Long COVID Prevalence and the Impact of the Third SARS-CoV-2 Vaccine Dose: A Cross-Sectional Analysis from the Third Follow-Up of the Borriana Cohort, Valencia, Spain (2020–2022)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ethics
2.3. Data Collection
2.4. Laboratory Procedures
2.5. Statistical Analysis
2.5.1. Outcomes and Exposure Definitions
2.5.2. Infection Period
2.5.3. Priming and Booster
2.5.4. Descriptive Analysis
2.5.5. Inferential Analysis
2.5.6. Statistical Package
3. Results
3.1. Major Characteristics of the Included Subjects
3.2. Factors Associated with Long COVID
3.3. COVID Episode Characteristic and Long COVID Status
3.4. Post-COVID Outcomes
3.5. Reported Symptoms
3.6. Vaccine Booster Dose Impact on Long COVID Prevalence and the Number of Reported Symptoms
3.7. Sensitivity Analysis
4. Discussion
4.1. Summary of Key Findings
4.2. Long COVID Definition and Comparison Groups
4.3. Vaccination and Long COVID
4.4. Strengths of the Study
4.5. Limitations
4.6. Clinical Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. WHO Coronavirus (COVID-19) Dashboard; Dashboard WHE; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Wan, E.Y. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Aiyegbusi, O.L.; Hughes, S.E.; Turner, G.; Rivera, S.C.; McMullan, C.; Chandan, J.S.; TLC Study Group. Symptoms, complications and management of long COVID: A review. J. R. Soc. Med. 2021, 114, 428–442. [Google Scholar] [CrossRef] [PubMed]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Groff, D.; Sun, A.; Ssentongo, A.E.; Ba, D.M.; Parsons, N.; Poudel, G.R.; Chinchilli, V.M. Short-term and Long-term Rates of Postacute Sequelae of SARS-CoV-2 Infection: A Systematic Review. JAMA Netw. Open. 2021, 4, e2128568. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Haupert, S.R.; Zimmermann, L.; Shi, X.; Fritsche, L.G.; Mukherjee, B. Global Prevalence of Post-Coronavirus Disease 2019 (COVID-19) Condition or long COVID: A Meta-Analysis and Systematic Review. J. Infect. Dis. 2022, 226, 1593–1607. [Google Scholar] [CrossRef] [PubMed]
- Callard, F.; Perego, E. How and why patients made Long Covid. Soc. Sci. Med. 2021, 268, 113426. [Google Scholar] [CrossRef] [PubMed]
- Alwan, N.A. Lessons from long COVID: Working with patients to design better research. Nat. Rev. Immunol. 2022, 22, 201–202. [Google Scholar] [CrossRef]
- Ballouz, T.; Menges, D.; Anagnostopoulos, A.; Domenghino, A.; Aschmann, H.E.; Frei, A.; Puhan, M.A. Recovery and symptom trajectories up to two years after SARS-CoV-2 infection: Population based, longitudinal cohort study. BMJ 2023, 381, e074425. [Google Scholar] [CrossRef]
- Azzolini, E.; Levi, R.; Sarti, R.; Pozzi, C.; Mollura, M.; Mantovani, A.; Rescigno, M. Association Between BNT162b2 Vaccination and long COVID After Infections Not Requiring Hospitalization in Health Care Workers. JAMA 2022, 328, 676–678. [Google Scholar] [CrossRef]
- Turner, S.; Khan, M.A.; Putrino, D.; Woodcock, A.; Kell, D.B.; Pretorius, E. Long COVID: Pathophysiological factors and abnormalities of coagulation. Trends Endocrinol. Metab. 2023, 34, 321–344. [Google Scholar] [CrossRef]
- Talla, A.; Vasaikar, S.V.; Szeto, G.L.; Lemos, M.P.; Czartoski, J.L.; MacMillan, H.; Torgerson, T.R. Persistent serum protein signatures define an inflammatory subcategory of long COVID. Nat. Commun. 2023, 14, 3417. [Google Scholar] [CrossRef] [PubMed]
- Soriano, J.B.; Murthy, S.; Marshall, J.C.; Relan, P.; Diaz, J.V. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 2022, 22, e102–e107. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Public Health Surveillance for COVID-19: Interim Guidance; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Spinicci, M.; Graziani, L.; Tilli, M.; Nkurunziza, J.; Vellere, I.; Borchi, B.; Bartoloni, A. Infection with SARS-CoV-2 Variants Is Associated with Different long COVID Phenotypes. Viruses 2022, 14, 2367. [Google Scholar] [CrossRef] [PubMed]
- Mizrahi, B.; Sudry, T.; Flaks-Manov, N.; Yehezkelli, Y.; Kalkstein, N.; Akiva, P.; Greenfeld, S. Long covid outcomes at one year after mild SARS-CoV-2 infection: Nationwide cohort study. BMJ 2023, 380, e072529. [Google Scholar] [CrossRef] [PubMed]
- Al-Aly, Z.; Bowe, B.; Xie, Y. long COVID after breakthrough SARS-CoV-2 infection. Nat. Med. 2022, 28, 1461–1467. [Google Scholar] [CrossRef] [PubMed]
- Notarte, K.I.; Catahay, J.A.; Velasco, J.V.; Pastrana, A.; Ver, A.T.; Pangilinan, F.C.; Fernández-de-Las-Peñas, C. Impact of COVID-19 vaccination on the risk of developing long COVIDlong COVID and on existing long COVIDlong COVID symptoms: A systematic review. eClinicalMedicine 2022, 53, 101624. [Google Scholar] [CrossRef] [PubMed]
- Domènech-Montoliu, S.; Pac-Sa, M.R.; Vidal-Utrillas, P.; Latorre-Poveda, M.; Del Rio-González, A.; Ferrando-Rubert, S.; Arnedo-Pena, A. Mass gathering events and COVID-19 transmission in Borriana (Spain): A retrospective cohort study. PLoS ONE 2021, 16, e0256747. [Google Scholar] [CrossRef] [PubMed]
- Domènech-Montoliu, S.; Puig-Barberà, J.; Pac-Sa, M.R.; Vidal-Utrillas, P.; Latorre-Poveda, M.; Del Rio-González, A.; Arnedo-Pena, A. Complications Post-COVID-19 and Risk Factors among Patients after Six Months of a SARS-CoV-2 Infection: A Population-Based Prospective Cohort Study. Epidemiologia 2022, 3, 49–67. [Google Scholar] [CrossRef]
- Ministerio de Sanidad. Alertas y Emergencias Sanitarias Alertas de Salud Pública de Actualidad Eventos de Salud Pública en Seguimiento Enfermedad por SARS-CoV-2 (COVID-19) Vacuna COVID-19 Cuadro de Mando Resumen de datos de Vacunación. 2023. Available online: https://www.sanidad.gob.es/areas/alertasEmergenciasSanitarias/alertasActuales/nCov/pbiVacunacion.htm (accessed on 8 August 2023).
- Domènech-Montoliu, S.; Puig-Barberà, J.; Pac-Sa, M.R.; Vidal-Utrillas, P.; Latorre-Poveda, M.; Rio-González, A.D.; Arnedo-Pena, A. ABO Blood Groups and the Incidence of Complications in COVID-19 Patients: A Population-Based Prospective Cohort Study. Int. J. Environ. Res. Public Health 2021, 18, 10039. [Google Scholar] [CrossRef]
- Domènech-Montoliu, S.; Puig-Barberà, J.; Pac-Sa, M.R.; Vidal-Utrillas, P.; Latorre-Poveda, M.; Del Rio-González, A.; Arnedo-Pena, A. Persistence of Anti-SARS-CoV-2 Antibodies Six Months after Infection in an Outbreak with Five Hundred COVID-19 Cases in Borriana (Spain): A Prospective Cohort Study. COVID 2021, 1, 71–82. [Google Scholar] [CrossRef]
- Hoffmann, W.; Latza, U.; Baumeister, S.E.; Brünger, M.; Buttmann-Schweiger, N.; Hardt, J.; van den Berg, N. Guidelines and recommendations for ensuring Good Epidemiological Practice (GEP): A guideline developed by the German Society for Epidemiology. Eur. J. Epidemiol. 2019, 34, 301–317. [Google Scholar] [CrossRef] [PubMed]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. PLoS Med. 2007, 4, e296. [Google Scholar] [CrossRef] [PubMed]
- García-Campayo, J.; Zamorano, E.; Ruiz, M.A.; Pardo, A.; Pérez-Páramo, M.; López-Gómez, V.; Rejas, J. Cultural adaptation into Spanish of the generalized anxiety disorder-7 (GAD-7) scale as a screening tool. Health Qual. Life Outcomes 2010, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Löwe, B.; Decker, O.; Müller, S.; Brähler, E.; Schellberg, D.; Herzog, W.; Herzberg, P.Y. Validation and standardization of the Generalized Anxiety Disorder Screener (GAD-7) in the general population. Med. Care 2008, 46, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Diez-Quevedo, C.; Rangil, T.; Sanchez-Planell, L.; Kroenke, K.; Spitzer, R.L. Validation and utility of the patient health questionnaire in diagnosing mental disorders in 1003 general hospital Spanish inpatients. Psychosom. Med. 2001, 63, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.Y.; Chung, H.; Kroenke, K.; Delucchi, K.L.; Spitzer, R.L. Using the Patient Health Questionnaire-9 to measure depression among racially and ethnically diverse primary care patients. J. Gen. Intern. Med. 2006, 21, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Domènech-Montoliu, S.; Puig-Barberà, J.; Guerra-Murcia, O.; Pac-Sa, M.R.; Orrico-Sanchéz, A.; Gómez-Lanas, L.; Arnedo-Pena, A. ABO Blood Groups and Incidence of COVID-19 in the Mass Gathering Events in Borriana (Spain), March 2020: A Retrospective Cohort Study. Epidemiologia 2023, 4, 63–73. [Google Scholar] [CrossRef] [PubMed]
- National S-C-SAEG. Performance characteristics of five immunoassays for SARS-CoV-2: A head-to-head benchmark comparison. Lancet Infect. Dis. 2020, 20, 1390–1400. [Google Scholar] [CrossRef]
- Tormo, N.; Giménez, E.; Martínez-Navarro, M.; Albert, E.; Navalpotro, D.; Torres, I.; Navarro, D. Performance comparison of a flow cytometry immunoassay for intracellular cytokine staining and the QuantiFERON(R) SARS-CoV-2 test for detection and quantification of SARS-CoV-2-Spike-reactive-IFN-gamma-producing T cells after COVID-19 vaccination. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 657–662. [Google Scholar] [CrossRef]
- Albert, E.; Burgos, J.S.; Peiró, S.; Salas, D.; Vanaclocha, H.; Giménez, E.; Navarro, D. Immunological response against SARS-CoV-2 following full-dose administration of Comirnaty(R) COVID-19 vaccine in nursing home residents. Clin. Microbiol. Infect. 2022, 28, 279–284. [Google Scholar] [CrossRef]
- Torres, I.; Albert, E.; Giménez, E.; Alcaraz, M.J.; Botija, P.; Amat, P.; Navarro, D. B- and T-cell immune responses elicited by the Comirnaty(R) COVID-19 vaccine in nursing-home residents. Clin. Microbiol. Infect. 2021, 27, 1672–1677. [Google Scholar] [CrossRef]
- Centro de Coordinación de Alertas y Emergencias Sanitarias. Evaluaciones Rápidas de Riesgo de las Variantes de SARS-CoV-2 en España; Ministerio de Sanidad: Madrid, Spain, 2023.
- Hodcroft, E.; CoVariants. Overview of Variants in Countries. Covariants.org. Available online: https://covariants.org/per-country?country=Spain (accessed on 17 July 2023).
- Normand, S.L.T.; Landrum, M.B.; Guadagnoli, E.; Ayanian, J.Z.; Ryan, T.J.; Cleary, P.D.; McNeil, B.J. Validating recommendations for coronary angiography following acute myocardial infarction in the elderly: A matched analysis using propensity scores. J. Clin. Epidemiol. 2001, 54, 387–398. [Google Scholar] [CrossRef]
- Austin, P.C. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. Multivar. Behav. Res. 2011, 46, 399–424. [Google Scholar] [CrossRef] [PubMed]
- Robins, J.M.; Hernán, M.A.; Brumback, B. Marginal structural models and causal inference in epidemiology. Epidemiology 2000, 11, 550–560. [Google Scholar] [CrossRef]
- Phillips, P.C.B.; Park, J.Y. On the Formulation of Wald Tests of Nonlinear Restrictions. Econometrica 1988, 56, 1065–1083. [Google Scholar] [CrossRef]
- Tsampasian, V.; Elghazaly, H.; Chattopadhyay, R.; Debski, M.; Naing, T.K.P.; Garg, P.; Vassiliou, V.S. Risk Factors Associated With Post-COVID-19 Condition: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2023, 183, 566–580. [Google Scholar] [CrossRef] [PubMed]
- Perlis, R.H.; Santillana, M.; Ognyanova, K.; Safarpour, A.; Trujillo, K.L.; Simonson, M.D.; Lazer, D. Prevalence and Correlates of long COVID Symptoms Among US Adults. JAMA Netw. Open. 2022, 5, e2238804. [Google Scholar] [CrossRef]
- Wu, S.C.; Arthur, C.M.; Jan, H.M.; Garcia-Beltran, W.F.; Patel, K.R.; Rathgeber, M.F.; Stowell, S.R. Blood group A enhances SARS-CoV-2 infection. Blood 2023, 142, 742–747. [Google Scholar] [CrossRef] [PubMed]
- Santopaolo, M.; Gregorova, M.; Hamilton, F.; Arnold, D.; Long, A.; Lacey, A.; Rivino, L. Prolonged T-cell activation and long COVID symptoms independently associate with severe COVID-19 at 3 months. eLife 2023, 12, e85009. [Google Scholar] [CrossRef] [PubMed]
- Altmann, D.M.; Whettlock, E.M.; Liu, S.; Arachchillage, D.J.; Boyton, R.J. The immunology of long COVID. Nat. Rev. Immunol. 2023. ahead-of-print. [Google Scholar] [CrossRef]
- Moga, E.; Lynton-Pons, E.; Domingo, P. The Robustness of Cellular Immunity Determines the Fate of SARS-CoV-2 Infection. Front. Immunol. 2022, 13, 904686. [Google Scholar] [CrossRef] [PubMed]
- Nehme, M.; Vetter, P.; Chappuis, F.; Kaiser, L.; Guessous, I.; CoviCare Study Team. Prevalence of Post-Coronavirus Disease Condition 12 Weeks After Omicron Infection Compared With Negative Controls and Association With Vaccination Status. Clin. Infect. Dis. 2023, 76, 1567–1575. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, A.; Iwagami, M.; Yasuhara, J.; Takagi, H.; Kuno, T. Protective effect of COVID-19 vaccination against long COVID syndrome: A systematic review and meta-analysis. Vaccine 2023, 41, 1783–1790. [Google Scholar] [CrossRef] [PubMed]
- Byambasuren, O.; Stehlik, P.; Clark, J.; Alcorn, K.; Glasziou, P. Effect of COVID-19 vaccination on long covid: Systematic review. BMJ Med. 2023, 2, e000385. [Google Scholar] [CrossRef] [PubMed]
- Taquet, M.; Dercon, Q.; Harrison, P.J. Six-month sequelae of post-vaccination SARS-CoV-2 infection: A retrospective cohort study of 10,024 breakthrough infections. Brain Behav. Immun. 2022, 103, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Kahlert, C.R.; Strahm, C.; Güsewell, S.; Cusini, A.; Brucher, A.; Goppel, S.; Kohler, P. Post-Acute Sequelae After Severe Acute Respiratory Syndrome Coronavirus 2 Infection by Viral Variant and Vaccination Status: A Multicenter Cross-Sectional Study. Clin. Infect. Dis. 2023, 77, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Wynberg, E.; Han, A.X.; Boyd, A.; van Willigen, H.D.; Verveen, A.; Lebbink, R.; RECoVERED Study Group. The effect of SARS-CoV-2 vaccination on post-acute sequelae of COVID-19 (PASC): A prospective cohort study. Vaccine 2022, 40, 4424–4431. [Google Scholar] [CrossRef]
- O’Mahoney, L.L.; Routen, A.; Gillies, C.; Ekezie, W.; Welford, A.; Zhang, A.; Karamchandani, U.; Simms-Williams, N.; Cassambai, S.; Ardavani, A.; et al. The prevalence and long-term health effects of Long Covid among hospitalised and non-hospitalised populations: A systematic review and meta-analysis. EClinicalMedicine 2023, 55, 101762. [Google Scholar] [CrossRef]
- Richard, S.A.; Pollett, S.D.; Fries, A.C.; Berjohn, C.M.; Maves, R.C.; Lalani, T.; Lago, K. Persistent COVID-19 Symptoms at 6 Months After Onset and the Role of Vaccination Before or After SARS-CoV-2 Infection. JAMA Netw. Open. 2023, 6, e2251360. [Google Scholar] [CrossRef]
Long COVID | |||||||
---|---|---|---|---|---|---|---|
No | Yes | Total | SMD * | OR * | 95%CI * | ||
340 (71.9%) | 133 (28.1%) | 473 (100.0%) | |||||
Age in groups in years | |||||||
18–24 | 63 (18.5%) | 7 (5.3%) | 70 (14.8%) | 0.43 | 1.00 | ||
25–49 | 178 (52.4%) | 74 (55.6%) | 252 (53.3%) | 3.74 | 1.64 | 8.55 | |
50–64 | 99 (29.1%) | 52 (39.1%) | 151 (31.9%) | 4.73 | 2.02 | 11.06 | |
Female | 212 (62.4%) | 88 (66.2%) | 300 (63.4%) | 0.08 | 1.18 | 0.78 | 1.80 |
Blood group | |||||||
O | 156 (46.0%) | 46 (34.8%) | 202 (42.9%) | 0.28 | 0.39 | 0.20 | 0.79 |
A | 147 (43.4%) | 63 (47.7%) | 210 (44.6%) | 0.57 | 0.29 | 1.13 | |
B | 24 (7.1%) | 18 (13.6%) | 42 (8.9%) | 1.00 | |||
AB | 12 (3.5%) | 5 (3.8%) | 17 (3.6%) | 0.56 | 0.17 | 1.86 | |
Occupation: Qualified or over | 218 (66.3%) | 70 (54.3%) | 288 (62.9%) | 0.25 | 0.60 | 0.40 | 0.91 |
Education level University | 164 (49.1%) | 52 (40.0%) | 216 (46.6%) | 0.18 | 0.69 | 0.46 | 1.04 |
Household members > 2 | 276 (82.1%) | 93 (70.5%) | 369 (78.8%) | 0.28 | 0.52 | 0.33 | 0.83 |
Social contacts | |||||||
Minimal | 85 (25.1%) | 39 (29.3%) | 124 (26.3%) | 0.36 | 2.00 | 1.16 | 3.47 |
Active | 131 (38.6%) | 30 (22.6%) | 161 (34.1%) | 1.00 | |||
High | 123 (36.3%) | 64 (48.1%) | 187 (39.6%) | 2.27 | 1.38 | 3.74 | |
Activity in contact with people | 273 (80.8%) | 100 (75.8%) | 373 (79.4%) | 0.12 | 0.74 | 0.46 | 1.20 |
Regular physical activity | 198 (58.2%) | 64 (48.1%) | 262 (55.4%) | 0.20 | 0.67 | 0.44 | 1.00 |
Somoker or ex-smoker | 129 (38.3%) | 61 (46.2%) | 190 (40.5%) | 0.16 | 1.39 | 0.92 | 2.08 |
Alcohol consumption (light or moderate) | 260 (76.5%) | 93 (69.9%) | 353 (74.6%) | 0.15 | 0.72 | 0.46 | 1.12 |
Underlying illnesses | 94 (27.8%) | 49 (37.7%) | 143 (30.6%) | 0.21 | 1.57 | 1.02 | 2.41 |
Obesity BMI ≥ 30 | 91 (27.0%) | 42 (31.6%) | 133 (28.3%) | 0.10 | 1.25 | 0.81 | 1.93 |
Vit D blood levels 30 UI and over | 139 (40.9%) | 52 (39.1%) | 191 (40.4%) | 0.04 | 0.93 | 0.62 | 1.40 |
Number of COVID19 vacc doses | |||||||
No vaccinated | 6 (1.8%) | 3 (2.3%) | 9 (1.9%) | 0.32 | 0.80 | 0.19 | 3.36 |
One dose | 9 (2.6%) | 3 (2.3%) | 12 (2.5%) | 0.54 | 0.14 | 2.07 | |
Two doses | 82 (24.1%) | 51 (38.3%) | 133 (28.1%) | 1.00 | |||
Three doses | 243 (71.5%) | 76 (57.1%) | 319 (67.4%) | 0.50 | 0.33 | 0.78 | |
Third dose vs one or two previous doses | |||||||
Primed | 90 (27.0%) | 52 (40.6%) | 142 (30.8%) | 0.29 | 1.00 | ||
Boosted 3rd dose | 243 (73.0%) | 76 (59.4%) | 319 (69.2%) | 0.53 | 0.35 | 0.83 | |
COVID cases by Predominant VOC circulation in Spain | |||||||
Ancestral | 216 (63.9%) | 99 (74.4%) | 315 (66.9%) | 0.40 | 1.00 | ||
Alpha | 9 (2.7%) | 9 (6.8%) | 18 (3.8%) | 2.18 | 0.84 | 5.66 | |
Delta | 2 (0.6%) | 2 (1.5%) | 4 (0.8%) | 2.18 | 0.30 | 15.71 | |
Omicron | 111 (32.8%) | 23 (17.3%) | 134 (28.5%) | 0.45 | 0.27 | 0.75 | |
Reinfected | 77 (22.6%) | 43 (32.3%) | 120 (25.4%) | 0.22 | 1.63 | 1.05 | 2.54 |
Cell immune response (IFN-γ-producing CD4+ or CD8+ T) † Median (p25–p75) | |||||||
CD4 Ancestral | 0.9 (0.0–2.2) | 0.7 (0.4–2.5) | 0.8 (0.2–2.3) | 0.12 | ne | ne | ne |
CD8 Ancestral | 1.0 (0.0–3.4) | 1.0 (0.4–2.3) | 1.0 (0.0–2.8) | 0.44 | ne | ne | ne |
CD4 BA.2 | 0.7 (0.0–2.5) | 1.0 (0.4–3.9) | 0.9 (0.1–2.8) | −0.19 | ne | ne | ne |
CD8 BA.2 | 0.6 (0.0–2.2) | 1.0 (0.3–2.5) | 0.8 (0.0–2.5) | 0.09 | ne | ne | ne |
Anti SARS-CoV-2 antibody levels | ne | ne | ne | ||||
Anti-S AU: mean ± sd | 2094.7 ± 1614.8 | 1853.6 ± 1485.0 | 2026.9 ± 1581.5 | 0.16 | ne | ne | ne |
Anti-N AU: mean ± sd | 2.4 ± 2.8 | 2.4 ± 2.8 | 2.4 ± 2.8 | 0.03 | ne | ne | ne |
Long COVID | SMD * | OR * | 95%CI * | ||||
---|---|---|---|---|---|---|---|
No | Yes | Total | |||||
340 (71.9%) | 133 (28.1%) | 473 (100.0%) | |||||
Episode characteristics | |||||||
First episode | |||||||
Symptomatic | 246 (72.8%) | 120 (90.2%) | 366 (77.7%) | 0.46 | 3.45 | 1.86 | 6.42 |
Laboratory confirmed | 288 (84.7%) | 120 (90.2%) | 408 (86.3%) | 0.17 | 1.67 | 0.88 | 3.17 |
Duration in days; mean ± sd | 7.0 ± 11.6 | 12.9 ± 21.7 | 8.7 ± 15.4 | −0.34 | 1.02 | 1.01 | 1.04 |
Outpatient consultation | 138 (40.7%) | 76 (58.0%) | 214 (45.5%) | 0.35 | 2.01 | 1.34 | 3.03 |
Admission | 6 (1.8%) | 9 (6.8%) | 15 (3.2%) | 0.25 | 4.05 | 1.41 | 11.61 |
Second episode | |||||||
Symptomatic | 59 (77.6%) | 37 (86.0%) | 96 (80.7%) | 0.22 | 1.78 | 0.64 | 4.91 |
Laboratory confirmed | 69 (89.6%) | 38 (88.4%) | 107 (89.2%) | 0.04 | 0.88 | 0.27 | 2.88 |
Duration in days; mean ± sd | 4.11 ± 4.40 | 4.67 ± 3.46 | 4.30 ± 4.09 | −0.14 | 1.03 | 0.94 | 1.13 |
Outpatient consultation | 33 (43.4%) | 23 (53.5%) | 56 (47.1%) | 0.20 | 1.50 | 0.71 | 3.18 |
Admission | 0 (0.0%) | 1 (2.3%) | 1 (0.8%) | 0.22 | 1.77 | 0.05 | ∞ |
Outcomes | |||||||
Fully recovered after covid | 327 (96.2%) | 41 (30.8%) | 368 (77.8%) | 1.85 | 0.02 | 0.01 | 0.03 |
Perceived Current Health Status | |||||||
Poor | 9 (2.7%) | 2 (1.5%) | 11 (2.3%) | 0.54 | |||
Fair | 37 (10.9%) | 37 (28.2%) | 74 (15.7%) | ||||
Good | 218 (64.3%) | 80 (61.1%) | 298 (63.4%) | ||||
Excellent | 75 (22.1%) | 12 (9.2%) | 87 (18.5%) | ||||
As healthy as before | 297 (87.4%) | 52 (39.1%) | 349 (73.8%) | 1.16 | 0.09 | 0.06 | 0.15 |
Sequelae | 33 (9.7%) | 112 (84.2%) | 145 (30.7%) | 2.24 | 49.62 | 27.55 | 89.36 |
Days with symptoms; mean ± sd | 113.80 ± 237.29) | 594.61 ± 287.79 | 560.98 ± 309.35 | −1.82 | |||
Number of symptoms reported at follow-up | 1.6 ± 2.7 | 3.8 ± 3.9 | 2.2 ± 3.22 | −0.66 | 1.22 | 1.14 | 1.30 |
Scoring GAD-7 Anxiety Severity | |||||||
0–4; minimal anxiety | 246 (72.4%) | 79 (59.4%) | 325 (68.7%) | 0.32 | 1.00 | ||
5–9; mild anxiety | 59 (17.4%) | 29 (21.8%) | 88 (18.6%) | 1.53 | 0.92 | 2.55 | |
10–14; moderate anxiety | 25 (7.4%) | 14 (10.5%) | 39 (8.2%) | 1.74 | 0.86 | 3.52 | |
15–21; severe anxiety | 10 (2.9%) | 11 (8.3%) | 21 (4.4%) | 3.43 | 1.40 | 8.37 | |
GAD-7 score: Anxiety, mild to severe | 94 (27.6%) | 54 (40.6%) | 148 (31.3%) | 0.28 | 1.79 | 1.18 | 2.72 |
Depression severity measure | |||||||
No or minimal | 273 (80.3%) | 92 (69.2%) | 365 (77.2%) | 0.31 | 1.00 | ||
Mild | 47 (13.8%) | 24 (18.0%) | 71 (15.0%) | 1.52 | 0.88 | 2.61 | |
Moderate | 14 (4.1%) | 8 (6.0%) | 22 (4.7%) | 1.70 | 0.69 | 4.17 | |
Moderate to Severe | 4 (1.2%) | 7 (5.3%) | 11 (2.3%) | 5.19 | 1.49 | 18.14 | |
Severe | 2 (0.6%) | 2 (1.5%) | 4 (0.8%) | 2.97 | 0.41 | 21.37 | |
PHQ-9 score: Depresion Mild to severe | 67 (19.7%) | 41 (30.8%) | 108 (22.8%) | 0.26 | 1.82 | 1.15 | 2.86 |
Symptom* | Long COVID | SMD | Absolute %Difference | |
---|---|---|---|---|
Yes (n = 133) | No (n = 340) | |||
Fatigue/Tiredness | 40.6% | 15.9% | 0.57 | 24.7% |
Hair loss | 33.8% | 13.5% | 0.49 | 20.3% |
Loss/altered taste/smell | 19.5% | 1.8% | 0.60 | 17.7% |
Restlessness | 25.6% | 8.5% | 0.47 | 17.1% |
Weakness | 20.3% | 7.1% | 0.39 | 13.2% |
Dyspnea | 13.5% | 1.5% | 0.47 | 12.0% |
Memory loss | 16.5% | 4.7% | 0.39 | 11.8% |
Difficulty concentrating | 18.0% | 6.5% | 0.36 | 11.5% |
Pain in hands and feet | 15.8% | 5.6% | 0.33 | 10.2% |
Myalgia | 17.3% | 7.6% | 0.30 | 9.7% |
Anxiety | 18.8% | 9.7% | 0.26 | 9.1% |
Insomnia | 21.8% | 13.2% | 0.23 | 8.6% |
Flashes in vision | 9.8% | 2.9% | 0.28 | 6.9% |
Headaches | 16.5% | 10.6% | 0.17 | 5.9% |
Night sweats | 9.0% | 4.4% | 0.18 | 4.6% |
Speech difficulties | 6.0% | 1.8% | 0.22 | 4.2% |
Alimentary intolerance | 7.5% | 3.5% | 0.18 | 4.0% |
Depression | 6.8% | 2.9% | 0.18 | 3.9% |
Skin lesions | 6.0% | 2.4% | 0.18 | 3.6% |
Nausea/vomiting | 3.8% | 0.3% | 0.25 | 3.5% |
Dizziness | 7.5% | 4.1% | 0.15 | 3.4% |
Abdominal pain | 6.0% | 3.2% | 0.13 | 2.8% |
Chest tightness | 4.5% | 1.8% | 0.16 | 2.7% |
Difficulty with simple mathematical operations | 4.5% | 2.1% | 0.14 | 2.4% |
Diarrhea | 3.0% | 1.2% | 0.13 | 1.8% |
Sore throat | 5.3% | 3.5% | 0.08 | 1.8% |
Mental confusion | 3.8% | 2.1% | 0.10 | 1.7% |
Cough | 7.5% | 6.2% | 0.05 | 1.3% |
Fever | 0.8% | 0.9% | 0.01 | −0.1% |
Tinnitus | 5.3% | 5.6% | 0.01 | −0.3% |
Runny nose | 5.3% | 6.8% | 0.06 | −1.5% |
Period/Outcome | Observed | Adjusted IPW * | |||||||
---|---|---|---|---|---|---|---|---|---|
Primed | Boosted | SMD | Absolute Difference Boosted vs. Primed | Relative Reduction in Boosted vs. Primed | |||||
n or mean | % or sd | n | % | % or mean | 95%CI | % | 95%CI | ||
Infected in the Omicron period (n; row %) | 27 | 23.1% | 90 | 76.9% | |||||
Long COVID prevalence (n; column %) | 8 | 29.6% | 12 | 13.3% | 0.40 | −38.2% | (−60.5% to −15.9%) | 74.0% | (56.4% to 91.7%) |
Symptoms (mean ± sd) | 2.4 | ±3.70 | 1.5 | ±2.55 | 0.29 | −1.8 | (−3.3 to −0.4) | 55.2% | (31.6% to 78.7%) |
Infected in the Ancestral period (n; row %) | 79 | 29.6% | 188 | 70.4% | |||||
Long COVID prevalence (n; column %) | 32 | 40.5% | 58 | 30.9% | 0.20 | −10.4% | (−23.0% to 2.2%) | 24.9% | (−49.8% to 0.0%) |
Symptoms (mean ± sd) | 3.1 | ±3.9 | 2.6 | ±3.41 | 0.14 | −0.7 | (−1.7 to 0.3) | 21.0% | (−46.2% to 4.2%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domènech-Montoliu, S.; Puig-Barberà, J.; Badenes-Marques, G.; Gil-Fortuño, M.; Orrico-Sánchez, A.; Pac-Sa, M.R.; Perez-Olaso, O.; Sala-Trull, D.; Sánchez-Urbano, M.; Arnedo-Pena, A. Long COVID Prevalence and the Impact of the Third SARS-CoV-2 Vaccine Dose: A Cross-Sectional Analysis from the Third Follow-Up of the Borriana Cohort, Valencia, Spain (2020–2022). Vaccines 2023, 11, 1590. https://doi.org/10.3390/vaccines11101590
Domènech-Montoliu S, Puig-Barberà J, Badenes-Marques G, Gil-Fortuño M, Orrico-Sánchez A, Pac-Sa MR, Perez-Olaso O, Sala-Trull D, Sánchez-Urbano M, Arnedo-Pena A. Long COVID Prevalence and the Impact of the Third SARS-CoV-2 Vaccine Dose: A Cross-Sectional Analysis from the Third Follow-Up of the Borriana Cohort, Valencia, Spain (2020–2022). Vaccines. 2023; 11(10):1590. https://doi.org/10.3390/vaccines11101590
Chicago/Turabian StyleDomènech-Montoliu, Salvador, Joan Puig-Barberà, Gema Badenes-Marques, María Gil-Fortuño, Alejandro Orrico-Sánchez, María Rosario Pac-Sa, Oscar Perez-Olaso, Diego Sala-Trull, Manuel Sánchez-Urbano, and Alberto Arnedo-Pena. 2023. "Long COVID Prevalence and the Impact of the Third SARS-CoV-2 Vaccine Dose: A Cross-Sectional Analysis from the Third Follow-Up of the Borriana Cohort, Valencia, Spain (2020–2022)" Vaccines 11, no. 10: 1590. https://doi.org/10.3390/vaccines11101590
APA StyleDomènech-Montoliu, S., Puig-Barberà, J., Badenes-Marques, G., Gil-Fortuño, M., Orrico-Sánchez, A., Pac-Sa, M. R., Perez-Olaso, O., Sala-Trull, D., Sánchez-Urbano, M., & Arnedo-Pena, A. (2023). Long COVID Prevalence and the Impact of the Third SARS-CoV-2 Vaccine Dose: A Cross-Sectional Analysis from the Third Follow-Up of the Borriana Cohort, Valencia, Spain (2020–2022). Vaccines, 11(10), 1590. https://doi.org/10.3390/vaccines11101590