureus 2020, 12, e8429. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; Yu, T.; et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Bowe, B.; Xie, Y.; Xu, E.; Al-Aly, Z. Kidney outcomes in long COVID. JASN 2021, 32, 2851–2862. [Google Scholar] [CrossRef]
- John Sperati, C. Coronavirus: Kidney Damage Caused by COVID-19. In The Johns Hopkins Hospital, and Johns Hopkins Health System; Johns Hopkins School of Medicine: Baltimore, MD, USA, 2022. [Google Scholar]
- Palevsky, P.M.; Radhakrishnan, J. COVID-19: Issues Related to End-Stage Kidney Disease; Berns, J.F., Forman, J.P., Eds.; Wolters Kluwer: Philadelphia, PA, USA, 2022. [Google Scholar]
- Carotti, M.; Salaffi, F.; Sarzi-Puttini, P.; Agostini, A.; Borgheresi, A.; Minorati, D.; Galli, M.; Marotto, D.; Giovagnoni, A. Chest CT features of coronavirus disease 2019 (COVID-19) pneumonia: Key points for radiologists. La Radiol. Med. 2020, 125, 636–646. [Google Scholar] [CrossRef]
- Ai, T.; Yang, Z.; Hou, H.; Zhan, C.; Chen, C.; Lv, W.; Tao, Q.; Sun, Z.; Xia, L. Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology 2020, 296, E32–E40. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Investig. 2020, 130, 2620–2629. [Google Scholar] [CrossRef] [Green Version]
- Henry, T.J. Clinical Chemistry Principles and Techniques, 2nd ed.; Harper and Row Publishers: New York, NY, USA, 1974. [Google Scholar]
- Kaplan, A. Urea Clin Chem; The C.V. Mosby Co.: St Louis, MI, USA; Toronto, Canada; Princeton, NJ, USA, 1984; pp. 418, 437, 1257–1260. [Google Scholar]
- Buhl, S.N.; Jackson, K.Y. Optimal conditions and comparison of lactate dehydrogenase catalysis of the lactate-to-pyruvate and Pyruvate-to-lactate in human serum at 25, 30- and 37-degree C. Clin. Chem. 1978, 24, 828. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- IBM Corp. IBM SPSS Statistics for Windows; Version 22.0; IBM Corp: Armonk, NY, USA, 2013. [Google Scholar]
- Gao, Y.M.; Xu, G.; Wang, B.; Liu, B.C. Cytokine storm syndrome in coronavirus disease 2019: A narrative review. J. Internal Med. 2021, 289, 147–161. [Google Scholar] [CrossRef] [PubMed]
- Cron, R.; Behrens, E.M. Cytokine Storm Syndrome, 1st ed.; Springer Nature Switzerland AG.; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020, 8, 420–422. [Google Scholar] [CrossRef]
- Cao, X. COVID-19 Immunopathology and its implications for therapy. Nat. Rev. Immunol. 2020, 20, 269–270. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Kumar, P.; Mahapatra, T.K. An overview of cytokines; their current status and futuristic scope. SUJHS 2017, 3, 50–53. [Google Scholar]
- Maedler, K.; Dharmadhikari, G.; Schumann, D.M.; Størling, J. Interleukin1 beta targeted therapy for type 2 diabetes. Expert Opin. Biol. Ther. 2009, 9, 1177–1188. [Google Scholar] [CrossRef]
- Noronha, I.L.; Niemir, Z.; Stein, H.; Waldherr, R. Cytokines and growth factors in renal disease. Nephrol. Dial. Transpl. 1995, 10, 775–786. [Google Scholar]
- Islam, H.; Chamberlain, T.C.; Mui, A.L.; Little, J.P. Elevated Interleukin-10 Levels in COVID-19: Potentiation of Pro-Inflammatory Responses or Impaired Anti-Inflammatory Action? Front. Immunol. 2021, 12, 677008. [Google Scholar] [CrossRef]
- Schuerwegh, A. Influence of pro-inflammatory (il-1α, il-6, TNF-α, ifn-γ) and anti-inflammatory (il-4) cytokines on chondrocyte function. Osteoarthr. Cartil. 2003, 11, 681–687. [Google Scholar] [CrossRef] [Green Version]
- Prompetchara, E. Immune responses in COVID-19 and potential vaccines: Lessons learned from sars and MERS epidemic. Asian Pac. J. Allergy Immunol. 2020, 38, 1–9. [Google Scholar] [PubMed]
- Szabo, S.J. Developmental commitment to the th2 lineage by the extinction of il-12 signaling. Immunity 1995, 2, 665–675. [Google Scholar] [CrossRef] [Green Version]
- Costela-Ruiz, V.J.; Illescas-Montes, R.; Puerta-Puerta, J.M.; Ruiz, C.; Melguizo-Rodriguez, L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020, 54, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, S.; Liu, J.; Zhang, Z.; Wan, X.; Huang, B.; Chen, Y.; Zhang, Y. COVID-19: Immunopathogenesis and Immunotherapeutics. Signal Transduct. Target Ther. 2020, 5, 128. [Google Scholar] [CrossRef] [PubMed]
- Valeri, M.; Raffatellu, M. Cytokines IL-17 and IL-22 in the host response to infection. Pathog. Dis. 2016, 74, ftw111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martonik, D.; Parfieniuk-Kowerda, A.; Rogalska, M.; Flisiak, R. The Role of Th17 Response in COVID-19. Cells 2021, 10, 1550. [Google Scholar] [CrossRef]
- Rojas, J.M.; Avia, M.; Martín, V.; Sevilla, N. IL-10: A Multifunctional Cytokine in Viral Infections. J. Immunol. Res. 2017, 2017, 6104054. [Google Scholar] [CrossRef] [Green Version]
- Shao, J.; Nangaku, M.; Miyata, T.; Inagi, R.; Yamada, K.; Kurokawa, K.; Fujita, T. Imbalance of T-Cell Subsets in Angiotensin II-Infused Hypertensive Rats with Kidney Injury. Hypertension 2003, 42, 31–38. [Google Scholar] [CrossRef]
- Channappanavar, R.; Perlman, S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immuneopatho- logy. Semin. Immunopathol. 2017, 39, 529–539. [Google Scholar] [CrossRef]
- Ahmadian, E.; Hosseiniyan Khatibi, S.M.; Razi Soofiyani, S.; Abediazar, S.; Shoja, M.M.; Ardalan, M.; Zununi Vahed, S. COVID-19 and kidney injury: Pathophysiology and molecular mechanism. Rev. Med. Virol. 2021, 31, e2176. [Google Scholar] [CrossRef]
- Cheng, Y.; Luo, R.; Wang, K.; Zhang, M.; Wang, Z.; Dong, L.; Li, J.; Yao, Y.; Ge, S.; Xu, G. kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020, 97, 829–838. [Google Scholar] [PubMed]
- Khouchlaa, A.; Bouyahya, A. COVID-19 nephropathy: Probable mechanisms of kidney failure. J. Nephropathol. 2020, 9, e35. [Google Scholar] [CrossRef]
- Yalameha, B.; Roshan, B.; Lakkakula, V.K.S.; Bhaskar, M.L. Perspectives on the relationship of renal disease and coronavirus disease 2019. J. Nephropharmacol. 2020, 9, e22. [Google Scholar] [CrossRef]
- Buonaguro, F.M.; Ascierto, P.A.; Morse, G.D.; Buonaguro, L.; Puzanov, I.; Tornesello, M.L.; Bréchot, C.; Gallo, R.C. COVID-19: Time for a paradigm change. Rev. Med. Virol. 2020, 30, e213410. [Google Scholar] [CrossRef]
- Henderson, L.A.; Canna, S.W.; Schulert, G.S.; Volpi, S.; Lee, P.Y.; Kernan, K.F.; Caricchio, R.; Mahmud, S.; Hazen, M.M.; Halyabar, O.; et al. On the Alert for Cytokine Storm: Immunopathology in COVID-19. Arthritis Rheumatol. 2020, 72, 1059–1063. [Google Scholar]
- Mangalmurti, N.; Hunter, C.A. Cytokine storm: Understanding COVID-19. Immunity 2020, 53, 19–25. [Google Scholar]
- Qi, F.; Qian, S.; Zhang, S.; Zhang, Z. Single-cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem. Biophys. Res. Commun. 2020, 526, 135–140. [Google Scholar]
- Ye, M.; Wysocki, J.; William, J.; Soler, M.J.; Cokic, I.; Batlle, D. Glomerular localization and expression of Angiotensin-converting enzyme 2 and Angiotensin-converting enzyme: Implications for albuminuria in diabetes. J. Am. Soc. Nephrol. 2006, 17, 3067–3075. [Google Scholar] [CrossRef] [Green Version]
- Yin, W.; Zhang, P.L. Infectious pathways of SARS-CoV-2 in renal tissue. J. Nephropathol. 2020, 9, e37. [Google Scholar] [CrossRef]
- Mayi, B.S.; Leibowitz, J.A.; Woods, A.T.; Ammon, K.A.; Liu, A.E.; Raja, A. The role of Neuropilin-1 in COVID-19. PLoS Pathog. 2021, 17, e1009153. [Google Scholar]
- Wnuk, M.; Anderegg, M.A.; Graber, W.A.; Buergy, R.; Fuster, D.G.; Djonov, V. Neuropilin1 regulates the glomerular function and basement membrane composition through pericytes in the mouse kidney. Kidney Int. 2017, 91, 868–879. [Google Scholar] [CrossRef] [PubMed]
- Gudowska-Sawczuk, M.; Mroczko, B. The role of Neuropilin1 (NRP-1) in SARS-CoV-2 Infection: Review. J. Clin. Med. 2021, 10, 2772. [Google Scholar] [CrossRef] [PubMed]
- Basu-Ray, I.; Almaddah, N.K.; Adeboye, A.; Soos, M.P. Cardiac Manifestations of Coronavirus (COVID-19). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Clerkin, K.J.; Fried, J.A.; Raikhelkar, J.; Sayer, G.; Griffin, J.M.; Masoumi, A.; Jain, S.S.; Burkhoff, D.; Kumaraiah, D.; Rabbani, L.; et al. COVID-19 and cardiovascular disease. Circulation 2020, 141, 1648–1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, T.Y.; Redwood, S.; Prendergast, B.; Chen, M. Coronaviruses and the cardiovascular system: Acute and long-term implication Eur. Heart J. 2020, 41, 1798–1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mustroph, J.; Hupf, J.; Baier, M.J.; Evert, K.; Brochhausen, C.; Broeker, K.; Meindl, C.; Seither, B.; Jungbauer, C.; Evert, M.; et al. Cardiac Fibrosis Is a Risk Factor for Severe COVID-19. Front. Immunol. 2021, 12, 740260. [Google Scholar] [CrossRef]
- Glinka, Y.; Prud’homme, G.J. Neuropilin-1 is a Receptor for Transforming Growth Factor Beta-1, Activates its Latent Form, and Promotes Regulatory T Cell Activity. J. Leukoc Biol. 2008, 84, 302–310. [Google Scholar] [CrossRef]
- Meng, X.M.; Nikolic-Paterson, D.J.; Lan, H.Y. TGF-β: The master regulator of fibrosis. Nat. Rev. Nephrol. 2016, 12, 325–338. [Google Scholar] [CrossRef]
- Biernacka, A.; Dobaczewski, M.; Frangogiannis, N.G. TGF-β signaling in Fibrosis. Growth Factors Chur. Switz. 2011, 29, 196–202. [Google Scholar] [CrossRef] [Green Version]
- Kakkar, R.; Lee, R.T. The IL-33/ST2 Pathway: Therapeutic Target and Novel Biomarker. Nat. Rev. Drug Discov. 2008, 7, 827–840. [Google Scholar] [CrossRef] [Green Version]
- Matilla, L.; Arrieta, V.; Jover, E.; Garcia-Peña, A.; Martinez-Martinez, E.; Sadaba, R.; Alvarez, V.; Navarro, A.; Fernandez-Celis, A.; Gainza, A.; et al. Soluble St2 Induces Cardiac Fibroblast Activation and Collagen Synthesis via Neuropilin-1. Cells 2020, 9, 1667. [Google Scholar] [CrossRef]
- Bansal, M. Cardiovascular disease and COVID-19. Diabetes Metab Syndr. 2020, 14, 247–250. [Google Scholar] [CrossRef] [PubMed]
Healthy Controls | Moderate COVID-19 Patients | Severe COVID-19 Patients | |
---|---|---|---|
Number of subjects | 50 | 50 | 50 |
Age | |||
Mean ± SEM | 52.12 ± 1.22 | 58.24 ± 1.24 | 57.36 ± 1.43 |
Gender number (%) | |||
Male | 25 (50%) | 25 (50%) | 29 (58%) |
Female | 25 (50%) | 25 (50%) | 21 (42%) |
BMI (kg/m2) | |||
Range | 20.28–28.09 | 20.8–40.10 | 20.30–40.10 |
Mean ± SEM | 24.25 ± 0.35 | 24.73 ± 0.48 | 25.03 ± 0.52 |
Creatinine | Urea | CK-MB | LDH | Troponin I | ||||||
---|---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | r | p | |
Creatinine | 1 | 0.626 *** | 0.000 | 0.069 | 0.498 | 0.219 * | 0.029 | 0.140 | 0.163 | |
Urea | 0.626 *** | 0.000 | 1 | 0.360 *** | 0.000 | 0.463 *** | 0.000 | 0.155 | 0.123 | |
LDH | 0.219 * | 0.029 | 0.463 *** | 0.000 | 0.165 | 0.101 | 1 | 0.051 | 0.617 | |
CK-MB | 0.069 | 0.498 | 0.360 *** | 0.000 | 1 | 0.165 | 0.101 | 0.325 ** | 0.001 | |
Troponin I | 0.140 | 0.163 | 0.155 | 0.123 | 0.325 ** | 0.001 | 0.051 | 0.617 | 1 | |
IL1-β | −0.210 * | 0.036 | 0.258 ** | 0.010 | 0.604 *** | 0.000 | 0.292 ** | 0.003 | 0.196 | 0.051 |
IL-4 | −0.033 | 0.747 | 0.256 * | 0.010 | 0.600 *** | 0.000 | 0.136 | 0.179 | 0.346 *** | 0.000 |
IL-10 | −0.135 | 0.180 | 0.090 | 0.371 | 0.451 *** | 0.000 | 0.080 | 0.428 | 0.215 * | 0.031 |
IL-17 | −0.157 | 0.118 | 0.275 ** | 0.006 | 0.628 *** | 0.000 | 0.298 ** | 0.003 | 0.207 * | 0.039 |
IFN-γ | −0.130 | 0.196 | 0.174 | 0.083 | 0.520 *** | 0.000 | 0.176 | 0.080 | 0.124 | 0.221 |
NRP-1 | −0.018 | 0.860 | 0.334 ** | 0.001 | 0.653 *** | 0.000 | 0.198 * | 0.048 | 0.261 ** | 0.009 |
ACE-2 | −0.113 | 0.262 | 0.193 | 0.054 | 0.543 *** | 0.000 | 0.023 | 0.823 | 0.260 ** | 0.009 |
Creatinine | Urea | CK-MB | LDH | Troponin I | ||||||
---|---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | r | p | |
Creatinine | 1 | 0.843 *** | 0.000 | 0.230 * | 0.022 | 0.027 | 0.792 | −0.052 | 0.611 | |
Urea | 0.843 *** | 0.000 | 1 | 0.395 *** | 0.000 | 0.197 * | 0.049 | −0.003 | 0.973 | |
LDH | 0.027 | 0.792 | 0.197 * | 0.049 | 0.409 *** | 0.000 | 1 | 0.399 *** | 0.000 | |
CK-MB | 0.230 * | 0.022 | 0.395 *** | 0.000 | 1 | 0.409 *** | 0.000 | 0.310 ** | 0.002 | |
Troponin I | −0.052 | 0.611 | −0.003 | 0.973 | 0.310 ** | 0.002 | 0.399 *** | 0.000 | 1 | |
IL1-β | 0.158 | 0.117 | 0.445 *** | 0.000 | 0.601 *** | 0.000 | 0.353 *** | 0.000 | 0.167 | 0.098 |
IL-4 | 0.077 | 0.446 | 0.223 * | 0.026 | 0.397 *** | 0.000 | 0.319 ** | 0.001 | 0.201 * | 0.045 |
IL-10 | 0.228 * | 0.023 | 0.451 *** | 0.000 | 0.690 *** | 0.000 | 0.467 *** | 0.000 | 0.175 | 0.081 |
IL-17 | 0.181 | 0.072 | 0.335 ** | 0.001 | 0.682 *** | 0.000 | 0.507 *** | 0.000 | 0.383 *** | 0.000 |
IFN-γ | 0.213 * | 0.033 | 0.423 *** | 0.000 | 0.545 *** | 0.000 | 0.407 *** | 0.000 | 0.088 | 0.386 |
NRP-1 | 0.300 ** | 0.002 | 0.443 *** | 0.000 | 0.624 *** | 0.000 | 0.328 ** | 0.001 | 0.301 ** | 0.002 |
ACE-2 | 0.204 * | 0.041 | 0.438 *** | 0.000 | 0.586 *** | 0.000 | 0.557 *** | 0.000 | 0.147 | 0.144 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sultan, R.H.; Abdallah, M.; Ali, T.M.; Ahmed, A.E.; Assal, H.H.; Elesawy, B.H.; Ahmed, O.M. The Associations between Cytokine Levels, Kidney and Heart Function Biomarkers, and Expression Levels of Angiotensin-Converting Enzyme-2 and Neuropilin-1 in COVID-19 Patients. Vaccines 2022, 10, 1045. https://doi.org/10.3390/vaccines10071045
Sultan RH, Abdallah M, Ali TM, Ahmed AE, Assal HH, Elesawy BH, Ahmed OM. The Associations between Cytokine Levels, Kidney and Heart Function Biomarkers, and Expression Levels of Angiotensin-Converting Enzyme-2 and Neuropilin-1 in COVID-19 Patients. Vaccines. 2022; 10(7):1045. https://doi.org/10.3390/vaccines10071045
Chicago/Turabian StyleSultan, Rabab Hussain, Maged Abdallah, Tarek M. Ali, Amr E. Ahmed, Hebatallah Hany Assal, Basem H. Elesawy, and Osama M. Ahmed. 2022. "The Associations between Cytokine Levels, Kidney and Heart Function Biomarkers, and Expression Levels of Angiotensin-Converting Enzyme-2 and Neuropilin-1 in COVID-19 Patients" Vaccines 10, no. 7: 1045. https://doi.org/10.3390/vaccines10071045
APA StyleSultan, R. H., Abdallah, M., Ali, T. M., Ahmed, A. E., Assal, H. H., Elesawy, B. H., & Ahmed, O. M. (2022). The Associations between Cytokine Levels, Kidney and Heart Function Biomarkers, and Expression Levels of Angiotensin-Converting Enzyme-2 and Neuropilin-1 in COVID-19 Patients. Vaccines, 10(7), 1045. https://doi.org/10.3390/vaccines10071045