Tracking HPV Infection, Associated Cancer Development, and Recent Treatment Efforts—A Comprehensive Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Biology of Human Papillomavirus (HPV)
3.2. HPV and Host–Virus Interactions
3.3. Carcinogenic Cellular Transformation by HPV
3.4. Co-Infection with Other Viruses
3.4.1. Co-Infection of HPV with Human Immunodeficiency Virus (HIV)
3.4.2. Co-Infection of HPV and Epstein–Barr Virus (EBV)
3.4.3. Co-Infection of HPV with Herpes Simplex Virus (HSV)
3.4.4. Co-Infections of HPV and Bacteria (Microbiota)
Sr.No. | Co-Infection of HPV with Other Pathogens | Number of Samples/Patients | Methods of Detection | Clinical Implications | Cancer Incidence | References |
---|---|---|---|---|---|---|
1. | HIV/HPV co-infection | 56 | Antibody capture and chemiluminescent signal detection. | Atypical squamous cells | Anal squamous cell carcinoma (ASCC), low-grade squamous intraepithelial lesion | [66] |
2. | HIV-1, HTLV-1, and other Oncogenic viruses’ co-infection (EBV, HBV, HCV, HDV, and HPV) | --- | Systematic analyses | Neurocognitive disorders, Neuroinflammation, Neurodegeneration and cancer | HIV-1-associated cancers and adult T cell leukemia/lymphoma (ATL) | [67] |
3. | Co-infection with six pathogenic stis, HIV-1 and HSV 1 and 2 | 205 | Multiplex PCR STD direct flow chip assay and Hybrid Capture-2 assay. | Co-infection with ≥2 pathogens (52.7%) | Cervical cancer | [68] |
4. | HIV/HPV co-infection | 300 | Prospective cohort study. | HPV persistence −46% | Cervical intraepithelial neoplasia Grade 2 | [69] |
5. | HIV/HPV co-infection | 51 articles | Systematic review | Prevalence of HPV (41%), HPV52 (17%), and HPV58 (14%). | Anal and cervical cancer | [70] |
6. | ||||||
7. | HPV/EBV Co-infection | 166 | Type-specific PCR/nested-PCR and sequencing | 2 cases involved co-infection | Head and neck squamous cell carcinoma | [71] |
8. | Co-infection with HPV, EBV and Merkel Cell polyomavirus (MCPYV) | 144 | Quantitative real-time PCR | Infection with at least two viruses 21.1% | Oral irritation fibroma and Oral squamous cell carcinoma | [57] |
9. | HPV/EBV Co-infection | 63 | Genotyping using SPF10 PCR-DEIA-lipa25 system. | Co-infection (57.9%)EBV and HPV persistent infections | Oropharyngeal cancer (OPC) | [72] |
10. | HPV, EBV and Candida albicans co-infection | 30 | Histological analyses and PCR | EBV (73.3%), HPV (43.3%), and C. Albicans (23.3%). Oral leukoplakia with dysplastic changes. | Oral leukoplakia | [73] |
11. | HPV/EBV Co-infection | 63 | -- | Epstein–Barr virus (EBV) and oral HPV16/18 persistence | Oral carcinoma | [74] |
12. | HPV/EBV Co-infection | 90 | In situ hybridization with commercial EBER1 and HPV16/18 probes | 10% EBV/HPV co-infection | Nasopharyngeal carcinoma | [75] |
13. | HPV/EBV Co-infection | 84 | Microarray data analyses and cell line cultures | EBV and HPV co infection (27.4%) in tumor tissues and (4.8%) in normal tissues | Oral Squamous-Cell Carcinoma | [76] |
14. | HPV/EBV Co-infection | 108 | Real-time PCR | EBV (27.8%) HPV (13%) and Co-infection by EBV and HPV (5.6%) | Oral cancer | [77] |
15. | Co-infection of HPV with HSV and (Chlamydia trachomatis, Trichomonas vaginalis) | 300 | Polymerase chain reaction (PCR). | At least 3% different co-infections | Cervical cancer | [78] |
16. | EBV, HPV and HSV co-infections | 319 | Enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase-polymerase chain | (EBV and HPV Co-infection) = (1.6%), (EBV and HSV-2 co-infection) = (14.4%), (HPV and HSV-2 co-infection) = (6.9%) and (EBV, HPV and HSV-2 tri-infection) = (16.6%). | Mono, di and tri- viral infections | [79] |
17. | HPV, HSV, and Chlamydia trachomatis co-infection | 318 | Polymerase Chain Reaction method and Restriction Fragment Length Polymorphism (RFLP) | The HPV prevalence (42%) C. Trachomatis (16%) HSV (3%) and co-infections HPV-C (4%) | Oral squamous cell carcinomas (OSCC) | [80] |
18. | HPV/HSV co-infection | 137 | Multi-site HPV testing and P18 Cohort Study assessments. | HPV and HSV co-infection 95% | Anal cancer | [81] |
19. | Infection by Cytomegalovirus, Epstein–Barr virus (EBV), HSV 1 and 2, 6, varicella zoster virus and HPV | 18 | Real-time polymerase chain reaction | EBV (33.3%) and Human herpesvirus 6 (16.7%) | Adult-onset recurrent respiratory papillomatosis (AORRP) | [82] |
20. | Co-infections of high-risk human papillomavirus (hrhpv) and important mycoplasmas including Mycoplasma hominis, M. Genitalium, Ureaplasma urealyticum and U. Parvum | 283 | Polymerase chain reaction (PCR) and real-time PCR (rt-PCR) | Hrhpv 12.7% and mycoplasmas 53.7% | Low-Grade Squamous Intraepithelial Cervical Lesions | [83] |
21. | HPV co-infection with stis and bacterial vaginosis (BV) | Real-time (RT) PCR assays | BV- and/or STI-positive > 50% | Cervical cancer. | [84] | |
22. | Mycoplasma hominis (Mh) and Ureaplasma urealyticum (Uu) HPV co-infection | 120 | Molecular analyses | HPV (83.9%). HPV and Uu co-infection higher in invasive cancer. | Cervical intraepithelial neoplasia and carcinoma | [85] |
23. | HPV co-infection with Ureaplasma spp., Mycoplasma spp., Chlamydia trachomatis, and Neisseria gonorrheae | 44 | PCR assays | HPV 75% and 22.73% co-infection with Ureaplasma spp. and 9.09% with Mycoplasma spp. | Cervical cancer | [86] |
3.5. Prospective Therapeutics Strategies against HPV-Associated Health Complications
3.6. Future Vaccination Focus for HPV-Associated Afflictions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tommasino, M. The biology of beta human papillomaviruses. Virus Res. 2017, 231, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Harden, M.E.; Munger, K. Human papillomavirus molecular biology. Mutat. Res./Rev. Mutat. Res. 2017, 772, 3–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiraz, A.; Egawa, N.; Pelt, D.M.; Crawford, R.; Nicholas, A.K.; Romashova, V.; Sasieni, P.; Griffin, H.; Doorbar, J. Cervical cell lift: A novel triage method for the spatial mapping and grading of precancerous cervical lesions. EBioMedicine 2022, 82, 104157. [Google Scholar] [CrossRef] [PubMed]
- Haedicke, J.; Iftner, T. Human papillomaviruses and cancer. Radiother. Oncol. 2013, 108, 397–402. [Google Scholar] [CrossRef]
- CDC. Center for Disease Control and Prevention. Available online: https://www.cdc.gov/hpv/index.html#:~:text=Human%20Papillomavirus%20(HPV),-Related%20Pagestext=HPV%20is%20a%20common%20virus%20that%20can%20lead%20to%20certain,vaccine%20can%20prevent%20these%20cancers.text=HPV%20vaccination%20is%20very%20safe,and%20the (accessed on 25 November 2022).
- Schiffman, M.; Doorbar, J.; Wentzensen, N.; De Sanjosé, S.; Fakhry, C.; Monk, B.J.; Stanley, M.A.; Franceschi, S. Carcinogenic human papillomavirus infection. Nat. Rev. Dis. Prim. 2016, 2, 16086. [Google Scholar] [CrossRef]
- Lehtinen, M.; Pimenoff, V.N.; Nedjai, B.; Louvanto, K.; Verhoef, L.; Heideman, D.A.; El-Zein, M.; Widschwendter, M.; Dillner, J. Assessing the risk of cervical neoplasia in the post-HPV vaccination era. Int. J. Cancer 2022. [Google Scholar] [CrossRef]
- Doorbar, J.; Quint, W.; Banks, L.; Bravo, I.G.; Stoler, M.; Broker, T.R.; Stanley, M.A. The biology and life-cycle of human papillomaviruses. Vaccine 2012, 30, F55–F70. [Google Scholar] [CrossRef]
- Lei, J. Prevention and Prognosis of Cervical Cancer: The Interplay of Human Papillomavirus, Vaccination and Screening. Ph.D. Thesis, Karolinska Institutet, Stockholm, Sweden, 2022. [Google Scholar]
- De Marco, F. Oxidative stress and HPV carcinogenesis. Viruses 2013, 5, 708–731. [Google Scholar] [CrossRef]
- Pinidis, P.; Tsikouras, P.; Iatrakis, G.; Zervoudis, S.; Koukouli, Z.; Bothou, A.; Galazios, G.; Vladareanu, S. Human papilloma virus’ life cycle and carcinogenesis. Maedica 2016, 11, 48. [Google Scholar]
- Doorbar, J.; Jenkins, D.; Stoler, M.H.; Bergeron, C. Biology of the Human Papillomavirus Life Cycle: The Basis for Understanding the Pathology of Precancer and Cancer. In Human Papillomavirus; Academic Press: Cambridge, MA, USA, 2020; pp. 67–83. [Google Scholar]
- Aksoy, P.; Gottschalk, E.Y.; Meneses, P.I. HPV entry into cells. Mutat. Res. /Rev. Mutat. Res. 2017, 772, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Tommasino, M. The human papillomavirus family and its role in carcinogenesis. In Seminars in Cancer Biology; Academic Press: Cambridge, MA, USA, 2014; Volume 26, pp. 13–21. [Google Scholar]
- Cosper, P.F.; Bradley, S.; Luo, Q.; Kimple, R.J. Biology of HPV Mediated Carcinogenesis and Tumor Progression. In Seminars in Radiation Oncology; WB Saunders: Philadelphia, PA, USA, 2021; Volume 31, pp. 265–273. [Google Scholar]
- Bienkowska-Haba, M.; Luszczek, W.; Myers, J.E.; Keiffer, T.R.; DiGiuseppe, S.; Polk, P.; Bodily, J.M.; Scott, R.S.; Sapp, M. A new cell culture model to genetically dissect the complete human papillomavirus life cycle. PLoS Pathog. 2018, 14, e1006846. [Google Scholar] [CrossRef] [PubMed]
- Porter, S.S.; Stepp, W.H.; Stamos, J.D.; McBride, A.A. Host cell restriction factors that limit transcription and replication of human papillomavirus. Virus Res. 2017, 231, 10–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, N.A. mSphere of Influence: The Value of Simplicity in Experiments and Solidarity among Lab Members. Msphere 2019, 4, e00172-19. [Google Scholar] [CrossRef] [Green Version]
- Spurgeon, M.E.; Lambert, P.F. Human papillomavirus and the stroma: Bidirectional crosstalk during the virus life cycle and carcinogenesis. Viruses 2017, 9, 219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campos, S.K. Subcellular trafficking of the papillomavirus genome during initial infection: The remarkable abilities of minor capsid protein L2. Viruses 2017, 9, 370. [Google Scholar] [CrossRef] [Green Version]
- Kajitani, N.; Satsuka, A.; Kawate, A.; Sakai, H. Productive lifecycle of human papillomaviruses that depends upon squamous epithelial differentiation. Front. Microbiol. 2012, 3, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Della Fera, A.N.; Warburton, A.; Coursey, T.L.; Khurana, S.; McBride, A.A. Persistent human papillomavirus infection. Viruses 2021, 13, 321. [Google Scholar] [CrossRef]
- Kuguyo, O.; Dube Mandishora, R.S.; Thomford, N.E.; Makunike-Mutasa, R.; Nhachi, C.F.; Matimba, A.; Dandara, C. High-risk HPV genotypes in Zimbabwean women with cervical cancer: Comparative analyses between HIV-negative and HIV-positive women. PLoS ONE 2021, 16, e0257324. [Google Scholar] [CrossRef]
- Giuliano, A.R.; Nyitray, A.G.; Kreimer, A.R.; Pierce Campbell, C.M.; Goodman, M.T.; Sudenga, S.L.; Monsonego, J.; Franceschi, S. E UROGIN 2014 roadmap: Differences in human papillomavirus infection natural history, transmission and human papillomavirus-related cancer incidence by gender and anatomic site of infection. Int. J. Cancer 2014, 136, 2752–2760. [Google Scholar]
- Leto, M.D.; Santos Júnior, G.F.; Porro, A.M.; Tomimori, J. Human papillomavirus infection: Etiopathogenesis, molecular biology and clinical manifestations. An. Bras. De Dermatol. 2011, 86, 306–317. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Xu, M.; Sun, J.; Li, R.; Li, M.; Wang, J.; Zhang, D.; Xu, A. Human papillomavirus infection and vaccination: Awareness and knowledge of HPV and acceptability of HPV vaccine among mothers of teenage daughters in Weihai, Shandong, China. PLoS ONE 2016, 11, e0146741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartwig, S.; Syrjänen, S.; Dominiak-Felden, G.; Brotons, M.; Castellsagué, X. Estimation of the epidemiological burden of human papillomavirus-related cancers and non-malignant diseases in men in Europe: A review. BMC Cancer 2012, 12, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Zheng, Z.M. Human papillomavirus type 16 circular RNA is barely detectable for the claimed biological activity. Mbio 2022, 13, e03594-21. [Google Scholar] [CrossRef]
- Rosales, R.; Rosales, C. Immune therapy for human papillomaviruses-related cancers. World J. Clin. Oncol. 2014, 5, 1002. [Google Scholar] [CrossRef]
- De Martel, C.; Plummer, M.; Vignat, J.; Franceschi, S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int. J. Cancer 2017, 141, 664–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiffman, M.; Castle, P.E.; Jeronimo, J.; Rodriguez, A.C.; Wacholder, S. Human papillomavirus and cervical cancer. Lancet 2013, 382, 889–899. [Google Scholar] [CrossRef] [PubMed]
- Hoppe-Seyler, K.; Bossler, F.; Lohrey, C.; Bulkescher, J.; Rösl, F.; Jansen, L.; Mayer, A.; Vaupel, P.; Dürst, M.; Hoppe-Seyler, F. Induction of dormancy in hypoxic human papillomavirus-positive cancer cells. Proc. Natl. Acad. Sci. USA 2017, 114, E990–E998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Pan, W.; Jin, L.; Huang, W.; Li, Y.; Wu, D.; Gao, C.; Ma, D.; Liao, S. Human papillomavirus vaccine against cervical cancer: Opportunity and challenge. Cancer Lett. 2020, 471, 88–102. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin-Drubin, M.E. Human papillomaviruses and non-melanoma skin cancer. In Seminars in Oncology; WB Saunders: Philadelphia, PA, USA, 2015; Volume 42, pp. 284–290. [Google Scholar]
- Bansal, A.; Singh, M.P.; Rai, B. Human papillomavirus-associated cancers: A growing global problem. Int. J. Appl. Basic Med. Res. 2016, 6, 84. [Google Scholar]
- Alkhilaiwi, F.; Yuan, H. Detection of HPV RNA in Extracellular Vesicles from Neuroendocrine Cervical Cancer Cells. Viruses 2022, 14, 2226. [Google Scholar] [CrossRef]
- Viens, L.J.; Henley, S.J.; Watson, M.; Markowitz, L.E.; Thomas, C.C.; DThompson, T.; Razzaghi, H.; Saraiya, M. Human papillomavirus–associated cancers—United States. Morb. Mortal. Wkly. Rep. 2016, 65, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, C.L.; Bertoli, H.K.; Sand, F.L.; Kjær, A.K.; Thomsen, L.T.; Kjær, S.K. The prognostic significance of HPV, p16, and p53 protein expression in vaginal cancer: A systematic review. Acta Obstet. Et Gynecol. Scand. 2021, 100, 2144–2156. [Google Scholar] [CrossRef]
- Soto, D.; Song, C.; McLaughlin-Drubin, M.E. Epigenetic alterations in human papillomavirus-associated cancers. Viruses 2017, 9, 248. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Ploner, A.; Elfström, K.M.; Wang, J.; Roth, A.; Fang, F.; Sundström, K.; Dillner, J.; Sparén, P. HPV vaccination and the risk of invasive cervical cancer. N. Engl. J. Med. 1340, 2020, 383–1348. [Google Scholar]
- WHO. World Health Organization (WHO). Available online: https://www.who.int/news-room/fact-sheets/detail/cervical-cancer#:~:text=HPV%20and%20cervical%20Cancer,some%20may%20be%20repeatedly%20infected (accessed on 20 November 2022).
- Wang, M.B.; Liu, I.Y.; Gornbein, J.A.; Nguyen, C.T. HPV-positive oropharyngeal carcinoma: A systematic review of treatment and prognosis. Otolaryngol.-Head Neck Surg. 2015, 153, 758–769. [Google Scholar] [CrossRef]
- Lacey, C.J. HPV vaccination in HIV infection. Papillomavirus Res. 2019, 8, 100174. [Google Scholar] [CrossRef]
- Cachay, E.R.; Mathews, W.C. Human papillomavirus, anal cancer, and screening considerations among HIV-infected individuals. AIDS Rev. 2013, 15, 122–133. [Google Scholar] [PubMed]
- Boscolo-Rizzo, P.; Pawlita, M.; Holzinger, D. From HPV-positive towards HPV-driven oropharyngeal squamous cell carcinomas. Cancer Treat. Rev. 2016, 42, 24–29. [Google Scholar] [CrossRef]
- Hermansson, R.S.; Olovsson, M.; Hoxell, E.; Lindström, A.K. HPV prevalence and HPV-related dysplasia in elderly women. PLoS ONE 2018, 13, e0189300. [Google Scholar] [CrossRef] [Green Version]
- Wallace, N.A. Cutaneous Human Papillomaviruses as Co-Factors in Non-Melanoma Skin Cancer. MANHATTAN, Report Publihed by Defence Technical Informtion System. 2020. Available online: https://apps.dtic.mil/sti/pdfs/AD1114590.pdf (accessed on 20 November 2022).
- de Sanjose, S.; Brotons, M.; Pavon, M.A. The natural history of human papillomavirus infection. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 47, 2–13. [Google Scholar] [CrossRef]
- Castellsagué, X.; Muñoz, N.; Pitisuttithum, P.; Ferris, D.; Monsonego, J.; Ault, K.; Luna, J.; Myers, E.; Mallary, S.; Bautista, O.M.; et al. End-of-study safety, immunogenicity, and efficacy of quadrivalent HPV (types 6, 11, 16, 18) recombinant vaccine in adult women 24–45 years of age. Br. J. Cancer 2011, 105, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Jones, S. HPV Biology in VIN: Viral Biomarkers to Predict Response to Treatment. Ph.D. Thesis, Cardiff University, Cardiff, UK, 2016. [Google Scholar]
- Berman, T.A.; Schiller, J.T. Human papillomavirus in cervical cancer and oropharyngeal cancer: One cause, two diseases. Cancer 2017, 123, 2219–2229. [Google Scholar] [CrossRef] [PubMed]
- Khodabandehlou, N.; Mostafaei, S.; Etemadi, A.; Ghasemi, A.; Payandeh, M.; Hadifar, S.; Norooznezhad, A.H.; Kazemnejad, A.; Moghoofei, M. Human papilloma virus and breast cancer: The role of inflammation and viral expressed proteins. BMC Cancer 2019, 19, 61. [Google Scholar] [CrossRef] [Green Version]
- Badial, R.M.; Dias, M.C.; Stuqui, B.; dos Santos Melli, P.P.; Quintana, S.M.; do Bonfim, C.M.; Cordeiro, J.A.; Rabachini, T.; de Freitas Calmon, M.; Provazzi, P.J.; et al. Detection and genotyping of human papillomavirus (HPV) in HIV-infected women and its relationship with HPV/HIV co-infection. Medicine 2018, 97, e9545. [Google Scholar] [CrossRef] [PubMed]
- Pérez-González, A.; Cachay, E.; Ocampo, A.; Poveda, E. Update on the Epidemiological Features and Clinical Implications of Human Papillomavirus Infection (HPV) and Human Immunodeficiency Virus (HIV) Coinfection. Microorganisms 2022, 10, 1047. [Google Scholar] [CrossRef]
- Gurmu, E.D.; Bole, B.K.; Koya, P.R. Mathematical model for co-infection of HPV with cervical cancer and HIV with AIDS diseases. Int. J. Sci. Res. Math. Stat. Sci. 2020, 7, 107–121. [Google Scholar]
- Drop, B.; Strycharz-Dudziak, M.; Kliszczewska, E.; Polz-Dacewicz, M. Coinfection with Epstein–barr Virus (EBV), Human Papilloma Virus (HPV) and Polyoma BK Virus (BKPyV) in laryngeal, oropharyngeal and oral cavity cancer. Int. J. Mol. Sci. 2017, 18, 2752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saber Amoli, S.; Hasanzadeh, A.; Sadeghi, F.; Chehrazi, M.; Seyedmajidi, M.; Zebardast, A.; Yahyapour, Y. Prevalence of Co-infection by Human Papillomavirus, Epstein-Barr Virus and Merkel Cell Polyomavirus in Iranian Oral Cavity Cancer and Pre-malignant Lesions. Int. J. Mol. Cell. Med. 2022, 11, 64–77. [Google Scholar]
- Shi, Y.; Peng, S.L.; Yang, L.F.; Chen, X.; Tao, Y.G.; Cao, Y. Co-infection of Epstein-Barr virus and human papillomavirus in human tumorigenesis. Chin. J. Cancer 2016, 35, 16. [Google Scholar] [CrossRef] [Green Version]
- Bahena-Román, M.; Sánchez-Alemán, M.A.; Contreras-Ochoa, C.O.; Lagunas-Martínez, A.; Olamendi-Portugal, M.; López-Estrada, G.; Delgado-Romero, K.; Guzmán-Olea, E.; Madrid-Marina, V.; Torres-Poveda, K. Prevalence of active infection by herpes simplex virus type 2 in patients with high-risk human papillomavirus infection. J. Med. Virol. 1246, 2020, 92–1252. [Google Scholar] [CrossRef]
- Bakir, A.; Alacam, S.; Guney, M.; Yavuz, M.T. Investigation of herpes simplex virus type 2 seroprevalence in all age groups. Ann. Med. Res. 2022, 29, 346. [Google Scholar]
- Francis, A.Y.; Oksana, D.; Timmy, D.E.; Richard, A.H.; Mohammed, S.M. Co-infection prevalence of herpes simplex virus types 1 and 2 with human papillomavirus and associated risk factors among asymptomatic women in Ghana. Int. J. Infect. Dis. Ther. 2018, 3, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Dworzański, J.; Drop, B.; Kliszczewska, E.; Strycharz-Dudziak, M.; Polz-Dacewicz, M. Prevalence of Epstein-Barr virus, human papillomavirus, cytomegalovirus and herpes simplex virus type 1 in patients with diabetes mellitus type 2 in south-eastern Poland. PLoS ONE 2019, 14, e0222607. [Google Scholar] [CrossRef] [PubMed]
- Robayo, D.A.; Erira, H.A.; Jaimes, F.O.; Torres, A.M.; Galindo, A.I. Oropharyngeal squamous cell carcinoma: Human papilloma virus coinfection with Streptococcus anginosus. Braz. Dent. J. 2019, 30, 626–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suehiro, T.T.; Malaguti, N.; Damke, E.; Uchimura, N.S.; Gimenes, F.; Souza, R.P.; da Silva, V.R.; Consolaro, M.E. Association of human papillomavirus and bacterial vaginosis with increased risk of high-grade squamous intraepithelial cervical lesions. Int. J. Gynecol. Cancer 2019, 29. [Google Scholar] [CrossRef]
- Gilbert, D.C.; Wakeham, K.; Langley, R.E.; Vale, C.L. Increased risk of second cancers at sites associated with HPV after a prior HPV-associated malignancy, a systematic review and meta-analysis. Br. J. Cancer 2019, 120, 256–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakar, A.; Bakshi, P.; Tripathi, S.; Gogia, A. Anal cytological abnormalities in human immunodeficiency virus-infected men and prevalence of high-risk human papillomavirus co-infection. Curr. Med. Res. Pract. 2022, 12, 152. [Google Scholar] [CrossRef]
- Mulherkar, T.H.; Gómez, D.J.; Sandel, G.; Jain, P. Co-Infection and Cancer: Host–Pathogen Interaction between Dendritic Cells and HIV-1, HTLV-1, and Other Oncogenic Viruses. Viruses 2022, 14, 2037. [Google Scholar] [CrossRef]
- Taku, O.; Brink, A.; Meiring, T.L.; Phohlo, K.; Businge, C.B.; Mbulawa, Z.Z.; Williamson, A.L. Detection of sexually transmitted pathogens and co-infection with human papillomavirus in women residing in rural Eastern Cape, South Africa. PeerJ 2021, 9, e10793. [Google Scholar] [CrossRef]
- Luckett, R.; Painter, H.; Hacker, M.R.; Simon, B.; Seiphetlheng, A.; Erlinger, A.; Eakin, C.; Moyo, S.; Kyokunda, L.T.; Esselen, K.; et al. Persistence and clearance of high-risk human papillomavirus and cervical dysplasia at 1 year in women living with human immunodeficiency virus: A prospective cohort study. BJOG Int. J. Obstet. Gynaecol. 2021, 128, 1986–1996. [Google Scholar] [CrossRef]
- Paraná, V.C.; Souza Santos, D.; Barreto de Souza Silva, D.I.; Lima, G.C.; Gois, L.L.; Santos, L.A. Anal and cervical human papillomavirus genotypes in women co-infected with human immunodeficiency virus: A systematic review. Int. J. STD AIDS 2022, 33, 530–543. [Google Scholar] [CrossRef]
- Makvandi, M.; Jalilian, S.; Faghihloo, E.; Khanizadeh, S.; Ramezani, A.; Bagheri, S.; Mirzaei, H. Prevalence of Human Papillomavirus and Co-Infection with Epstein-Barr Virus in Oral and Oropharyngeal Squamous Cell Carcinomas. Asian Pac. J. Cancer Prev. 2022, 23, 3931–3937. [Google Scholar] [CrossRef] [PubMed]
- Dickey, B.L.; Giuliano, A.R.; Sirak, B.; Abrahamsen, M.; Lazcano-Ponce, E.; Villa, L.L.; Coghill, A.E. Co-infection with Epstein-Barr virus impacts oral HPV persistence. Cancer Res. 2022, 82, 2264. [Google Scholar]
- Erira, A.T.; Navarro, A.F.; Robayo, D.A. Human papillomavirus, Epstein–Barr virus, and Candida albicans co-infection in oral leukoplakia with different degrees of dysplasia. Clin. Exp. Dent. Res. 2021, 7, 914–923. [Google Scholar] [CrossRef]
- Dickey, B.L.; Giuliano, A.R.; Sirak, B.; Abrahamsen, M.; Lazcano-Ponce, E.; Villa, L.L.; Coghill, A.E. Control of Epstein-Barr virus (EBV) in the oral cavity is associated with persistence of oral HPV 16/18 among men from the HPV Infection i in Men (HIM) Study. J. Infect. Dis. 2022. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Xu, Y.; Ma, N.; Midorikawa, K.; Oikawa, S.; Kobayashi, H.; Nakamura, S.; Ishinaga, H.; Zhang, Z.; Huang, G.; et al. Influence of Epstein–Barr virus and human papillomavirus infection on macrophage migration inhibitory factor and macrophage polarization in nasopharyngea carcinoma. BMC Cancer 2021, 21, 929. [Google Scholar] [CrossRef]
- Heawchaiyaphum, C.; Ekalaksananan, T.; Patarapadungkit, N.; Worawichawong, S.; Pientong, C. Epstein-Barr Virus Infection Alone or Jointly with Human Papillomavirus Associates with Down-Regulation of miR-145 in Oral Squamous-Cell Carcinoma. Microorganisms 2021, 9, 2496. [Google Scholar] [CrossRef]
- Vanshika, S.; Preeti, A.; Sumaira, Q.; Vijay, K.; Shikha, T.; Shivanjali, R.; Shankar, S.U.; Mati, G.M. Incidence OF HPV and EBV in oral cancer and their clinico-pathological correlation–a pilot study of 108 cases. J. Oral Biol. Craniofacial Res. 2021, 11, 180–184. [Google Scholar] [CrossRef]
- Champin, D.; Tarazona-Castro, Y.; Martins-Luna, J.; Carrillo-Ng, H.; Becerra-Goicochea, L.; Domiguez, G.; Pinillos-Vilca, L.; Alvitres-Arana, J.; Tinco-Valdez, C.; Aguilar-Luis, M.A.; et al. Detection of Human papillomavirus and Co-infection With Other Sexually Transmitted Pathogens in Northern Peru. Int. J. Infect. Dis. 2022, 116, S86. [Google Scholar] [CrossRef]
- Okoye, J.O.; Ngokere, A.A.; Onyenekwe, C.C.; Omotuyi, O.; Dada, D.I. Epstein-Barr virus, human papillomavirus and herpes simplex virus 2 co-presence severely dysregulates miRNA expression. Afr. J. Lab. Med. 2021, 10, 1–10. [Google Scholar] [CrossRef]
- Mosmann, J.P.; Talavera, A.D.; Criscuolo, M.I.; Venezuela, R.F.; Kiguen, A.X.; Ferreyra de Prato, R.; López de Blanc, S.; Ré, V.E.; Cuffini, C.G. Human Papillomavirus, Chlamydia trachomatis and Herpes Simplex Virus; Universidad Nacional de Colombia: Bogotá, Colombia, 2018. [Google Scholar]
- LoSchiavo, C.; D’Avanzo, P.A.; Emmert, C.; Krause, K.D.; Ompad, D.C.; Kapadia, F.; Halkitis, P.N. Predictors of Anal High-Risk HPV Infection Across Time in a Cohort of Young Adult Sexual Minority Men and Transgender Women; SSRN: Rochester, NY, USA, 2022. [Google Scholar]
- Formánek, M.; Formánková, D.; Hurník, P.; Vrtková, A.; Komínek, P. Epstein-Barr virus may contribute to the pathogenesis of adult-onset recurrent respiratory papillomatosis: A preliminary study. Clin. Otolaryngol. 2021, 46, 373–379. [Google Scholar] [CrossRef]
- Noma, I.H.; Shinobu-Mesquita, C.S.; Suehiro, T.T.; Morelli, F.; De Souza, M.V.; Damke, E.; da Silva, V.R.; Consolaro, M.E. Association of Righ-Risk Human Papillomavirus and Ureaplasma parvum Co-Infections with Increased Risk of Low-Grade Squamous Intraepithelial Cervical Lesions. Asian Pac. J. Cancer Prev. APJCP 2021, 22, 1239. [Google Scholar] [CrossRef] [PubMed]
- Fracella, M.; Oliveto, G.; Sorrentino, L.; Roberto, P.; Cinti, L.; Viscido, A.; Di Lella, F.M.; Giuffrè, F.; Gentile, M.; Pietropaolo, V.; et al. Common Microbial Genital Infections and Their Impact on the Innate Immune Response to HPV in Cervical Cells. Pathogens 2022, 11, 1361. [Google Scholar] [CrossRef] [PubMed]
- Adamopoulou, M.; Avgoustidis, D.; Voyiatjaki, C.; Beloukas, A.; Yapijakis, C.; Tsiambas, E.; Charvalos, E. Impact of combined mycoplasmataceae and HPV co-infection on females with cervical intraepithelial neoplasia and carcinoma. Off. J. Balk. Union Oncol. 1313, 2021, 26–1319. [Google Scholar]
- Tantengco, O.A.; Nakura, Y.; Yoshimura, M.; Nishiumi, F.; Llamas-Clark, E.F.; Yanagihara, I. Co-infection of human papillomavirus and other sexually transmitted bacteria in cervical cancer patients in the Philippines. Gynecol. Oncol. Rep. 2022, 40, 100943. [Google Scholar] [CrossRef]
- Schiller, J.T.; Castellsagué, X.; Garland, S.M. A review of clinical trials of human papillomavirus prophylactic vaccines. Vaccine 2020, 30, F123–F138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farmer, E.; Cheng, M.A.; Hung, C.F.; Wu, T.C. Vaccination strategies for the control and treatment of HPV infection and HPV-associated cancer. In Viruses and Human Cancer; Springer: Berlin/Heidelberg, Germany, 2021; pp. 157–195. [Google Scholar] [CrossRef]
- NIH. National Cancer Institute. 2022. Available online: https://www.cancer.gov/about-cancer/causes-prevention/risk/infectious-agents/hpv-vaccine-fact-sheet#:~:text=Three%20vaccines%20that%20prevent%20infection,%2C%20Gardasil%209%2C%20and%20Cervarix (accessed on 25 November 2022).
- Gohar, A.; Ali, A.A.; Elkhatib, W.F.; El-Sayyad, G.S.; Elfadil, D.; Noreddin, A.M. Combination therapy between prophylactic and therapeutic human papillomavirus (HPV) vaccines with special emphasis on implementation of nanotechnology. Microb. Pathog. 2022, 171, 105747. [Google Scholar] [CrossRef] [PubMed]
- Nooraei, S.; Bahrulolum, H.; Hoseini, Z.S.; Katalani, C.; Hajizade, A.; Easton, A.J.; Ahmadian, G. Virus-like particles: Preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J. Nanobiotechnol. 2021, 19, 1–27. [Google Scholar] [CrossRef]
- Franconi, R.; Massa, S.; Paolini, F.; Vici, P.; Venuti, A. Plant-derived natural compounds in genetic vaccination and therapy for HPV-associated cancers. Cancers 2020, 12, 3101. [Google Scholar] [CrossRef]
- Lin, K.; Doolan, K.; Hung, C.F.; Wu, T.C. Perspectives for preventive and therapeutic HPV vaccines. J. Formos. Med. Assoc. 2010, 109, 4–24. [Google Scholar] [CrossRef] [Green Version]
- Venuti, A.; Curzio, G.; Mariani, L.; Paolini, F. Immunotherapy of HPV-associated cancer: DNA/plant-derived vaccines and new orthotopic mouse models. Cancer Immunol. Immunother. 2015, 64, 1329–1338. [Google Scholar] [CrossRef] [Green Version]
- Dehelean, C.A.; Marcovici, I.; Soica, C.; Mioc, M.; Coricovac, D.; Iurciuc, S.; Cretu, O.M.; Pinzaru, I. Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy. Molecules 2021, 26, 1109. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Oliveira, P.; Otero, P.; Pereira, A.G.; Chamorro, F.; Carpena, M.; Echave, J.; Fraga-Corral, M.; Simal-Gandara, J.; Prieto, M.A. Status and challenges of plant-anticancer compounds in cancer treatment. Pharmaceuticals 2021, 14, 157. [Google Scholar] [CrossRef] [PubMed]
- Salaria, D.; Rolta, R.; Mehta, J.; Awofisayo, O.; Fadare, O.A.; Kaur, B.; Kumar, B.; Araujo da Costa, R.; Chandel, S.R.; Kaushik, N.; et al. Phytoconstituents of traditional Himalayan Herbs as potential inhibitors of Human Papillomavirus (HPV-18) for cervical cancer treatment: An In silico Approach. PLoS ONE 2022, 17, e0265420. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, S.; Sah, R.; Muhammad, K.; Waheed, Y. Tracking HPV Infection, Associated Cancer Development, and Recent Treatment Efforts—A Comprehensive Review. Vaccines 2023, 11, 102. https://doi.org/10.3390/vaccines11010102
Malik S, Sah R, Muhammad K, Waheed Y. Tracking HPV Infection, Associated Cancer Development, and Recent Treatment Efforts—A Comprehensive Review. Vaccines. 2023; 11(1):102. https://doi.org/10.3390/vaccines11010102
Chicago/Turabian StyleMalik, Shiza, Ranjit Sah, Khalid Muhammad, and Yasir Waheed. 2023. "Tracking HPV Infection, Associated Cancer Development, and Recent Treatment Efforts—A Comprehensive Review" Vaccines 11, no. 1: 102. https://doi.org/10.3390/vaccines11010102
APA StyleMalik, S., Sah, R., Muhammad, K., & Waheed, Y. (2023). Tracking HPV Infection, Associated Cancer Development, and Recent Treatment Efforts—A Comprehensive Review. Vaccines, 11(1), 102. https://doi.org/10.3390/vaccines11010102