Near-Complete SARS-CoV-2 Seroprevalence among Rural and Urban Kenyans despite Significant Vaccine Hesitancy and Refusal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Design
2.2. Participant Selection
2.3. Procedure for Replacement of Selected Households
2.4. Data Collection
2.5. Serum Collection and Testing for SARS-CoV-2 IgG Antibodies
2.6. Statistical Analysis
2.7. Ethical Considerations
3. Results
3.1. Study Participants
3.2. SARS-CoV-2 Seroprevalence
3.3. Vaccine Knowledge and Uptake
3.4. Vaccine Refusal
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- 1918 Pandemic (H1N1 Virus)|Pandemic Influenza (Flu)|CDC. Available online: https://www.cdc.gov/flu/pandemic-resources/1918-pandemic-h1n1.html (accessed on 19 June 2022).
- Strategy to Achieve Global COVID-19 Vaccination by Mid-2022. Available online: https://www.who.int/publications/m/item/strategy-to-achieve-global-covid-19-vaccination-by-mid-2022 (accessed on 5 May 2022).
- Vaccine Equity. Available online: https://www.who.int/campaigns/vaccine-equity (accessed on 5 May 2022).
- WHO|Regional Office for Africa. New Push to Drive up Africa’s COVID-19 Vaccination. Available online: https://www.afro.who.int/news/new-push-drive-africas-covid-19-vaccination (accessed on 11 May 2022).
- Available online: https://reliefweb.int/sites/reliefweb.int/files/resources/CV-20220307-eng.pdf (accessed on 15 May 2022).
- WHO|Regional Office for Africa. Africa Needs to Ramp up COVID-19 Vaccination Six-Fold. Available online: https://www.afro.who.int/news/africa-needs-ramp-covid-19-vaccination-six-fold (accessed on 5 May 2022).
- WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int (accessed on 10 August 2021).
- Moore, D.C.B.C.; Nehab, M.F.; Camacho, K.G.; Reis, A.T.; Junqueira-Marinho, M.d.F.; Abramov, D.M.; de Azevedo, Z.M.A.; de Menezes, L.A.; Salú, M.d.S.; Figueiredo, C.E.d.S.; et al. Low COVID-19 vaccine hesitancy in Brazil. Vaccine 2021, 39, 6262–6268. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.H.; Joshi, A.D.; Drew, D.A.; Merino, J.; Ma, W.; Lo, C.-H.; Kwon, S.; Wang, K.; Graham, M.S.; Polidori, L.; et al. Self-reported COVID-19 vaccine hesitancy and uptake among participants from different racial and ethnic groups in the United States and United Kingdom. Nat. Commun. 2022, 13, 636. [Google Scholar] [CrossRef] [PubMed]
- Lindholt, M.F.; Jørgensen, F.; Bor, A.; Petersen, M.B. Public acceptance of COVID-19 vaccines: Cross-national evidence on levels and individual-level predictors using observational data. BMJ Open 2021, 11, e048172. [Google Scholar] [CrossRef] [PubMed]
- Moscardino, U.; Musso, P.; Inguglia, C.; Ceccon, C.; Miconi, D.; Rousseau, C. Sociodemographic and Psychological Correlates of COVID-19 Vaccine Hesitancy and Resistance in the Young Adult Population in Italy. Vaccine 2022, 40, 2379–2387. [Google Scholar] [CrossRef]
- Sanders, J.G.; Spruijt, P.; van Dijk, M.; Elberse, J.; Lambooij, M.S.; Kroese, F.M.; de Bruin, M. Understanding a national increase in COVID-19 vaccination intention, the Netherlands, November 2020–March 2021. Eurosurveillance 2021, 26, 2100792. [Google Scholar] [CrossRef]
- Latkin, C.A.; Dayton, L.; Yi, G.; Konstantopoulos, A.; Boodram, B. Trust in a COVID-19 vaccine in the U.S.: A social-ecological perspective. Soc. Sci. Med. 2021, 270, 113684. [Google Scholar] [CrossRef]
- WHO|Regional Office for Africa. Kenya Receives COVID-19 Vaccines and Launches Landmark National Campaign. Available online: https://www.afro.who.int/news/kenya-receives-covid-19-vaccines-and-launches-landmark-national-campaign (accessed on 12 May 2022).
- Ministry of Health—Republic of Kenya. Available online: https://www.health.go.ke/ (accessed on 9 June 2021).
- Ngere, I.; Dawa, J.; Hunsperger, E.; Otieno, N.; Masika, M.; Amoth, P.; Makayotto, L.; Nasimiyu, C.; Gunn, B.M.; Nyawanda, B.; et al. High seroprevalence of SARS-CoV-2 but low infection fatality ratio eight months after introduction in Nairobi, Kenya. Int. J. Infect. Dis. 2021, 112, 25–34. [Google Scholar] [CrossRef]
- Nasimiyu, C.; Matoke-Muhia, D.; Rono, G.K.; Osoro, E.; Ouso, D.O.; Mwangi, J.M.; Mwikwabe, N.; Thiong’o, K.; Dawa, J.; Ngere, I.; et al. Imported SARS-CoV-2 Variants of Concern Drove Spread of Infections across Kenya during the Second Year of the Pandemic. COVID 2022, 2, 586–598. [Google Scholar] [CrossRef]
- Charan, J.; Biswas, T. How to Calculate Sample Size for Different Study Designs in Medical Research? Indian J. Psychol. Med. 2013, 35, 121–126. [Google Scholar] [CrossRef] [Green Version]
- REDCap. Available online: https://www.project-redcap.org/ (accessed on 12 October 2022).
- TIFA Research. 2020 Year End Survey: Festive Season Plans and Covid19 Issues. 2020. Available online: http://www.tifaresearch.com/2020-year-end-survey-festive-season-plans-and-covid19-issues/ (accessed on 28 June 2022).
- Orangi, S.; Pinchoff, J.; Mwanga, D.; Abuya, T.; Hamaluba, M.; Warimwe, G.; Austrian, K.; Barasa, E. Assessing the Level and Determinants of COVID-19 Vaccine Confidence in Kenya. Vaccines 2021, 9, 936. [Google Scholar] [CrossRef]
- Download R-4.2.0 for Windows. The R-Project for Statistical Computing. Available online: https://cran.r-project.org/bin/windows/base/ (accessed on 19 June 2022).
- 2019 Kenya Population and Housing Census Results—Kenya National Bureau of Statistics. Available online: https://www.knbs.or.ke/2019-kenya-population-and-housing-census-results/ (accessed on 9 December 2021).
- Altman, D.G.; Newcombe, R. Proportions and their differences and diagnostic tests. Stat. Confid. 2000, 46–48. [Google Scholar] [CrossRef]
- Kenya: Coronavirus Cases by County. 2022. Available online: https://www.statista.com/statistics/1136519/cumulative-coronavirus-cases-in-kenya-by-county/ (accessed on 29 July 2022).
- Brand, S.P.C.; Ojal, J.; Aziza, R.; Were, V.; Okiro, E.A.; Kombe, I.K.; Mburu, C.; Ogero, M.; Agweyu, A.; Warimwe, G.M.; et al. COVID-19 transmission dynamics underlying epidemic waves in Kenya. Science 2021, 374, 989–994. [Google Scholar] [CrossRef] [PubMed]
- Munywoki, P.K.; Nasimiyu, C.; Alando, M.D.; Otieno, N.; Ombok, C.; Njoroge, R.; Kikwai, G.; Odhiambo, D.; Osita, M.P.; Ouma, A.; et al. Seroprevalence and risk factors of SARS-CoV-2 infection in an urban informal settlement in Nairobi, Kenya, December 2020. F1000Res 2022, 10, 853. [Google Scholar] [CrossRef] [PubMed]
- Schaffer DeRoo, S.; Pudalov, N.J.; Fu, L.Y. Planning for a COVID-19 Vaccination Program. JAMA 2020, 323, 2458–2459. [Google Scholar] [CrossRef]
- Coronavirus Disease (COVID-19): Herd Immunity, Lockdowns and COVID-19. Available online: https://www.who.int/news-room/questions-and-answers/item/herd-immunity-lockdowns-and-covid-19 (accessed on 29 June 2022).
- Diseases, T.L.I. Time for Africa to future-proof, starting with COVID-19. Lancet Infect. Dis. 2022, 22, 151. [Google Scholar] [CrossRef]
- Bergwerk, M.; Gonen, T.; Lustig, Y.; Amit, S.; Lipsitch, M.; Cohen, C.; Mandelboim, M.; Gal Levin, E.; Rubin, C.; Indenbaum, V.; et al. Covid-19 Breakthrough Infections in Vaccinated Health Care Workers. N. Engl. J. Med. 2021, 385, 1474–1484. [Google Scholar] [CrossRef]
- Hirsh, J.; Htay, T.; Bhalla, S.; Nguyen, V.; Cervantes, J. Breakthrough SARS-CoV-2 infections after COVID-19 immunization. J. Investig. Med. 2022, 70, 1429–1432. [Google Scholar] [CrossRef]
- Weinstein, N.D. Testing four competing theories of health-protective behavior. Health Psychol. 1993, 12, 324–333. [Google Scholar] [CrossRef]
- Do, D.P.; Frank, R. Prior COVID-19 infection: An underappreciated factor in vaccine hesitancy in the USA. J. Public Health 2022, 44, 471–474. [Google Scholar] [CrossRef]
- Get COVID Vaccine or Face Punishment, Kenya Orders State Workers—Bloomberg. Available online: https://www.bloomberg.com/news/articles/2021-08-10/get-vaccinated-or-face-punishment-kenya-orders-state-workers (accessed on 10 July 2022).
- Wong, M.C.S.; Wong, E.L.Y.; Huang, J.; Cheung, A.W.L.; Law, K.; Chong, M.K.C.; Ng, R.W.Y.; Lai, C.K.C.; Boon, S.S.; Lau, J.T.F.; et al. Acceptance of the COVID-19 vaccine based on the health belief model: A population-based survey in Hong Kong. Vaccine 2021, 39, 1148–1156. [Google Scholar] [CrossRef]
- Ngangue, P.; Pilabré, A.H.; Barro, A.; Pafadnam, Y.; Bationo, N.; Soubeiga, D. Public attitudes towards COVID-19 vaccines in Africa: A systematic review. J. Public Health Afr. 2022, 13, 2181. [Google Scholar] [CrossRef] [PubMed]
- Guillon, M.; Kergall, P. Factors associated with COVID-19 vaccination intentions and attitudes in France. Public Health 2021, 198, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Karijo, E.; Wamugi, S.; Lemanyishoe, S.; Njuki, J.; Boit, F.; Kibui, V.; Karanja, S.; Abuya, T. Knowledge, attitudes, practices, and the effects of COVID-19 among the youth in Kenya. BMC Public Health 2021, 21, 1020. [Google Scholar] [CrossRef] [PubMed]
- Muriuki, W.; Muriuki, B.; Kihika, G. Assessing Knowledge, Attitude and Practices (KAP) Towards COVID-19: A Cross-sectional Study in Kenya. Int. Public Aff. 2021, 5, 23–28. [Google Scholar] [CrossRef]
- National Accelerated COVID-19 Vaccination Campaign Kicks-Off—Kenya News Agency. Available online: https://www.kenyanews.go.ke/national-accelerated-covid-19-vaccination-campaign-kicks-off/ (accessed on 10 July 2022).
- Media Urged to Intensify COVID Campaign—Kenya News Agency. Available online: https://www.kenyanews.go.ke/media-urged-to-intensify-covid-campaign/ (accessed on 10 July 2022).
Urban Participants, N = 781 | Rural Participants, N = 810 | |||
---|---|---|---|---|
Characteristic | n (%) | 95% CI (%) | n (%) | 95% CI (%) |
Sex | ||||
Female | 497 (63.6) | 60.0, 67.0 | 469 (57.9) | 54.0, 61.0 |
Male | 284 (36.4) | 33.0, 40.0 | 341 (42.1) | 39.0, 46.0 |
Age group (years) | ||||
≤9 | 94 (12.0) | 9.9, 15.0 | 188 (23.2) | 20.0, 26.0 |
10–19 | 94 (12.0) | 9.9, 15.0 | 154 (19.0) | 16.0, 22.0 |
20–29 | 215 (27.5) | 24.0, 31.0 | 96 (11.9) | 9.7, 14.0 |
30–39 | 174 (22.3) | 19.0, 25.0 | 108 (13.3) | 11.0, 16.0 |
40–49 | 93 (11.9) | 9.8, 14.0 | 84 (10.4) | 8.4, 13.0 |
50–59 | 65 (8.3) | 6.5, 11.0 | 67 (8.3) | 6.5, 10.0 |
60+ | 46 (5.9) | 4.4, 7.8 | 113 (14.0) | 12.0, 17.0 |
Level of education | ||||
Primary | 265 (34.1) | 31.0, 38.0 | 198 (24.5) | 22.0, 28.0 |
Secondary | 215 (27.7) | 25.0, 31.0 | 116 (14.3) | 12.0, 17.0 |
Post-secondary | 168 (21.6) | 19.0, 25.0 | 35 (4.3) | 3.1, 6.0 |
Child | 102 (13.1) | 11.0, 16.0 | 223 (27.6) | 25.0, 31.0 |
No formal education | 27 (3.5) | 2.3, 5.1 | 237 (29.3) | 26.0, 33.0 |
Missing | 4 (0.5) | 0.1, 1.3 | 1 (0.1) | 0.0, 0.7 |
Occupation | ||||
Child (<18 years) | 159 (20.4) | 18.0, 23.0 | 317 (39.1) | 36.0, 43.0 |
Student | 44 (5.6) | 4.2, 7.6 | 24 (3.0) | 1.9, 4.4 |
Informal employment | 187 (23.9) | 21.0, 27.0 | 46 (5.7) | 4.2, 7.6 |
Formal employment | 35 (4.5) | 3.2, 6.2 | 20 (2.5) | 1.6, 3.9 |
Self-employed | 161 (20.6) | 18.0, 24.0 | 267 (33.0) | 30.0, 36.0 |
Healthcare worker | 10 (1.3) | 0.65, 2.4 | 2 (0.2) | 0.04, 1.0 |
Unemployed | 181 (23.2) | 20.0, 26.0 | 126 (15.6) | 13.0, 18.0 |
Other | 4 (0.5) | 0.16, 1.4 | 8 (1.0) | 0.6, 2.0 |
Reported chronic illness * | ||||
No | 668 (85.5) | 83.0, 88.0 | 721 (89.0) | 87.0, 91.0 |
Yes | 113 (14.5) | 12.0, 17.0 | 89 (11.0) | 9.0, 13.0 |
Ever diagnosed with COVID-19 | ||||
No | 738 (94.5) | 93.0, 96.0 | 809 (99.9) | 99.0, 100 |
Yes | 43 (5.5) | 4.1, 7.4 | 1 (0.1) | 0.01, 0.80 |
Urban Participants, N = 326 | Rural Participants, N = 262 | |||
---|---|---|---|---|
Reasons for COVID-19 Vaccine Uptake | n (%) | 95% CI (%) | n (%) | 95% CI (%) |
Perceived high-risk health status | 108 (26.7) | 23.0, 31.0 | 106 (31.5) | 27.0, 37.0 |
Vaccine effectiveness | 98 (24.9) | 21.0, 30.0 | 12 (4.9) | 2.7, 8.7 |
GOK directive | 66 (18.2) | 14.0, 23.0 | 65 (22.0) | 17.0, 27.0 |
Number of COVID-19 deaths | 53 (15.2) | 12.0, 20.0 | 60 (20.6) | 16.0, 26.0 |
Employer requirement | 45 (13.2) | 9.9, 17.0 | 8 (3.3) | 1.6, 6.7 |
Number of COVID-19 cases | 43 (12.7) | 9.4, 17.0 | 97 (29.6) | 25.0, 35.0 |
Suggestions from healthcare workers | 24 (7.5) | 5.0, 11.0 | 35 (13.2) | 9.5, 18.0 |
Suggestions from family/friends/neighbor | 18 (5.7) | 3.5, 9.1 | 4 (1.7) | 0.6, 4.6 |
Advanced age | 11 (3.6) | 1.9, 6.5 | 19 (7.6) | 4.8, 12.0 |
Free vaccine | 11 (3.6) | 1.9, 6.5 | 11 (4.5) | 2.4, 8.2 |
Others * | 12 (3.9) | 2.1, 6.9 | 4 (1.7) | 0.6, 4.6 |
Urban Participants | Rural Participants | |||||
---|---|---|---|---|---|---|
Characteristic | aPR 1 | 95% CI 1 | p-Value | aPR 1 | 95% CI 1 | p-Value |
Age group | ||||||
18–30 | Ref | Ref | Ref | Ref | ||
31–40 | 1.42 | 1.05, 1.91 | 0.021 | 1.35 | 0.88, 2.12 | 0.2 |
41–50 | 1.68 | 1.18, 2.37 | 0.004 | 1.58 | 1.01, 2.51 | 0.046 |
51–60 | 1.49 | 1.00, 2.18 | 0.042 | 1.42 | 0.88, 2.31 | 0.15 |
61+ | 1.60 | 1.00, 2.47 | 0.041 | 1.38 | 0.89, 2.17 | 0.2 |
Main occupation | ||||||
Unemployed | Ref | Ref | Ref | Ref | ||
Self-employment | 1.10 | 0.80, 1.51 | 0.6 | 1.40 | 1.00, 2.01 | 0.060 |
Formal employment | 1.68 | 1.06, 2.59 | 0.023 | 1.60 | 0.86, 2.86 | 0.12 |
Student | 1.37 | 0.81, 2.25 | 0.2 | 2.50 | 1.32, 4.60 | 0.004 |
Informal employment | 1.16 | 0.85, 1.59 | 0.4 | 1.17 | 0.67, 1.95 | 0.6 |
Healthcare worker | 1.79 | 0.86, 3.35 | 0.091 | 1.04 | 0.06, 4.90 | >0.9 |
Diagnosed with COVID-19 | NA * | |||||
No | Ref | Ref | ||||
Yes | 1.54 | 1.05, 2.20 | 0.021 | |||
COVID-19 Vaccine attitudes Vaccines are important | NA * | |||||
Strongly Agree/Agree | Ref | Ref | ||||
Neutral | 0.62 | 0.33, 1.05 | 0.10 | |||
Strongly Disagree/Disagree | 0.23 | 0.04, 0.71 | 0.037 | |||
Vaccine protects against infection | NA * | |||||
No/Don’t know | Ref | Ref | ||||
Yes | 1.12 | 0.87, 1.44 | 0.4 | |||
Source of COVID-19 information Social media | NA * | |||||
No | Ref | Ref | ||||
Yes | 1.26 | 1.00, 1.58 | 0.052 | |||
COVID-19 Knowledge Vaccine protects the unvaccinated | NA * | |||||
Yes | Ref | Ref | ||||
No/Don’t know | 0.88 | 0.68, 1.13 | 0.3 | |||
Children can be vaccinated | NA * | |||||
No/Don’t know | Ref | Ref | ||||
Yes | 1.22 | 0.95, 1.57 | 0.12 | |||
Vaccine has no side effects | NA * | |||||
No/Don’t know | Ref | Ref | ||||
Yes | 1.14 | 0.87, 1.48 | 0.4 | |||
COVID-19 Vaccine attitudes I trust the COVID-19 vaccine information from the media | NA * | |||||
Neutral | Ref | Ref | ||||
Strongly Agree/Agree | 1.43 | 0.81, 2.80 | 0.3 | |||
Strongly Disagree/Disagree | 1.47 | 0.58, 3.61 | 0.4 | |||
Source of COVID-19 vaccine information Mass Media | NA * | |||||
No | Ref | Ref | ||||
Yes | 1.17 | 0.86, 1.61 | 0.3 |
Urban Participants, N = 122 | Rural Participants, N = 77 | |||
---|---|---|---|---|
Reasons for COVID-19 Vaccine Refusal * | n (%) | 95% CI | n (%) | 95% CI |
Concerns about side effects | 55 (45.1%) | 36%, 54% | 41 (53.2%) | 42%, 65% |
Concerns about vaccine safety | 36 (29.5%) | 22%, 39% | 22 (28.6%) | 19%, 40% |
Lack of vaccine information | 32 (26.2%) | 19%, 35% | 19 (24.7%) | 16%, 36% |
Concerns about vaccine effectiveness | 11 (9.0%) | 4.8%, 16% | 2 (2.6%) | 0.45%, 9.9% |
Vaccine can cause COVID-19 | 3 (2.5%) | 0.64%, 7.6% | 2 (2.6%) | 0.45%, 9.9% |
Religious reasons | 1 (0.8%) | 0.04%, 5.2% | 2 (2.6%) | 0.45%, 9.9% |
Cultural reasons | 1 (0.8%) | 0.04%, 5.2% | 2 (2.6%) | 0.45%, 9.9% |
Others ** | 30 (24.6%) | 17%, 33% | 9 (11.7%) | 5.8%, 22% |
Urban Participants, N = 122 | Rural Participants, N = 77 | |||||
---|---|---|---|---|---|---|
Characteristic | aPR 1 | 95% CI 1 | p-Value | aPR 1 | 95% CI 1 | p-Value |
Age group | ||||||
18–30 | Ref | Ref | Ref | Ref | ||
31–40 | 1.24 | 0.80, 1.89 | 0.3 | 1.65 | 0.80, 3.37 | 0.2 |
41–50 | 0.59 | 0.20, 1.34 | 0.3 | 1.38 | 0.54, 3.52 | 0.5 |
51–60 | 1.21 | 0.61, 2.19 | 0.6 | 1.20 | 0.50, 2.90 | 0.7 |
61+ | 0.58 | 0.14, 1.60 | 0.4 | 1.20 | 0.57, 2.51 | 0.6 |
Level of education | NA * | |||||
No formal education | Ref | Ref | ||||
Primary | 0.66 | 0.36, 1.21 | 0.2 | |||
Secondary | 0.52 | 0.26, 1.04 | 0.066 | |||
Post-secondary | 1.02 | 0.37, 2.77 | >0.9 | |||
Main Occupation | NA * | |||||
Unemployed | Ref | Ref | ||||
Self Employed | 0.73 | 0.44, 1.22 | 0.2 | |||
Employed | 0.76 | 0.15, 3.78 | 0.7 | |||
Student | 1.74 | 0.55, 5.53 | 0.3 | |||
Informal Employment | 0.20 | 0.05, 0.88 | 0.033 | |||
Healthcare worker | 0.00 | 0.00, Inf | >0.9 | |||
Willing to pay for vaccine privately | NA * | |||||
Neutral | Ref | Ref | ||||
Strongly Disagree/Disagree | 1.46 | 0.69, 3.11 | 0.3 | |||
Strongly Agree/Agree | 0.55 | 0.14, 2.16 | 0.4 | |||
Trust in vaccine information from the media | NA * | |||||
Neutral | Ref | Ref | ||||
Strongly Agree/Agree | 0.49 | 0.25, 0.94 | 0.032 | |||
Strongly Disagree/Disagree | 0.72 | 0.18, 2.79 | 0.6 | |||
Vaccines are important | ||||||
Strongly Agree/Agree | Ref | Ref | ||||
Neutral | 2.09 | 1.21, 3.43 | 0.005 | |||
Strongly Disagree/Disagree | 2.57 | 1.32, 4.58 | 0.003 | |||
History of chronic breathing problems | ||||||
No | Ref | Ref | ||||
Yes | 1.90 | 0.98, 3.38 | 0.041 | |||
History of hypertension | ||||||
No | Ref | Ref | ||||
Yes | 0.54 | 0.19, 1.23 | 0.2 | |||
Unknown | 1.39 | 0.08, 6.31 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasimiyu, C.; Ngere, I.; Dawa, J.; Amoth, P.; Oluga, O.; Ngunu, C.; Mirieri, H.; Gachohi, J.; Dayan, M.; Liku, N.; et al. Near-Complete SARS-CoV-2 Seroprevalence among Rural and Urban Kenyans despite Significant Vaccine Hesitancy and Refusal. Vaccines 2023, 11, 68. https://doi.org/10.3390/vaccines11010068
Nasimiyu C, Ngere I, Dawa J, Amoth P, Oluga O, Ngunu C, Mirieri H, Gachohi J, Dayan M, Liku N, et al. Near-Complete SARS-CoV-2 Seroprevalence among Rural and Urban Kenyans despite Significant Vaccine Hesitancy and Refusal. Vaccines. 2023; 11(1):68. https://doi.org/10.3390/vaccines11010068
Chicago/Turabian StyleNasimiyu, Carolyne, Isaac Ngere, Jeanette Dawa, Patrick Amoth, Ouma Oluga, Carol Ngunu, Harriet Mirieri, John Gachohi, Moshe Dayan, Nzisa Liku, and et al. 2023. "Near-Complete SARS-CoV-2 Seroprevalence among Rural and Urban Kenyans despite Significant Vaccine Hesitancy and Refusal" Vaccines 11, no. 1: 68. https://doi.org/10.3390/vaccines11010068
APA StyleNasimiyu, C., Ngere, I., Dawa, J., Amoth, P., Oluga, O., Ngunu, C., Mirieri, H., Gachohi, J., Dayan, M., Liku, N., Njoroge, R., Odinoh, R., Owaka, S., Khamadi, S. A., Konongoi, S. L., Galo, S., Elamenya, L., Mureithi, M., Anzala, O., ... Njenga, M. K. (2023). Near-Complete SARS-CoV-2 Seroprevalence among Rural and Urban Kenyans despite Significant Vaccine Hesitancy and Refusal. Vaccines, 11(1), 68. https://doi.org/10.3390/vaccines11010068