Vaccine Preventable Zoonotic Diseases: Challenges and Opportunities for Public Health Progress
Abstract
:1. Introduction
2. Review of Vaccine-Preventable Zoonoses
2.1. Rabies
2.2. Brucellosis
2.3. Coronaviruses
2.4. Influenza
3. Implementing Strong Global Programs for Vaccine Preventable Zoonoses
4. Co-Development of Human and Animal Vaccines
5. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taylor, L.H.; Latham, S.M.; Woolhouse, M.E. Risk factors for human disease emergence. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2001, 356, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Grace, D.; Mutua, F.; Ochungo, P.; Kruska, R.; Jones, K.; Brierley, L.; Lapar, M.L.; Said, M.; Herrero, M.; Pham-Duc, P.; et al. Mapping of poverty and likely zoonoses hotspots. Zoonoses Proj. 2012, 4, 1–119. [Google Scholar]
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/data (accessed on 1 February 2022).
- Grace, D.; Gilbert, J.; Randolph, T.; Kang’ethe, E. The multiple burdens of zoonotic disease and an Ecohealth approach to their assessment. Trop. Anim. Health Prod. 2012, 44 (Suppl. S1), 67–73. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef]
- Lombard, M.F. A brief history of vaccines and vaccination. Rev. Sci. Tech. 2007, 26, 29–48. [Google Scholar] [CrossRef] [Green Version]
- Heaton, P.M. The COVID-19 Vaccine-Development Multiverse. N. Engl. J. Med. 2020, 383, 1986–1988. [Google Scholar] [CrossRef]
- Paul-Pierre, P. Role of Vaccination in Animal Health. Bull. De L’academie Natl. De Med. 2012, 196, 589–620. [Google Scholar]
- Paul-Pierre, P. Emerging diseases, zoonoses and vaccines to control them. Vaccine 2009, 27, 6435–6438. [Google Scholar] [CrossRef]
- Roth, J.A. Veterinary Vaccines and Their Importance to Animal Health and Public Health. Procedia Vaccinol. 2011, 5, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, A.H.; Spero, D.; Gay, C.; Zimic, M.; De Groot, A.S. New vaccines needed for pathogens infecting animals and humans. Hum. Vaccines Immunother. 2012, 8, 971–978. [Google Scholar] [CrossRef] [Green Version]
- Monath, T.P. Vaccines against diseases transmitted from animals to humans: A one health paradigm. Vaccine 2013, 31, 5321–5338. [Google Scholar] [CrossRef] [PubMed]
- Blanton, J.D.; Hanlon, C.A.; Rupprecht, C.E. Rabies surveillance in the United States during 2006. J. Am. Vet. Med. Assoc. 2007, 231, 540–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hampson, K.; Coudeville, L.; Lembo, T.; Sambo, M.; Kieffer, A.; Attlan, M.; Barrat, J.; Blanton, J.D.; Briggs, D.J.; Cleaveland, S.; et al. Estimating the global burden of endemic canine rabies. PLoS Negl. Trop. Dis. 2015, 9, e0003709. [Google Scholar] [CrossRef] [Green Version]
- Edison, L.; Schulte, J.; Schauben, J.; Kay, R.; Rubin, C. Assessment of human exposures to animal vaccines using poison control records, 2000–2009. Zoonoses Public Health 2014, 61, 175–180. [Google Scholar] [CrossRef]
- Negrón, M.E.; Kharod, G.A.; Bower, W.A.; Walke, H. Notes from the Field: Human Brucella abortus RB51 Infections Caused by Consumption of Unpasteurized Domestic Dairy Products—United States, 2017–2019. Morb. Mortal. Wkly. Rep. 2019, 68, 185. [Google Scholar] [CrossRef] [Green Version]
- Cossaboom, C.M.; Kharod, G.A.; Salzer, J.S.; Tiller, R.V.; Campbell, L.P.; Wu, K.; Negrón, M.E.; Ayala, N.; Evert, N.; Radowicz, J.; et al. Notes from the Field: Brucella abortus Vaccine Strain RB51 Infection and Exposures Associated with Raw Milk Consumption—Wise County, Texas, 2017. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 286. [Google Scholar] [CrossRef] [Green Version]
- History of Vaccines. Vaccine Development, Testing, and Regulation. Available online: https://www.historyofvaccines.org/content/articles/vaccine-development-testing-and-regulation (accessed on 28 January 2022).
- Centers for Disease Control and Prevention. Vaccine Testing and the Approval Process. Available online: https://www.cdc.gov/vaccines/basics/test-approve.html (accessed on 1 December 2021).
- Head, J.R.; Vos, A.; Blanton, J.; Müller, T.; Chipman, R.; Pieracci, E.G.; Cleaton, J.; Wallace, R. Environmental distribution of certain modified live-virus vaccines with a high safety profile presents a low-risk, high-reward to control zoonotic diseases. Sci. Rep. 2019, 9, 6783. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. Human vaccinia infection after contact with a raccoon rabies vaccine bait—Pennsylvania, 2009. MMWR Morb. Mortal. Wkly. Rep. 2009, 58, 1204–1207. [Google Scholar]
- Lalsiamthara, J.; Lee, J.H. Development and trial of vaccines against Brucella. J. Vet. Sci. 2017, 18, 281–290. [Google Scholar] [CrossRef]
- Conrad, A.; Meijerink, M.; Narayan, T. AgResults Evaluation: Brucellosis Vaccine Challenge Project—2019 Interim Assessment. Available online: https://brucellosisvaccine.org/ (accessed on 17 January 2022).
- Preiss, S.; Garçon, N.; Cunningham, A.L.; Strugnell, R.; Friedland, L.R. Vaccine provision: Delivering sustained & widespread use. Vaccine 2016, 34, 6665–6671. [Google Scholar] [CrossRef]
- Francis, M.J. Considerations for rapid development and licencing of conventional and platform technology veterinary vaccines. Avian Pathol. 2022, 51, 107–122. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.R. Obstacles and advances in SARS vaccine development. Vaccine 2006, 24, 863–871. [Google Scholar] [CrossRef] [PubMed]
- McAllister, M.M. Successful vaccines for naturally occurring protozoal diseases of animals should guide human vaccine research. A review of protozoal vaccines and their designs. Parasitology 2014, 141, 624–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arroyo, J.; Miller, C.A.; Catalan, J.; Monath, T.P. Yellow fever vector live-virus vaccines: West Nile virus vaccine development. Trends Mol. Med. 2001, 7, 350–354. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. One Health. Available online: https://www.cdc.gov/onehealth/ (accessed on 2 August 2021).
- Centers for Disease Control and Prevention United States Department of the Interior United States Department of Agriculture. Prioritizing Zoonotic Diseases for Multisectoral, One Health Collaboration in the United States: Workshop Summary. Available online: https://www.cdc.gov/onehealth/pdfs/us-ohzdp-report-508.pdf (accessed on 11 February 2022).
- Centers for Disease Control and Prevention. Completed OHZDP Workshops. Available online: https://www.cdc.gov/onehealth/what-we-do/zoonotic-disease-prioritization/completed-workshops.html (accessed on 12 February 2022).
- Wallace, R.M.; Undurraga, E.A.; Blanton, J.D.; Cleaton, J.; Franka, R. Elimination of Dog-Mediated Human Rabies Deaths by 2030: Needs Assessment and Alternatives for Progress Based on Dog Vaccination. Front. Vet. Sci. 2017, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Wallace, R.M.; Cliquet, F.; Fehlner-Gardiner, C.; Fooks, A.R.; Sabeta, C.T.; Setién, A.A.; Tu, C.; Vuta, V.; Yakobson, B.; Yang, D.-K.; et al. Role of Oral Rabies Vaccines in the Elimination of Dog-Mediated Human Rabies Deaths. Emerg. Infect. Dis. 2020, 26, e201266. [Google Scholar] [CrossRef]
- Hicks, D.J.; Fooks, A.R.; Johnson, N. Developments in rabies vaccines. Clin. Exp. Immunol. 2012, 169, 199–204. [Google Scholar] [CrossRef]
- Kurosawa, A.; Tojinbara, K.; Kadowaki, H.; Hampson, K.; Yamada, A.; Makita, K. The rise and fall of rabies in Japan: A quantitative history of rabies epidemics in Osaka Prefecture, 1914–1933. PLoS Negl. Trop. Dis. 2017, 11, e0005435. [Google Scholar] [CrossRef]
- United States Department of Agriculture. National Brucellosis Eradication Program. Available online: https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-disease-information/cattle-disease-information/national-brucellosis-eradication (accessed on 2 January 2022).
- Glynn, M.K.; Lynn, T.V. Brucellosis. J. Am. Vet. Med. Assoc. 2008, 233, 900–907. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Risks from Unpasteurized Dairy Products. Available online: https://www.cdc.gov/brucellosis/exposure/unpasteurized-dairy-products.html (accessed on 2 January 2022).
- National Park Service. Brucellosis in Yellowstone. Available online: https://www.nps.gov/articles/brucellosis-yellowstone.htm#:~:text=Brucellosis%20in%20Yellowstone%20Brucellosis%20is%20a%20nonnative%2C%20bacterial,1900s%20and%20transmitted%20it%20to%20local%20wildlife%20populations. (accessed on 22 January 2022).
- Iowa State University. Vaccines: Brucella Abortus. Available online: http://www.cfsph.iastate.edu/Vaccines/disease_list.php?disease=brucella-abortus&lang=en (accessed on 30 May 2021).
- Iowa State University. Vaccines: Brucella Melitensis. Available online: http://www.cfsph.iastate.edu/Vaccines/disease_list.php?disease=brucella-melitensis&lang=en (accessed on 30 May 2021).
- Wallach, J.C.; Ferrero, M.C.; Victoria Delpino, M.; Fossati, C.A.; Baldi, P.C. Occupational infection due to Brucella abortus S19 among workers involved in vaccine production in Argentina. Clin. Microbiol. Infect. 2008, 14, 805–807. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention (CDC). Human exposure to Brucella abortus strain RB51—Kansas, 1997. MMWR Morb. Mortal. Wkly. Rep. 1998, 47, 172–175. [Google Scholar]
- Centers for Disease Control and Prevention. Brucellosis Reference Guide: Exposures, Testing and Prevention. Available online: https://www.cdc.gov/brucellosis/pdf/brucellosi-reference-guide.pdf (accessed on 28 January 2022).
- Ashford, D.; Pietra, J.; Lingappa, J.; Woods, C.; Noll, H.; Neville, B.; Weyant, R.; Bragg, S.; Spiegel, R.; Tappero, J.; et al. Adverse events in humans associated with accidental exposure to the livestock brucellosis vaccine RB51. Vaccine 2004, 22, 3435–3439. [Google Scholar] [CrossRef] [PubMed]
- National Conference of State Legislatures. State Milk Laws. Available online: https://www.ncsl.org/research/agriculture-and-rural-development/raw-milk-2012.aspx (accessed on 28 January 2022).
- Gruber, J.F.; Newman, A.; Egan, C.; Campbell, C.; Garafalo, K.; Wolfgang, D.R.; Weltman, A.; Kline, K.E.; Watkins, S.M.; Robbe-Austerman, S.; et al. Notes from the Field: Brucella abortus RB51 Infections Associated with Consumption of Raw Milk from Pennsylvania—2017 and 2018. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 482–483. [Google Scholar] [CrossRef] [Green Version]
- USDA APHIS. Brucella abortus Strain RB51 Vaccine Licensed for Use in Cattle Info Sheet; USDA APHIS: Riverdale Park, MD, USA, 2018.
- Drugs.com. Brucella Abortus Vaccine (Strain RB-51). Available online: https://www.drugs.com/vet/brucella-abortus-vaccine-strain-rb-51.html (accessed on 28 January 2022).
- Centers for Disease Control and Prevention. Rifampin/Penicillin-Resistant Strain of RB51 Brucella Contracted from Consumption of Raw Milk; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2017.
- Centers for Disease Control and Prevention. Third Case of Rifampin/Penicillin-Resistant Strain of RB51 Brucella from Consuming Raw Milk; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019.
- Centers for Disease Control and Prevention. National Notifiable Diseases Surveillance System (NNDSS). Available online: https://www.cdc.gov/nndss/index.html (accessed on 2 March 2022).
- Díaz Aparicio, E. Epidemiology of brucellosis in domestic animals caused by Brucella melitensis, Brucella suis and Brucella abortus. Rev. Sci. Tech. 2013, 32, 43–51, discussion 53–60. [Google Scholar] [CrossRef]
- Müller, M.A.; Meyer, B.; Corman, V.M.; Al-Masri, M.; Turkestani, A.; Ritz, D.; Sieberg, A.; Aldabbagh, S.; Bosch, B.-J.; Lattwein, E.; et al. Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: A nationwide, cross-sectional, serological study. Lancet Infect. Dis. 2015, 15, 559–564. [Google Scholar] [CrossRef] [Green Version]
- Azhar, E.I.; El-Kafrawy, S.A.; Farraj, S.A.; Hassan, A.M.; Al-Saeed, M.S.; Hashem, A.M.; Madani, T.A. Evidence for camel-to-human transmission of MERS coronavirus. N. Engl. J. Med. 2014, 370, 2499–2505. [Google Scholar] [CrossRef] [PubMed]
- Al Hammadi, Z.M.; Chu, D.K.; Eltahir, Y.M.; Al Hosani, F.; Al Mulla, M.; Tarnini, W.; Hall, A.J.; Perera, R.A.; Abdelkhalek, M.M.; Peiris, J.S.; et al. Asymptomatic MERS-CoV Infection in Humans Possibly Linked to Infected Dromedaries Imported from Oman to United Arab Emirates, May 2015. Emerg. Infect. Dis. 2015, 21, 2197–2200. [Google Scholar] [CrossRef] [PubMed]
- Alraddadi, B.M.; Watson, J.T.; Almarashi, A.; Abedi, G.R.; Turkistani, A.; Sadran, M.; Housa, A.; Almazroa, M.A.; Alraihan, N.; Banjar, A. Risk factors for primary Middle East respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014. Emerg. Infect. Dis. 2016, 22, 49. [Google Scholar] [CrossRef]
- Adney, D.R.; van Doremalen, N.; Brown, V.R.; Bushmaker, T.; Scott, D.; de Wit, E.; Bowen, R.A.; Munster, V.J. Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels. Emerg. Infect. Dis. 2014, 20, 1999–2005. [Google Scholar] [CrossRef] [Green Version]
- Alharbi, N.K.; Qasim, I.; Almasoud, A.; Aljami, H.A.; Alenazi, M.W.; Alhafufi, A.; Aldibasi, O.S.; Hashem, A.M.; Kasem, S.; Albrahim, R.; et al. Humoral Immunogenicity and Efficacy of a Single Dose of ChAdOx1 MERS Vaccine Candidate in Dromedary Camels. Sci. Rep. 2019, 9, 16292. [Google Scholar] [CrossRef]
- Haagmans, B.L.; van den Brand, J.M.; Raj, V.S.; Volz, A.; Wohlsein, P.; Smits, S.L.; Schipper, D.; Bestebroer, T.M.; Okba, N.; Fux, R.; et al. An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels. Science 2016, 351, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Koch, T.; Dahlke, C.; Fathi, A.; Kupke, A.; Krähling, V.; Okba, N.M.A.; Halwe, S.; Rohde, C.; Eickmann, M.; Volz, A.; et al. Safety and immunogenicity of a modified vaccinia virus Ankara vector vaccine candidate for Middle East respiratory syndrome: An open-label, phase 1 trial. Lancet Infect. Dis. 2020, 20, 827–838. [Google Scholar] [CrossRef]
- Folegatti, P.M.; Bittaye, M.; Flaxman, A.; Lopez, F.R.; Bellamy, D.; Kupke, A.; Mair, C.; Makinson, R.; Sheridan, J.; Rohde, C.; et al. Safety and immunogenicity of a candidate Middle East respiratory syndrome coronavirus viral-vectored vaccine: A dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial. Lancet Infect. Dis. 2020, 20, 816–826. [Google Scholar] [CrossRef]
- OIE WAHIS. SARS-CoV-2 Events in Animals. Available online: https://www.woah.org/en/what-we-offer/emergency-and-resilience/covid-19/#ui-id-3 (accessed on 29 April 2021).
- Roundy, C.M.; Nunez, C.M.; Thomas, L.F.; Auckland, L.D.; Tang, W.; Richison, J.J.; Green, B.R.; Hilton, C.D.; Cherry, M.J.; Pauvolid-Correa, A.; et al. High seroprevalence of SARS-CoV-2 in white-tailed deer Odocoileus virginianus) at one of three captive cervid facilities in Texas. bioRxiv 2022, 10, e0057622. [Google Scholar] [CrossRef] [PubMed]
- Tanne, J.H. COVID-19: FDA approves Pfizer-BioNTech vaccine in record time. BMJ 2021, 374, n2096. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Coronavirus (COVID-19) Update: FDA Takes Key Action by Approving Second COVID-19 Vaccine; Food and Drug Administration: Silver Spring, MD, USA, 2022.
- Zoetis. Zoetis Donates COVID-19 Vaccines to Help Support the Health of Zoo Animals; Zoetis: Parsippany, NJ, USA, 2021. [Google Scholar]
- Enserink, M. Coronavirus rips through Dutch mink farms, triggering culls. Science 2020, 368, 1169. [Google Scholar] [CrossRef]
- McAloose, D.; Laverack, M.; Wang, L.; Killian Mary, L.; Caserta Leonardo, C.; Yuan, F.; Mitchell Patrick, K.; Queen, K.; Mauldin Matthew, R.; Cronk Brittany, D.; et al. From People to Panthera: Natural SARS-CoV-2 Infection in Tigers and Lions at the Bronx Zoo. MBio 2020, 11, e02220. [Google Scholar] [CrossRef]
- Sharun, K.; Tiwari, R.; Saied, A.A.; Dhama, K. SARS-CoV-2 vaccine for domestic and captive animals: An effort to counter COVID-19 pandemic at the human-animal interface. Vaccine 2021, 39, 7119–7122. [Google Scholar] [CrossRef]
- Cool, K.; Gaudreault, N.N.; Morozov, I.; Trujillo, J.D.; Meekins, D.A.; McDowell, C.; Carossino, M.; Bold, D.; Mitzel, D.; Kwon, T.; et al. Infection and transmission of ancestral SARS-CoV-2 and its alpha variant in pregnant white-tailed deer. Emerg Microbes Infect 2022, 11, 95–112. [Google Scholar] [CrossRef]
- World Health Organization. Zero by 30: The Global Strategic Plan to Prevent Human Deaths from Dog-Transmitted Rabies by 2030 Executive Summary; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Gavi the Vaccine Alliance. Vaccine Investment Strategy. Available online: https://www.gavi.org/our-alliance/strategy/vaccine-investment-strategy (accessed on 28 January 2022).
- Shwiff, S.A.; Elser, J.L.; Ernst, K.H.; Shwiff, S.S.; Anderson, A.M. Cost-Benefit Analysis of Controlling Rabies: Placing Economics at the Heart of Rabies Control to Focus Political Will; U.S. Department of Agriculture: Washington, DC, USA, 2018.
- Centers for Disease Control and Prevention. Centers for Disease Control and Prevention Strategic Framework for Global Immunization, 2021–2030; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2021.
- Ronca, S.A.-O.; Ruff, J.C.; Murray, K.A.-O. A 20-year historical review of West Nile virus since its initial emergence in North America: Has West Nile virus become a neglected tropical disease? PLoS Negl. Trop. Dis. 2021, 15, e0009190. [Google Scholar] [CrossRef]
- Sejvar, J.J. West nile virus: An historical overview. Ochsner J. 2003, 5, 6–10. [Google Scholar] [PubMed]
- Kasari, T.R.; Carr, D.A.; Lynn, T.V.; Weaver, J.T. Evaluation of pathways for release of Rift Valley fever virus into domestic ruminant livestock, ruminant wildlife, and human populations in the continental United States. J. Am. Vet. Med. Assoc. 2008, 232, 514–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartley, D.M.; Rinderknecht, J.L.; Nipp, T.L.; Clarke, N.P.; Snowder, G.D.; National Center for Foreign Animal; Zoonotic Disease Defense Advisory Group on Rift Valley Fever. Potential effects of Rift Valley fever in the United States. Emerg. Infect. Dis. 2011, 17, e1. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Memorandum of Understanding Between the Animal and Plant Health Inspection Service, United States Department of Agriculture, and the Food and Drug Administration, Department of Health and Human Services; APHIS Agreement #04-9100-0859-MU FDA Serial # 225-05-7000; Animal and Plant Health Inspection Service: Riverdale Park, MD, USA, 2013.
- Daly, J.M. Middle East respiratory syndrome (MERS) coronavirus: Putting one health principles into practice? Vet. J. 2017, 222, 52–53. [Google Scholar] [CrossRef] [PubMed]
- Ulbert, S. West Nile virus vaccines—Current situation and future directions. Hum. Vaccin. Immunother 2019, 15, 2337–2342. [Google Scholar] [CrossRef] [Green Version]
- André, F.E. How the research-based industry approaches vaccine development and establishes priorities. Dev. Biol. 2002, 110, 25–29. [Google Scholar]
- Aebersold, P. FDA Experience with Medical Countermeasures under the Animal Rule. Adv. Prev. Med. 2012, 2012, 507571. [Google Scholar] [CrossRef] [Green Version]
- Zohrabian, A.; Hayes Eb Fau-Petersen, L.R.; Petersen, L.R. Cost-effectiveness of West Nile virus vaccination. Emerg. Infect. Dis. 2006, 12, 375. [Google Scholar] [CrossRef]
- Shankar, M.B.; Staples, J.E.; Meltzer, M.I.; Fischer, M. Cost effectiveness of a targeted age-based West Nile virus vaccination program. Vaccine 2017, 35, 3143–3151. [Google Scholar] [CrossRef]
- American Association of Equine Practitioners. West Nile Virus. Available online: https://aaep.org/guidelines/vaccination-guidelines/core-vaccination-guidelines/west-nile-virus (accessed on 2 February 2022).
- Curren, E.J.; Shankar, M.B.; Fischer, M.; Meltzer, M.I.; Erin Staples, J.; Gould, C.V. Cost-Effectiveness and Impact of a Targeted Age- and Incidence-based West Nile Virus Vaccine Strategy. Clin. Infect. Dis. 2021, 73, 1565–1570. [Google Scholar] [CrossRef]
- Nigrovic, L.E.; Thompson, K.M. The Lyme vaccine: A cautionary tale. Epidemiol. Infect. 2007, 135, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Littman, M.P.; Gerber, B.; Goldstein, R.E.; Labato, M.A.; Lappin, M.R.; Moore, G.E. ACVIM consensus update on Lyme borreliosis in dogs and cats. J. Vet. Intern. Med. 2018, 32, 887–903. [Google Scholar] [CrossRef] [PubMed]
- Comstedt, P.; Schüler, W.; Meinke, A.; Lundberg, U. The novel Lyme borreliosis vaccine VLA15 shows broad protection against Borrelia species expressing six different OspA serotypes. PLoS ONE 2017, 12, e0184357. [Google Scholar] [CrossRef]
- Schwartz, A.; Kugeler, K.; Nelson, C.; Marx, G.; Hinckley, A. Use of Commercial Claims Data for Evaluating Trends in Lyme Disease Diagnoses, United States, 2010–2018. Emerg. Infect. Dis. 2021, 27, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Kugeler, K.J.; Schwartz, A.M.; Delorey, M.J.; Mead, P.S.; Hinckley, A.F. Estimating the Frequency of Lyme Disease Diagnoses, United States, 2010–2018. Emerg. Infect. Dis. 2021, 27, 616–619. [Google Scholar] [CrossRef] [PubMed]
- Folegatti, P.M.; Ewer, K.J.; Aley, P.K.; Angus, B.; Becker, S.; Belij-Rammerstorfer, S.; Bellamy, D.; Bibi, S.; Bittaye, M.; Clutterbuck, E.A.; et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020, 396, 467–478. [Google Scholar] [CrossRef]
- AstraZeneca. Two Billion Doses of AstraZeneca’s COVID-19 Vaccine Supplied to Countries Across the World Less than 12 Months after First Approval. Available online: https://www.astrazeneca.com/media-centre/press-releases/2021/two-billion-doses-of-astrazenecas-covid-19-vaccine-supplied-to-countries-across-the-world-less-than-12-months-after-first-approval.html (accessed on 30 March 2022).
- Bosaeed, M.; Balkhy, H.H.; Almaziad, S.; Aljami, H.A.; Alhatmi, H.; Alanazi, H.; Alahmadi, M.; Jawhary, A.; Alenazi, M.W.; Almasoud, A.; et al. Safety and immunogenicity of ChAdOx1 MERS vaccine candidate in healthy Middle Eastern adults (MERS002): An open-label, non-randomised, dose-escalation, phase 1b trial. Lancet Microbe 2022, 3, e11–e20. [Google Scholar] [CrossRef]
- Corbett, K.S.; Edwards, D.K.; Leist, S.R.; Abiona, O.M.; Boyoglu-Barnum, S.; Gillespie, R.A.; Himansu, S.; Schäfer, A.; Ziwawo, C.T.; DiPiazza, A.T.; et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 2020, 586, 567–571. [Google Scholar] [CrossRef]
- Pallesen, J.; Wang, N.; Corbett Kizzmekia, S.; Wrapp, D.; Kirchdoerfer Robert, N.; Turner Hannah, L.; Cottrell Christopher, A.; Becker Michelle, M.; Wang, L.; Shi, W.; et al. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc. Natl. Acad. Sci. USA 2017, 114, E7348–E7357. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, J. Vaccine Hesitancy: A Growing Concern. Pediatric Drugs 2020, 22, 105–111. [Google Scholar] [CrossRef]
- Swartz, M.N. Recognition and Management of Anthrax—An Update. N. Engl. J. Med. 2001, 345, 1621–1626. [Google Scholar] [CrossRef] [PubMed]
- Carlson, C.J.; Kracalik, I.T.; Ross, N.; Alexander, K.A.; Hugh-Jones, M.E.; Fegan, M.; Elkin, B.T.; Epp, T.; Shury, T.K.; Zhang, W.; et al. The global distribution of Bacillus anthracis and associated anthrax risk to humans, livestock and wildlife. Nat. Microbiol. 2019, 4, 1337–1343. [Google Scholar] [CrossRef] [Green Version]
- Bower, W.A.; Schiffer, J.; Atmar, R.L.; Keitel, W.A.; Friedlander, A.M.; Liu, L.; Yu, Y.; Stephens, D.S.; Quinn, C.P.; Hendricks, K. Use of anthrax vaccine in the United States: Recommendations of the Advisory Committee on Immunization Practices, 2019. MMWR Recomm. Rep. 2019, 68, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Medicines Agency. List of Nationally Authorised Medicinal Products: Anthrax Vaccine. Available online: https://www.ema.europa.eu/en/documents/psusa/anthrax-vaccine-list-nationally-authorised-medicinal-products-psusa/00010771/202012_en.pdf (accessed on 28 January 2022).
- WHO. Anthrax in Humans and Animals; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Nelson, C.A.; Saha, S.; Mead, P.S. Cat-Scratch Disease in the United States, 2005–2013. Emerg Infect Dis. 2016, 22, 1741–1746. [Google Scholar] [CrossRef] [PubMed]
- Valneva. Lyme Disease—VLA15. Available online: https://valneva.com/research-development/lyme-disease/ (accessed on 28 January 2022).
- Negrón, M.T.; Rebekah, T.; Grishma, K. Yellowbook; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2020.
- Task Force on Monitoring Animal Disease Eradication. Working Document on Eradication of Bovine, Sheep and Goats Brucellosis in the EU; Task Force on Monitoring Animal Disease Eradication: Valladolid, Spain, 2009. [Google Scholar]
- Van Zandt, K.E.; Greer, M.T.; Gelhaus, H.C. Glanders: An overview of infection in humans. Orphanet. J. Rare Dis. 2013, 8, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Zarodkiewicz, P.; Valvano, M.A. Current Advances in Burkholderia Vaccines Development. Cells 2020, 9, 2671. [Google Scholar] [CrossRef] [PubMed]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.-A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States—Major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef]
- Platts-Mills, J.A.; Kosek, M. Update on the burden of Campylobacter in developing countries. Curr. Opin. Infect. Dis. 2014, 27, 444–450. [Google Scholar] [CrossRef] [Green Version]
- Spickler, A.R.; Leedom Larson, K. Zoonotic Campylobacteriosis. Available online: https://www.cfsph.iastate.edu/Factsheets/pdfs/campylobacteriosis.pdf (accessed on 28 January 2022).
- Centers for Disease Control and Prevention National Center for Immunization and Respiratory Diseases. Psittacosis Fast Facts. Available online: https://www.cdc.gov/pneumonia/atypical/psittacosis/about/fast-facts.html (accessed on 18 January 2022).
- Centers for Disease Control and Prevention National Center for Emerging and Zoonotic Infectious Diseases (NCEZID) Division of Vector-Borne Diseases (DVBD). Q Fever Epidemiology and Statistics. Available online: https://www.cdc.gov/qfever/stats/index.html (accessed on 11 January 2022).
- NSW Health. Q Fever Vaccination Fact Sheet. Available online: https://www.health.nsw.gov.au/Infectious/factsheets/Pages/q-fever-vaccine.aspx (accessed on 21 January 2022).
- European Medicines Agency. EPAR Summary for the Public: Coxevac Inactivated Coxiella Burnetii Vaccine. Available online: https://www.ema.europa.eu/en/documents/overview/coxevac-epar-summary-public_en.pdf (accessed on 28 January 2022).
- Collier, S.A.; Deng, L.; Adam, E.A.; Benedict, K.M.; Beshearse, E.M.; Blackstock, A.J.; Bruce, B.B.; Derado, G.; Edens, C.; Fullerton, K.E.; et al. Estimate of Burden and Direct Healthcare Cost of Infectious Waterborne Disease in the United States. Emerg. Infect. Dis. 2021, 27, 140–149. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Statistics & Maps. Available online: https://www.cdc.gov/easternequineencephalitis/statistics-maps/index.html (accessed on 28 January 2022).
- National Institute of Allergy and Infectious Diseases (NIAID). Eastern Equine Encephalitis Virus Poses Emergent Threat, Say NIAID Officials; National Institute of Allergy and Infectious Diseases (NIAID): Bethesda, MD, USA, 2019.
- Clinicaltrials.gov. Safety and Immunogenicity Study of Eastern Equine Encephalitis (EEE) Vaccine (EEE). Available online: https://clinicaltrials.gov/ct2/show/NCT00584805 (accessed on 28 January 2022).
- Ingelheim, B. Horse Vaccines Available in Canada. Available online: https://www.bicanadaequine.ca/horse-vaccines/vetera-calvenza-potomavac-imrab (accessed on 1 February 2022).
- Centers for Disease Control and Prevention. 2014 Ebola Outbreak in West Africa—Case Counts. Available online: https://www.cdc.gov/vhf/ebola/history/2014-2016-outbreak/index.html (accessed on 21 April 2022).
- Food and Drug Administration. First FDA-Approved Vaccine for the Prevention of Ebola Virus Disease, Marking a Critical Milestone in Public Health Preparedness and Response. Available online: https://www.fda.gov/news-events/press-announcements/first-fda-approved-vaccine-prevention-ebola-virus-disease-marking-critical-milestone-public-health (accessed on 21 April 2022).
- World Health Organization. Ebola Virus Disease: Vaccines. Available online: https://www.who.int/news-room/questions-and-answers/item/ebola-vaccines (accessed on 21 April 2022).
- Gumusova, S.; Sunbul, M.; Leblebicioglu, H. Ebola virus disease and the veterinary perspective. Ann. Clin. Microbiol. Antimicrob. 2015, 14, 30. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. Questions and Answers. Available online: https://www.cdc.gov/ecoli/general/index.html (accessed on 28 January 2022).
- Fleckenstein, J.M. Confronting Challenges to Enterotoxigenic Escherichia coli Vaccine Development. Front. Trop. Dis. 2021, 2, 709907. [Google Scholar] [CrossRef]
- Videnova, K.; Mackay, D.K. Availability of vaccines against major animal diseases in the European Union. Rev. Sci. Tech. OIE 2012, 31, 971–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention, National Center for Emergingc; Zoonotic Infectious Diseases Division of High-Consequence Pathogens and Pathology. Hendra Virus Disease (HeV); Centers for Disease Control and Prevention: Atlanta, GA, USA, 2014.
- Geisbert, T.W.; Bobb, K.; Borisevich, V.; Geisbert, J.B.; Agans, K.N.; Cross, R.W.; Prasad, A.N.; Fenton, K.A.; Yu, H.; Fouts, T.R.; et al. A single dose investigational subunit vaccine for human use against Nipah virus and Hendra virus. NPJ Vaccines 2021, 6, 23. [Google Scholar] [CrossRef] [PubMed]
- Middleton, D.; Pallister, J.; Klein, R.; Feng, Y.-R.; Haining, J.; Arkinstall, R.; Frazer, L.; Huang, J.-A.; Edwards, N.; Wareing, M.; et al. Hendra virus vaccine, a one health approach to protecting horse, human, and environmental health. Emerg. Infect. Dis. 2014, 20, 372–379. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Reported Human Infections with Avian Influenza A Viruses. Available online: https://www.cdc.gov/flu/avianflu/reported-human-infections.htm?web=1&wdLOR=cB47B0E0B-CB0A-4D9C-B55E-5DE023A44938 (accessed on 22 March 2022).
- Centers for Disease Control and Prevention. 2009 H1N1 Pandemic (H1N1pdm09 Virus). Available online: https://www.cdc.gov/flu/pandemic-resources/2009-h1n1-pandemic.html?web=1&wdLOR=c0F50FF36-F606-445E-AE1C-09028FCF89ED (accessed on 22 March 2022).
- World Health Organization. Human infection with avian influenza A(H5) viruses. In Avian Influenza Weekly Update Number 830; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- FDA. H5N1 Influenza Virus Vaccine, Manufactured by Sanofi Pasteur, Inc. Questions and Answers. Available online: https://www.fda.gov/vaccines-blood-biologics/vaccines/h5n1-influenza-virus-vaccine-manufactured-sanofi-pasteur-inc-questions-and-answers (accessed on 1 January 2022).
- World Health Organization. Zoonotic Influenza: Candidate Vaccine Viruses and Potency Testing Reagents. Available online: https://www.who.int/teams/global-influenza-programme/vaccines/who-recommendations/zoonotic-influenza-viruses-and-candidate-vaccine-viruses (accessed on 22 March 2022).
- USDA. Veterinary Biological Products: Licensees and Permittees. Available online: https://www.aphis.usda.gov/animal_health/vet_biologics/publications/currentprodcodebook.pdf (accessed on 22 March 2022).
- Guyonnet, V.; Peters, A.R. Are current avian influenza vaccines a solution for smallholder poultry farmers? Gates Open Res. 2020, 4, 122. [Google Scholar] [CrossRef]
- World Health Organization. Japanese Encephalitis. Available online: https://www.who.int/news-room/fact-sheets/detail/japanese-encephalitis (accessed on 18 January 2022).
- USDA APHIS. Disease Response Strategy: Japanese Encephalitis. Available online: https://www.aphis.usda.gov/animal_health/emergency_management/downloads/disease_strategy_jev.pdf (accessed on 1 February 2022).
- WHO. Leishmaniasis. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 11 February 2022).
- Lage, D.P.; Ribeiro, P.A.F.; Dias, D.S.; Mendonça, D.V.C.; Ramos, F.F.; Carvalho, L.M.; de Oliveira, D.; Steiner, B.T.; Martins, V.T.; Perin, L.; et al. A candidate vaccine for human visceral leishmaniasis based on a specific T cell epitope-containing chimeric protein protects mice against Leishmania infantum infection. NPJ Vaccines 2020, 5, 75. [Google Scholar] [CrossRef]
- Malvolti, S.; Malhame, M.; Mantel, C.F.; Le Rutte, E.A.; Kaye, P.M. Human leishmaniasis vaccines: Use cases, target population and potential global demand. PLOS Negl. Trop. Dis. 2021, 15, e0009742. [Google Scholar] [CrossRef]
- European Medicines Agency. Letifend Canine Leishmaniasis Vaccine (Recombinant Protein). Available online: https://www.ema.europa.eu/en/documents/overview/letifend-epar-summary-public_en.pdf (accessed on 1 February 2022).
- Centers for Disease Control and Prevention. Leptospirosis. Available online: https://wwwnc.cdc.gov/travel/diseases/leptospirosis (accessed on 28 January 2022).
- Xu, Y.; Ye, Q. Human leptospirosis vaccines in China. Hum. Vaccin. Immunother. 2018, 14, 984–993. [Google Scholar] [CrossRef]
- European Medicines Agency. Nobivac L4: Vaccine to Prevent Leptospira Infections in Dogs; European Medicines Agency: Amsterdam, The Netherlands, 2021.
- WHO. Mers Situation Update|October 2021. Available online: https://applications.emro.who.int/docs/WHOEMCSR471E-eng.pdf?ua=1 (accessed on 28 January 2022).
- Modjarrad, K.; Roberts, C.C.; Mills, K.T.; Castellano, A.R.; Paolino, K.; Muthumani, K.; Reuschel, E.L.; Robb, M.L.; Racine, T.; Oh, M.-d.; et al. Safety and immunogenicity of an anti-Middle East respiratory syndrome coronavirus DNA vaccine: A phase 1, open-label, single-arm, dose-escalation trial. Lancet Infect. Dis. 2019, 19, 1013–1022. [Google Scholar] [CrossRef] [Green Version]
- van Doremalen, N.; Haddock, E.; Feldmann, F.; Meade-White, K.; Bushmaker, T.; Fischer, R.J.; Okumura, A.; Hanley, P.W.; Saturday, G.; Edwards, N.J.; et al. A single dose of ChAdOx1 MERS provides broad protective immunity against a variety of MERS-CoV strains. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention National Center for Emerging and Zoonotic Infectious Diseases (NCEZID); Tuberculosis Prevention Division of HIV/AIDS Prevention. Mycobacterium bovis (Bovine Tuberculosis) in Humans; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2011.
- Li, J.; Zhan, L.; Qin, C. The double-sided effects of Mycobacterium Bovis bacillus Calmette–Guérin vaccine. NPJ Vaccines 2021, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Buddle, B.M.; Wedlock, D.N.; Denis, M. Progress in the development of tuberculosis vaccines for cattle and wildlife. Vet. Microbiol. 2006, 112, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of High-Consequence Pathogens and Pathology (DHCPP), Viral Special Pathogens Branch (VSPB). What Is Nipah Virus? Available online: https://www.cdc.gov/vhf/nipah/about/index.html (accessed on 28 January 2022).
- Keshwara, R.; Shiels, T.; Postnikova, E.; Kurup, D.; Wirblich, C.; Johnson, R.F.; Schnell, M.J. Rabies-based vaccine induces potent immune responses against Nipah virus. NPJ Vaccines 2019, 4, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, T.C.S.; Abdelmalek, J.; Yee, B.; Lavergne, S.; Ritter, M. Pasteurella multocida line infection: A case report and review of literature. BMC Infect. Dis. 2018, 18, 420. [Google Scholar] [CrossRef]
- Mostaan, S.; Ghasemzadeh, A.; Sardari, S.; Shokrgozar, M.A.; Nikbakht Brujeni, G.; Abolhassani, M.; Ehsani, P.; Asadi Karam, M.R. Pasteurella multocida Vaccine Candidates: A Systematic Review. Avicenna J. Med. Biotechnol. 2020, 12, 140–147. [Google Scholar]
- Centers for Disease Control and Prevention National Center for Emerging and Zoonotic Infectious Diseases (NCEZID) Division of High-Consequence Pathogens and Pathology (DHCPP). Human Rabies. Available online: https://www.cdc.gov/rabies/location/usa/surveillance/human_rabies.html (accessed on 28 January 2022).
- Centers for Disease Control and Prevention National Center for Immunization and Respiratory Diseases. Rabies VIS. Available online: https://www.cdc.gov/vaccines/hcp/vis/vis-statements/rabies.html (accessed on 7 January 2022).
- European Medicines Agency. Purevax Rabies; European Medicines Agency: Amsterdam, The Netherlands, 2021.
- Centers for Disease Control and Prevention. Epidemiology and Statistics. Available online: https://www.cdc.gov/rmsf/stats/index.html#anchor_1531851121362 (accessed on 1 April 2022).
- Parola, P.; Paddock, C.D.; Socolovschi, C.; Labruna, M.B.; Mediannikov, O.; Kernif, T.; Abdad, M.Y.; Stenos, J.; Bitam, I.; Fournier, P.-E.; et al. Update on tick-borne rickettsioses around the world: A geographic approach. Clin. Microbiol. Rev. 2013, 26, 657–702. [Google Scholar] [CrossRef] [Green Version]
- Kansas State University. New $3.68 Million NIH Grant Supports Rocky Mountain Spotted Fever Vaccine. Available online: https://www.k-state.edu/media/newsreleases/2021-09/ganta-nih-grant.html (accessed on 1 April 2022).
- World Health Organization. Rift Valley Fever. Available online: https://www.who.int/teams/health-product-policy-and-standards/standards-and-specifications/vaccine-standardization/rift-valley-fever (accessed on 21 January 2022).
- Faburay, B.; LaBeaud, A.D.; McVey, D.S.; Wilson, W.C.; Richt, J.A. Current Status of Rift Valley Fever Vaccine Development. Vaccines 2017, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- Majowicz, S.E.; Musto, J.; Scallan, E.; Angulo, F.J.; Kirk, M.; O’Brien, S.J.; Jones, T.F.; Fazil, A.; Hoekstra, R.M.; for the International Collaboration on Enteric Disease “Burden of Illness”. The Global Burden of Nontyphoidal Salmonella Gastroenteritis. Clin. Infect. Dis. 2010, 50, 882–889. [Google Scholar] [CrossRef] [Green Version]
- Galen, J.E.; Buskirk, A.D.; Tennant, S.M.; Pasetti, M.F. Live Attenuated Human Salmonella Vaccine Candidates: Tracking the Pathogen in Natural Infection and Stimulation of Host Immunity. EcoSal Plus 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Vivotif. Vivotif Package Insert USA—Updated September 2013—Increase of Upper Specification Limit; Vivotif: Redwood City, CA, USA, 2013.
- Gaffga, N.H.; Behravesh, C.B.; Ettestad, P.J.; Smelser, C.B.; Rhorer, A.R.; Cronquist, A.B.; Comstock, N.A.; Bidol, S.A.; Patel, N.J.; Gerner-Smidt, P.; et al. Outbreak of Salmonellosis Linked to Live Poultry from a Mail-Order Hatchery. N. Engl. J. Med. 2012, 366, 2065–2073. [Google Scholar] [CrossRef] [Green Version]
- WHO. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 28 February 2022).
- Vaccine Tracker. 10 Vaccines Granted Emergency Use Listing (EUL) by WHO. Available online: https://covid19.trackvaccines.org/agency/who/ (accessed on 20 February 2022).
- Galkina, T.S.; Borisov, A.V.; Chvala, I.A.; Kononov, A.V. Creation of a vaccine against coronavirus infection (COVID-19) of carnivores “Karnivak-Kov”. Vet. Med. Today 2021, 2, 82–87. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention Global Health. Parasites—Toxoplasmosis (Toxoplasma infection) Epidemiology & Risk Factors. Available online: https://www.cdc.gov/parasites/toxoplasmosis/epi.html (accessed on 1 February 2022).
- Ramakrishnan, C.; Maier, S.; Walker, R.A.; Rehrauer, H.; Joekel, D.E.; Winiger, R.R.; Basso, W.U.; Grigg, M.E.; Hehl, A.B.; Deplazes, P.; et al. An experimental genetically attenuated live vaccine to prevent transmission of Toxoplasma gondii by cats. Sci. Rep. 2019, 9, 1474. [Google Scholar] [CrossRef] [PubMed]
- Rivas, F.; Diaz, L.A.; Cardenas, V.M.; Daza, E.; Bruzon, L.; Alcala, A.; De la Hoz, O.; Caceres, F.M.; Aristizabal, G.; Martinez, J.W.; et al. Epidemic Venezuelan equine encephalitis in La Guajira, Colombia, 1995. J. Infect. Dis. 1997, 175, 828–832. [Google Scholar] [CrossRef] [PubMed]
- Simon, L.V.; Coffey, R.; Fischer, M.A. Western Equine Encephalitis. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470228/ (accessed on 28 January 2022).
- Keshtkar-Jahromi, M.; Reisler, R.B.; Haller, J.M.; Clizbe, D.P.; Rivard, R.G.; Cardile, A.P.; Pierson, B.C.; Norris, S.; Saunders, D.; Pittman, P.R. The Western Equine Encephalitis Lyophilized, Inactivated Vaccine: An Update on Safety and Immunogenicity. Front. Immunol. 2020, 11, 2676. [Google Scholar] [CrossRef] [PubMed]
- Clinicaltrials.gov. Western Equine Encephalitis Vaccine, Inactivated (WEE). Available online: https://clinicaltrials.gov/ct2/show/NCT01159561 (accessed on 11 February 2022).
- Centers for Disease Control and Prevention National Center for Emerging and Zoonotic Infectious Diseases (NCEZID) Division of Vector-Borne Diseases (DVBD). West Nile Virus Final Maps & Data for 1999–2020. Available online: https://www.cdc.gov/westnile/statsmaps/final.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fwestnile%2Fstatsmaps%2Fpreliminarymapsdata%2Findex.html (accessed on 11 January 2022).
- Staples, J.E.; Shankar, M.B.; Sejvar, J.J.; Meltzer, M.I.; Fischer, M. Initial and long-term costs of patients hospitalized with West Nile virus disease. Am. J. Trop. Med. Hyg. 2014, 90, 402–409. [Google Scholar] [CrossRef]
- National Institute of Allergy and Infectious Diseases. West Nile Virus Vaccines. Available online: https://www.niaid.nih.gov/diseases-conditions/wnv-vaccines (accessed on 1 February 2022).
- European Medicines Agency. Proteq West Nile West Nile Fever Vaccine (Live Recombinant). Available online: https://www.ema.europa.eu/en/medicines/veterinary/EPAR/proteq-west-nileWest (accessed on 11 January 2022).
- Centers for Disease Control and Prevention. Frequently Asked Questions about Plague. Available online: https://www.cdc.gov/plague/faq/index.html (accessed on 6 February 2022).
- Feodorova, V.A.; Corbel, M.J. Prospects for new plague vaccines. Expert Rev. Vaccines 2009, 8, 1721–1738. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carpenter, A.; Waltenburg, M.A.; Hall, A.; Kile, J.; Killerby, M.; Knust, B.; Negron, M.; Nichols, M.; Wallace, R.M.; Behravesh, C.B.; et al. Vaccine Preventable Zoonotic Diseases: Challenges and Opportunities for Public Health Progress. Vaccines 2022, 10, 993. https://doi.org/10.3390/vaccines10070993
Carpenter A, Waltenburg MA, Hall A, Kile J, Killerby M, Knust B, Negron M, Nichols M, Wallace RM, Behravesh CB, et al. Vaccine Preventable Zoonotic Diseases: Challenges and Opportunities for Public Health Progress. Vaccines. 2022; 10(7):993. https://doi.org/10.3390/vaccines10070993
Chicago/Turabian StyleCarpenter, Ann, Michelle A. Waltenburg, Aron Hall, James Kile, Marie Killerby, Barbara Knust, Maria Negron, Megin Nichols, Ryan M. Wallace, Casey Barton Behravesh, and et al. 2022. "Vaccine Preventable Zoonotic Diseases: Challenges and Opportunities for Public Health Progress" Vaccines 10, no. 7: 993. https://doi.org/10.3390/vaccines10070993
APA StyleCarpenter, A., Waltenburg, M. A., Hall, A., Kile, J., Killerby, M., Knust, B., Negron, M., Nichols, M., Wallace, R. M., Behravesh, C. B., McQuiston, J. H., & the Vaccine Preventable Zoonotic Disease Working Group. (2022). Vaccine Preventable Zoonotic Diseases: Challenges and Opportunities for Public Health Progress. Vaccines, 10(7), 993. https://doi.org/10.3390/vaccines10070993