Vaccination Failures in Pigs—The Impact of Chosen Factors on the Immunisation Efficacy
Abstract
:1. Introduction
2. Stress
3. Faecal Microbiota
4. Pigs’ Genetics
5. Presence of MDAs
5.1. Classical Swine Fever Virus
5.2. Foot and Mouth Disease Virus
5.3. Pseudorabies Virus (Aujeszky’s Disease)
5.4. Parvovirus
5.5. Porcine Reproductive and Respiratory Syndrome Virus
5.6. Porcine Circovirus Type 2
5.7. Swine Influenza Virus
5.8. Actinobacillus pleuropneumoniae
5.9. Erysipelotrix rhusiopathiae
5.10. Escherichia coli
5.11. Glässerella parasuis
5.12. Mycoplasma hyopneumonaie
6. Infections with Immunosuppressive Pathogens
7. Antibiotic Usage
8. Dietary Factors—Mycotoxins
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shinkai, H.; Arakawa, A.; Tanaka-Matsuda, M.; Ide-Okumura, H.; Terada, K.; Chikyu, M.; Kawarasaki, T.; Ando, A.; Uenishi, H. Genetic variability in swine leukocyte antigen class II and Toll-like receptors affects immune responses to vaccination for bacterial infections in pigs. Comp. Immunol. Microbiol. Infect. Dis. 2012, 35, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.S.; Farnsworth, M.L.; Malmberg, J.L. Diseases at the livestock-wildlife interface: Status, challenges, and opportunities in the United States. Prev. Vet. Med. 2013, 110, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Zanella, R.; Gava, D.; Peixoto Jde, O.; Schaefer, R.; Ciacci-Zanella, J.R.; Biondo, N.; da Silva, M.V.; Cantão, M.E.; Ledur, M.C. Unravelling the genetic components involved in the immune response of pigs vaccinated against influenza virus. Virus Res. 2015, 210, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Postma, M.; Stärk, K.D.; Sjölund, M.; Backhans, A.; Beilage, E.G.; Lösken, S.; Belloc, C.; Collineau, L.; Iten, D.; Visschers, V.; et al. Alternatives to the use of antimicrobial agents in pig production: A multi-country expert-ranking of perceived effectiveness, feasibility and return on investment. Prev. Vet. Med. 2015, 118, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, P.; Curtis, N. Factors That Influence the Immune Response to Vaccination. Clin. Microbiol. Rev. 2019, 32, e00084-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heininger, U.; Bachtiar, N.S.; Bahri, P.; Dana, A.; Dodoo, A.; Gidudu, J.; Santos, E.M. The concept of vaccination failure. Vaccine 2012, 30, 1265–1268. [Google Scholar] [CrossRef]
- Lyons, N.A.; Lyoo, Y.S.; King, D.P.; Paton, D.J. Challenges of Generating and Maintaining Protective Vaccine-Induced Immune Responses for Foot-and-Mouth Disease Virus in Pigs. Front. Vet. Sci. 2016, 3, 102. [Google Scholar] [CrossRef] [Green Version]
- Kick, A.R.; Tompkins, M.B.; Almond, G.W. Stress and immunity in the pig. CABI Rev. 2011, 6, 1–17. [Google Scholar] [CrossRef]
- de Groot, J.; Ruis, M.A.; Scholten, J.W.; Koolhaas, J.M.; Boersma, W.J. Long-term effects of social stress on antiviral immunity in pigs. Physiol. Behav. 2001, 73, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Brown-Borg, H.M.; Klemcke, H.G.; Blecha, F. Lymphocyte proliferative responses in neonatal pigs with high or low plasma cortisol concentration after stress induced by restraint. Am. J. Vet. Res. 1993, 54, 2015–2020. [Google Scholar]
- Arsenakis, I.; Panzavolta, L.; Michiels, A.; Del Pozo Sacristán, R.; Boyen, F.; Haesebrouck, F.; Maes, D. Efficacy of Mycoplasma hyopneumoniae vaccination before and at weaning against experimental challenge infection in pigs. BMC Vet. Res. 2016, 12, 63. [Google Scholar] [CrossRef] [PubMed]
- Munyaka, P.M.; Blanc, F.; Estellé, J.; Lemonnier, G.; Leplat, J.J.; Rossignol, M.N.; Jardet, D.; Plastow, G.; Billon, Y.; Willing, B.P.; et al. Discovery of Predictors of Mycoplasma hyopneumoniae Vaccine Response Efficiency in Pigs: 16S rRNA Gene Fecal Microbiota Analysis. Microorganisms 2020, 8, 1151. [Google Scholar] [CrossRef]
- Borey, M.; Blanc, F.; Lemonnier, G.; Leplat, J.J.; Jardet, D.; Rossignol, M.N.; Ravon, L.; Billon, Y.; Bernard, M.; Estellé, J.; et al. Links between fecal microbiota and the response to vaccination against influenza A virus in pigs. NPJ Vaccines 2021, 6, 92. [Google Scholar] [CrossRef] [PubMed]
- Radulovic, E.; Mehinagic, K.; Wüthrich, T.; Hilty, M.; Posthaus, H.; Summerfield, A.; Ruggli, N.; Benarafa, C. The baseline immunological and hygienic status of pigs impact disease severity of African swine fever. PLoS Pathog. 2022, 18, e1010522. [Google Scholar] [CrossRef]
- Blanc, F.; Maroilley, T.; Revilla, M.; Lemonnier, G.; Leplat, J.J.; Billon, Y.; Ravon, L.; Bouchez, O.; Bidanel, J.P.; Bed’Hom, B.; et al. Influence of genetics and the pre-vaccination blood transcriptome on the variability of antibody levels after vaccination against Mycoplasma hyopneumoniae in pigs. Genet. Sel. Evol. 2021, 53, 24. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, M.F.; Hill, H.T.; Christian, L.L.; Warner, C.M. Genetic differences in serum-neutralization titers of pigs after vaccination with pseudorabies modified live-virus vaccine. Am. J. Vet. Res. 1984, 45, 1216–1218. [Google Scholar]
- Pomorska-Mól, M.; Markowska-Daniel, I.; Pejsak, Z. Evaluation of humoral and antigen-specific T-cell responses after vaccination of pigs against pseudorabies in the presence of maternal antibodies. Vet. Microbiol. 2010, 144, 450–454. [Google Scholar] [CrossRef]
- Markowska-Daniel, I.; Pomorska-Mól, M.; Pejsak, Z. The influence of age and maternal antibodies on the postvaccinal response against swine influenza viruses in pigs. Vet. Immunol. Immunopathol. 2011, 142, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Pomorska-Mól, M.; Markowska-Daniel, I. Siara jako źródło odporności humoralnej oraz komórkowej dla prosiąt osesków. Med. Weter 2009, 65, 237–240. [Google Scholar]
- Kielland, C.; Rootwelt, V.; Reksen, O.; Framstad, T. The association between immunoglobulin G in sow colostrum and piglet plasma. J. Anim. Sci. 2015, 93, 4453–4462. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Boixaderas, N.; Garza-Moreno, L.; Sibila, M.; Segalés, J. Impact of maternally derived immunity on immune responses elicited by piglet early vaccination against the most common pathogens involved in porcine respiratory disease complex. Porcine Health Manag. 2022, 8, 11. [Google Scholar] [CrossRef]
- Dekker, A.; Chénard, G.; Stockhofe, N.; Eblé, P.L. Proper Timing of Foot-and-Mouth Disease Vaccination of Piglets with Maternally Derived Antibodies Will Maximize Expected Protection Levels. Front. Vet. Sci. 2016, 3, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandrick, M.; Theis, K.; Molitor, T.W. Maternal immunity enhances Mycoplasma hyopneumoniae vaccination induced cell-mediated immune responses in piglets. BMC Vet. Res. 2014, 10, 124. [Google Scholar] [CrossRef] [PubMed]
- Fablet, C.; Renson, P.; Eono, F.; Mahé, S.; Eveno, E.; Le Dimna, M.; Normand, V.; Lebret, A.; Rose, N.; Bourry, O. Maternally-derived antibodies (MDAs) impair piglets’ humoral and cellular immune responses to vaccination against porcine reproductive and respiratory syndrome (PRRS). Vet. Microbiol. 2016, 192, 175–180. [Google Scholar] [CrossRef]
- Vandeputte, J.; Too, H.L.; Ng, F.K.; Chen, C.; Chai, K.K.; Liao, G.A. Adsorption of colostral antibodies against classical swine fever, persistence of maternal antibodies, and effect on response to vaccination in baby pigs. Am. J. Vet. Res. 2001, 62, 1805–1811. [Google Scholar] [CrossRef] [PubMed]
- Rangelova, D.; Nielsen, J.; Strandbygaard, B.; Koenen, F.; Blome, S.; Uttenthal, A. Efficacy of marker vaccine candidate CP7_E2alf in piglets with maternally derived C-strain antibodies. Vaccine 2012, 30, 6376–6381. [Google Scholar] [CrossRef]
- Suradhat, S.; Damrongwatanapokin, S. The influence of maternal immunity on the efficacy of a classical swine fever vaccine against classical swine fever virus, genogroup 2.2, infection. Vet. Microbiol. 2003, 92, 187–194. [Google Scholar] [CrossRef]
- Klinkenberg, D.; Moormann, R.J.; de Smit, A.J.; Bouma, A.; de Jong, M.C. Influence of maternal antibodies on efficacy of a subunit vaccine: Transmission of classical swine fever virus between pigs vaccinated at 2 weeks of age. Vaccine 2002, 20, 3005–3013. [Google Scholar] [CrossRef] [PubMed]
- Francis, M.J.; Black, L. Response of young pigs to foot-and-mouth disease oil emulsion vaccination in the presence and absence of maternally derived neutralising antibodies. Res. Vet. Sci. 1986, 41, 33–39. [Google Scholar] [CrossRef]
- Liao, P.C.; Lin, Y.L.; Jong, M.H.; Chung, W.B. Efficacy of foot-and-mouth disease vaccine in pigs with single dose immunization. Vaccine 2003, 21, 1807–1810. [Google Scholar] [CrossRef]
- Opriessnig, T.; Patterson, A.R.; Elsener, J.; Meng, X.J.; Halbur, P.G. Influence of maternal antibodies on efficacy of porcine circovirus type 2 (PCV2) vaccination to protect pigs from experimental infection with PCV2. Clin. Vaccine Immunol. 2008, 15, 397–401. [Google Scholar] [CrossRef] [Green Version]
- Fort, M.; Sibila, M.; Pérez-Martín, E.; Nofrarías, M.; Mateu, E.; Segalés, J. One dose of a porcine circovirus 2 (PCV2) sub-unit vaccine administered to 3-week-old conventional piglets elicits cell-mediated immunity and significantly reduces PCV2 viremia in an experimental model. Vaccine 2009, 27, 4031–4037. [Google Scholar] [CrossRef]
- Fraile, L.; Grau-Roma, L.; Sarasola, P.; Sinovas, N.; Nofrarías, M.; López-Jimenez, R.; López-Soria, S.; Sibila, M.; Segalés, J. Inactivated PCV2 one shot vaccine applied in 3-week-old piglets: Improvement of production parameters and interaction with maternally derived immunity. Vaccine 2012, 30, 1986–1992. [Google Scholar] [CrossRef] [PubMed]
- Fraile, L.; Sibila, M.; Nofrarías, M.; López-Jimenez, R.; Huerta, E.; Llorens, A.; López-Soria, S.; Pérez, D.; Segalés, J. Effect of sow and piglet porcine circovirus type 2 (PCV2) vaccination on piglet mortality, viraemia, antibody titre and production parameters. Vet. Microbiol. 2012, 161, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Haake, M.; Palzer, A.; Rist, B.; Weissenbacher-Lang, C.; Fachinger, V.; Eggen, A.; Ritzmann, M.; Eddicks, M. Influence of age on the effectiveness of PCV2 vaccination in piglets with high levels of maternally derived antibodies. Vet. Microbiol. 2014, 168, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Martelli, P.; Saleri, R.; Ferrarini, G.; De Angelis, E.; Cavalli, V.; Benetti, M.; Ferrari, L.; Canelli, E.; Bonilauri, P.; Arioli, E.; et al. Impact of maternally derived immunity on piglets’ immune response and protection against porcine circovirus type 2 (PCV2) after vaccination against PCV2 at different age. BMC Vet. Res. 2016, 12, 77. [Google Scholar] [CrossRef] [Green Version]
- Feng, H.; Segalés, J.; Fraile, L.; López-Soria, S.; Sibila, M. Effect of high and low levels of maternally derived antibodies on porcine circovirus type 2 (PCV2) infection dynamics and production parameters in PCV2 vaccinated pigs under field conditions. Vaccine 2016, 34, 3044–3050. [Google Scholar] [CrossRef] [Green Version]
- Wrathall, A.E.; Cartwright, S.F.; Wells, D.E.; Jones, P.C. Maternally-derived antibodies to porcine parvovirus and their effect on active antibody production after vaccination with an inactivated oil-emulsion vaccine. Vet. Rec. 1987, 120, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Paul, P.S.; Mengeling, W.L. Vaccination of swine with an inactivated porcine parvovirus vaccine in the presence of passive immunity. J. Am. Vet. Med. Assoc. 1986, 188, 410–413. [Google Scholar]
- Iglesias, G.; Trujano, M. Studies on maternally derived antibodies to Aujeszky’s disease virus in piglets born to naturally or experimentally infected sows. Zentralbl. Veterinarmed. B 1989, 36, 57–62. [Google Scholar] [CrossRef]
- Weigel, R.M.; Lehman, J.R.; Herr, L.; Hahn, E.C. Field trial to evaluate immunogenicity of a glycoprotein I (gE)-deleted pseudorabies virus vaccine after its administration in the presence of maternal antibodies. Am. J. Vet. Res. 1995, 56, 1155–1162. [Google Scholar] [PubMed]
- De Smet, K.; De Waele, K.; Pensaert, M. Influence of vaccine medium and vaccination schedules on the induction of active immunity against Aujeszky’s disease in maternally immune pigs. Res. Vet. Sci. 1994, 56, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Nodelijk, G.; van Leengoed, L.A.; Schoevers, E.J.; Kroese, A.H.; De Jong, M.C.; Wensvoort, G.; Verheijden, J.H. Seroprevalence of porcine reproductive and respiratory syndrome virus in Dutch weaning pigs. Vet. Microbiol. 1997, 56, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.B.; Lin, M.W.; Chang, W.F.; Hsu, M.; Yang, P.C. Persistence of porcine reproductive and respiratory syndrome virus in intensive farrow-to-finish pig herds. Can. J. Vet. Res. 1997, 61, 292–298. [Google Scholar]
- Renson, P.; Fablet, C.; Andraud, M.; Normand, V.; Lebret, A.; Paboeuf, F.; Rose, N.; Bourry, O. Maternally-derived neutralizing antibodies reduce vaccine efficacy against porcine reproductive and respiratory syndrome virus infection. Vaccine 2019, 37, 4318–4324. [Google Scholar] [CrossRef] [PubMed]
- Kitikoon, P.; Nilubol, D.; Erickson, B.J.; Janke, B.H.; Hoover, T.C.; Sornsen, S.A.; Thacker, E.L. The immune response and maternal antibody interference to a heterologous H1N1 swine influenza virus infection following vaccination. Vet. Immunol. Immunopathol. 2006, 112, 117–128. [Google Scholar] [CrossRef]
- Cador, C.; Hervé, S.; Andraud, M.; Gorin, S.; Paboeuf, F.; Barbier, N.; Quéguiner, S.; Deblanc, C.; Simon, G.; Rose, N. Maternally-derived antibodies do not prevent transmission of swine influenza A virus between pigs. Vet. Res. 2016, 47, 86. [Google Scholar] [CrossRef] [Green Version]
- Rajao, D.S.; Sandbulte, M.R.; Gauger, P.C.; Kitikoon, P.; Platt, R.; Roth, J.A.; Perez, D.R.; Loving, C.L.; Vincent, A.L. Heterologous challenge in the presence of maternally-derived antibodies results in vaccine-associated enhanced respiratory disease in weaned piglets. Virology 2016, 491, 79–88. [Google Scholar] [CrossRef]
- Rose, N.; Hervé, S.; Eveno, E.; Barbier, N.; Eono, F.; Dorenlor, V.; Andraud, M.; Camsusou, C.; Madec, F.; Simon, G. Dynamics of influenza A virus infections in permanently infected pig farms: Evidence of recurrent infections, circulation of several swine influenza viruses and reassortment events. Vet. Res. 2013, 44, 72. [Google Scholar] [CrossRef] [Green Version]
- Chiers, K.; Donné, E.; Van Overbeke, I.; Ducatelle, R.; Haesebrouck, F. Actinobacillus pleuropneumoniae infections in closed swine herds: Infection patterns and serological profiles. Vet. Microbiol. 2002, 85, 343–352. [Google Scholar] [CrossRef]
- Vigre, H.; Ersbøll, A.K.; Sørensen, V. Decay of acquired colostral antibodies to Actinobacillus pleuropneumoniae in pigs. J. Vet. Med. B Infect. Dis. Vet. Public Health. 2003, 50, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Jirawattanapong, P.; Stockhofe-Zurwieden, N.; van Leengoed, L.A.M.G.; Binnendijk, G.P.; Wisselink, H.J.; Raymakers, R.; Cruijsen, T.; van der Peet-Schwering, C.; van Nes, A.; Nielen, M. Efficacy of a subunit vaccine Actinobacillus pleuropneumoniae in an endemically infected swine herd. J. Swine Health Prod. 2008, 16, 193–199. [Google Scholar]
- Pomorska-Mól, M.; Markowska-Daniel, I.; Pejsak, Z. Effect of age and maternally-derived antibody status on humoral and cellular immune responses to vaccination of pigs against Erysipelothrix rhusiopathiae. Vet. J. 2012, 194, 128–130. [Google Scholar] [CrossRef] [PubMed]
- Pomorska-Mól, M.; Markowska-Daniel, I.; Rachubik, J.; Pejsak, Z. Effect of maternal antibodies and pig age on the antibody response after vaccination against Glässers disease. Vet. Res. Commun. 2011, 35, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.; Han, K.; Seo, H.W.; Park, C.; Chae, C. Program of vaccination and antibiotic treatment to control polyserositis caused by Haemophilus parasuis under field conditions. Can. J. Vet. Res. 2013, 77, 183–190. [Google Scholar]
- Morris, C.R.; Gardner, I.A.; Hietala, S.K.; Carpenter, T.E.; Anderson, R.J.; Parker, K.M. Persistence of passively acquired antibodies to Mycoplasma hyopneumoniae in a swine herd. Prev. Vet. Med. 1994, 21, 29–41. [Google Scholar] [CrossRef]
- Maes, D.; Deluyker, H.; Verdonck, M.; Castryck, F.; Miry, C.; Lein, A.; Vrijens, B.; de Kruif, A. The effect of vaccination against Mycoplasma hypopneumoniae in pig herds with a continuous production system. Zentralbl. Veterinarmed. B 1998, 45, 495–505. [Google Scholar]
- Hodgins, D.C.; Shewen, P.E.; Dewey, C.E. Influence of age and maternal antibodies on antibody responses of neonatal piglets vaccinated against Mycoplasma hyopneumoniae. J. Swine Health Prod. 2004, 12, 10–16. [Google Scholar]
- Grosse Beilage, E.; Schreiber, A. Impfung von Sauen gegen Mycoplasma hyopneumoniae mit Hyoresp Vaccination of sows against Mycoplasma hyopneumoniae with Hyoresp]. Dtsch. Tierarztl. Wochenschr. 2005, 112, 256–261. [Google Scholar]
- Martelli, P.; Terreni, M.; Guazzetti, S.; Cavirani, S. Antibody response to Mycoplasma hyopneumoniae infection in vaccinated pigs with or without maternal antibodies induced by sow vaccination. J. Vet. Med. B Infect. Dis. Vet. Public Health 2006, 53, 229–233. [Google Scholar] [CrossRef]
- Eblé, P.L.; Quak, S.; Geurts, Y.; Moonen-Leusen, H.W.; Loeffen, W.L. Efficacy of CSF vaccine CP7_E2alf in piglets with maternally derived antibodies. Vet. Microbiol. 2014, 174, 27–38. [Google Scholar] [CrossRef]
- Farsang, A.; Lévai, R.; Barna, T.; Fábián, K.; Blome, S.; Belák, K.; Bálint, Á.; Koenen, F.; Kulcsár, G. Pre-registration efficacy study of a novel marker vaccine against classical swine fever on maternally derived antibody positive (MDA+) target animals. Biologicals 2017, 45, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Park, S.H.; Park, J.H.; Kim, S.M.; Lee, M.J. Age-Dependent Dynamics of Maternally Derived Antibodies (MDAs) and Understanding MDA-Mediated Immune Tolerance in Foot-and-Mouth Disease-Vaccinated Pigs. Vaccines 2022, 10, 677. [Google Scholar] [CrossRef]
- Lee, H.S.; Lee, N.H.; Seo, M.G.; Ko, Y.J.; Kim, B.; Lee, J.B.; Kim, J.S.; Park, S.; Shin, Y.K. Serological responses after vaccination of growing pigs with foot-and-mouth disease trivalent (type O, A and Asia1) vaccine. Vet. Microbiol. 2013, 164, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.Y.; Tark, D.; Kim, H.; Kim, J.S.; Lee, J.M.; Kwon, M.; Bae, S.; Kim, B.; Ko, Y.J. Determination of optimal age for single vaccination of growing pigs with foot-and-mouth disease bivalent vaccine in South Korea. J. Vet. Med. Sci. 2017, 79, 1822–1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, L.; Barzu, S.; Andreoni, C.; Buisson, N.; Brun, A.; Audonnet, J.C. DNA vaccination of neonate piglets in the face of maternal immunity induces humoral memory and protection against a virulent pseudorabies virus challenge. Vaccine 2003, 21, 1732–1741. [Google Scholar] [CrossRef] [PubMed]
- Figueras-Gourgues, S.; Fraile, L.; Segalés, J.; Hernández-Caravaca, I.; López-Úbeda, R.; García-Vázquez, F.A.; Gomez-Duran, O.; Grosse-Liesner, B. Effect of Porcine circovirus 2 (PCV-2) maternally derived antibodies on performance and PCV-2 viremia in vaccinated piglets under field conditions. Porc. Health Manag. 2019, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Tumamao, J.Q.; Bowles, R.E.; van den Bosch, H.; Klaasen, H.L.; Fenwick, B.W.; Blackall, P.J. An evaluation of the role of antibodies to Actinobacillus pleuropneumoniae serovar 1 and 15 in the protection provided by sub-unit and live streptomycin-dependent pleuropneumonia vaccines. Aust. Vet. J. 2004, 82, 773–780. [Google Scholar] [CrossRef] [Green Version]
- Kitajima, T.; Oishi, E.; Amimoto, K.; Ui, S.; Nakamura, H.; Okada, N.; Saski, O.; Yasuhara, H. Protective effect of NaOH-extracted Erysipelothrix rhusiopathiae vaccine in pigs. J. Vet. Med. Sci. 1998, 60, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, U.V.; Melkebeek, V.; Devriendt, B.; Goetstouwers, T.; Van Poucke, M.; Peelman, L.; Goddeeris, B.M.; Cox, E. Maternal immunity enhances systemic recall immune responses upon oral immunization of piglets with F4 fimbriae. Vet. Res. 2015, 46, 72. [Google Scholar] [CrossRef]
- Wilson, S.; Van Brussel, L.; Saunders, G.; Runnels, P.; Taylor, L.; Fredrickson, D.; Salt, J. Vaccination of piglets up to 1 week of age with a single-dose Mycoplasma hyopneumoniae vaccine induces protective immunity within 2 weeks against virulent challenge in the presence of maternally derived antibodies. Clin. Vaccine Immunol. 2013, 20, 720–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, S.C.; St Aubin, L.B.; Sabbadini, L.G.; Kula, J.; Vogelaar, J.; Runnels, P.; Peters, A.R. Reduced lung lesions in pigs challenged 25 weeks after the administration of a single dose of Mycoplasma hyopneumoniae vaccine at approximately 1 week of age. Vet. J. 2009, 181, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Thanawongnuwech, R.; Suradhat, S. Taming PRRSV: Revisiting the control strategies and vaccine design. Virus Res. 2010, 154, 133–140. [Google Scholar] [CrossRef] [PubMed]
- De Bruin, M.G.; Samsom, J.N.; Voermans, J.J.; van Rooij, E.M.; De Visser, Y.E.; Bianchi, A.T. Effects of a porcine reproductive and respiratory syndrome virus infection on the development of the immune response against pseudorabies virus. Vet. Immunol. Immunopathol. 2000, 76, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, H. Infection of porcine reproductive and respiratory syndrome virus suppresses the antibody response to classical swine fever virus vaccination. Vet. Microbiol. 2003, 95, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Suradhat, S.; Kesdangsakonwut, S.; Sada, W.; Buranapraditkun, S.; Wongsawang, S.; Thanawongnuwech, R. Negative impact of porcine reproductive and respiratory syndrome virus infection on the efficacy of classical swine fever vaccine. Vaccine 2006, 24, 2634–2642. [Google Scholar] [CrossRef]
- Kitikoon, P.; Vincent, A.L.; Jones, K.R.; Nilubol, D.; Yu, S.; Janke, B.H.; Thacker, B.J.; Thacker, E.L. Vaccine efficacy and immune response to swine influenza virus challenge in pigs infected with porcine reproductive and respiratory syndrome virus at the time of SIV vaccination. Vet. Microbiol. 2009, 139, 235–244. [Google Scholar] [CrossRef]
- Sinha, A.; Shen, H.G.; Schalk, S.; Beach, N.M.; Huang, Y.W.; Halbur, P.G.; Meng, X.J.; Opriessnig, T. Porcine reproductive and respiratory syndrome virus infection at the time of porcine circovirus type 2 vaccination has no impact on vaccine efficacy. Clin. Vaccine Immunol. 2010, 17, 1940–1945. [Google Scholar] [CrossRef] [Green Version]
- Thacker, E.L.; Thacker, B.J.; Young, T.F.; Halbur, P.G. Effect of vaccination on the potentiation of porcine reproductive and respiratory syndrome virus (PRRSV)-induced pneumonia by Mycoplasma hyopneumoniae. Vaccine 2000, 18, 1244–1252. [Google Scholar] [CrossRef]
- Opriessnig, T.; McKeown, N.E.; Harmon, K.L.; Meng, X.J.; Halbur, P.G. Porcine circovirus type 2 infection decreases the efficacy of a modified live porcine reproductive and respiratory syndrome virus vaccine. Clin. Vaccine Immunol. 2006, 13, 923–929. [Google Scholar] [CrossRef]
- Woźniak, A.; Miłek, D.; Bąska, P.; Stadejek, T. Does porcine circovirus type 3 (PCV3) interfere with porcine circovirus type 2 (PCV2) vaccine efficacy? Transbound. Emerg. Dis. 2019, 66, 1454–1461. [Google Scholar] [CrossRef]
- Kekarainen, T.; Segalés, J. Porcine circovirus 2 immunology and viral evolution. Porc. Health Manag. 2015, 1, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palinski, R.; Piñeyro, P.; Shang, P.; Yuan, F.; Guo, R.; Fang, Y.; Byers, E.; Hause, B.M. A Novel Porcine Circovirus Distantly Related to Known Circoviruses Is Associated with Porcine Dermatitis and Nephropathy Syndrome and Reproductive Failure. J. Virol. 2017, 91, e01879-16. [Google Scholar] [CrossRef] [Green Version]
- Phan, T.G.; Giannitti, F.; Rossow, S.; Marthaler, D.; Knutson, T.P.; Li, L.; Deng, X.; Resende, T.; Vannucci, F.; Delwart, E. Detection of a Novel Circovirus PCV3 in Pigs with Cardiac and Multi-Systemic Inflammation. Virol. J. 2016, 13, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turlewicz-Podbielska, H.; Augustyniak, A.; Pomorska-Mól, M. Novel Porcine Circoviruses in View of Lessons Learned from Porcine Circovirus Type 2-Epidemiology and Threat to Pigs and Other Species. Viruses 2022, 14, 261. [Google Scholar] [CrossRef] [PubMed]
- Holland, W.G.; Do, T.T.; Huong, N.T.; Dung, N.T.; Thanh, N.G.; Vercruysse, J.; Goddeeris, B.M. The effect of Trypanosoma evansi infection on pig performance and vaccination against classical swine fever. Vet. Parasitol. 2003, 111, 115–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pomorska-Mól, M.; Kwit, K.; Wierzchosławski, K.; Dors, A.; Pejsak, Z. Effects of amoxicillin, ceftiofur, doxycycline, tiamulin and tulathromycin on pig humoral immune responses induced by erysipelas vaccination. Vet. Rec. 2016, 178, 559. [Google Scholar] [CrossRef]
- Pomorska-Mól, M.; Kwit, K.; Markowska-Daniel, I.; Pejsak, Z. The effect of doxycycline treatment on the postvaccinal immune response in pigs. Toxicol. Appl. Pharmacol. 2014, 278, 31–38. [Google Scholar] [CrossRef]
- Pomorska-Mól, M.; Czyżewska-Dors, E.; Kwit, K.; Rachubik, J.; Lipowski, A.; Pejsak, Z. Immune response in pigs treated with therapeutic doses of enrofloxacin at the time of vaccination against Aujeszky’s disease. Res. Vet. Sci. 2015, 100, 68–74. [Google Scholar] [CrossRef]
- Pomorska-Mól, M.; Czyżewska-Dors, E.; Kwit, K.; Wierzchosławski, K.; Pejsak, Z. Ceftiofur hydrochloride affects the humoral and cellular immune response in pigs after vaccination against swine influenza and pseudorabies. BMC Vet. Res. 2015, 11, 268. [Google Scholar] [CrossRef]
- Pierron, A.; Alassane-Kpembi, I.; Oswald, I.P. Impact of mycotoxin on immune response and consequences for pig health. Anim. Nutr. 2016, 2, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Meissonnier, G.M.; Pinton, P.; Laffitte, J.; Cossalter, A.M.; Gong, Y.Y.; Wild, C.P.; Bertin, G.; Galtier, P.; Oswald, I.P. Immunotoxicity of aflatoxin B1: Impairment of the cell-mediated response to vaccine antigen and modulation of cytokine expression. Toxicol. Appl. Pharmacol. 2008, 231, 142–149. [Google Scholar] [CrossRef]
- Cysewski, S.J.; Wood, R.L.; Pier, A.C.; Baetz, A.L. Effects of aflatoxin on the development of acquired immunity to swine erysipelas. Am. J. Vet. Res. 1978, 39, 445–448. [Google Scholar] [PubMed]
- Pestka, J.J.; Zhou, H.R.; Moon, Y.; Chung, Y.J. Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: Unraveling a paradox. Toxicol. Lett. 2004, 153, 61–73. [Google Scholar] [CrossRef]
- Lessard, M.; Savard, C.; Deschene, K.; Lauzon, K.; Pinilla, V.A.; Gagnon, C.A.; Lapointe, J.; Guay, F.; Chorfi, Y. Impact of deoxynivalenol (DON) contaminated feed on intestinal integrity and immune response in swine. Food Chem. Toxicol. 2015, 80, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Pinton, P.; Accensi, F.; Beauchamp, E.; Cossalter, A.M.; Callu, P.; Grosjean, F.; Oswald, I.P. Ingestion of deoxynivalenol (DON) contaminated feed alters the pig vaccinal immune responses. Toxicol. Lett. 2008, 177, 215–222. [Google Scholar] [CrossRef]
- Savard, C.; Gagnon, C.A.; Chorfi, Y. Deoxynivalenol (DON) naturally contaminated feed impairs the immune response induced by porcine reproductive and respiratory syndrome virus (PRRSV) live attenuated vaccine. Vaccine 2015, 33, 3881–3886. [Google Scholar] [CrossRef] [Green Version]
- Meissonnier, G.M.; Laffitte, J.; Raymond, I.; Benoit, E.; Cossalter, A.M.; Pinton, P.; Bertin, G.; Oswald, I.P.; Galtier, P. Subclinical doses of T-2 toxin impair acquired immune response and liver cytochrome P450 in pigs. Toxicology 2008, 247, 46–54. [Google Scholar] [CrossRef]
- Marin, D.E.; Taranu, I.; Pascale, F.; Lionide, A.; Burlacu, R.; Bailly, J.D.; Oswald, I.P. Sex-related differences in the immune response of weanling piglets exposed to low doses of fumonisin extract. Br. J. Nutr. 2006, 95, 1185–1192. [Google Scholar] [CrossRef]
- Taranu, I.; Marin, D.E.; Bouhet, S.; Pascale, F.; Bailly, J.D.; Miller, J.D.; Pinton, P.; Oswald, I.P. Mycotoxin fumonisin B1 alters the cytokine profile and decreases the vaccinal antibody titer in pigs. Toxicol. Sci. 2005, 84, 301–307. [Google Scholar] [CrossRef]
- Stoev, S.D.; Gundasheva, D.; Zarkov, I.; Mircheva, T.; Zapryanova, D.; Denev, S.; Mitev, Y.; Daskalov, H.; Dutton, M.; Mwanza, M.; et al. Experimental mycotoxic nephropathy in pigs provoked by a mouldy diet containing ochratoxin A and fumonisin B1. Exp. Toxicol. Pathol. 2012, 64, 733–741. [Google Scholar] [CrossRef] [PubMed]
Pathogen | Duration of MDA | Type of Vaccine | Interference with Humoral Immunity | Interference with Cellular Immunity | References |
---|---|---|---|---|---|
Viral agents | |||||
CSFV | 7–10 weeks | Attenuated live Chinese strain virus vaccine | Yes | NE 1 | [25,26,27,28] |
Lapinized Chinese-strain CSF vaccine | Yes | Yes | |||
E2 subunit vaccine | Yes | NE | |||
FMDV | 2 months | 01BFS 1860 | Yes | NE | [22,29,30] |
Inactivated O/TWN/97 | Yes | NE | |||
Inactivated A TUR/14/98 | Yes | NE | |||
PCV-2 | 2–15 weeks | Killed PCV1-2 chimeric vaccine (Suvaxyn PCV-2One Dose) | Yes | NE | [31,32,33,34,35,36,37] |
PCV-2a-based subunit vaccine (Porcilis PCV) | Yes | NE | |||
Inactivated PCV-2 vaccine (Circovac) | Yes | NE | |||
Batch no A021A01(Porcilis PCV) | Yes | NE | |||
Inactivated subunit vaccine (Porcilis PCV) | Yes | NE | |||
PCV-2a-based subunit vaccine (Porcilis PCV) | Yes | NE | |||
Batch number 309-762B (Ingelvac Circoflex) | Yes | NE | |||
PPV | 6 months | Probably inactivated | No | NE | [38,39] |
Inactivated vaccine | Yes | NE | |||
PRV | 3–11 weeks | gE-deleted vaccine | Yes | Yes | [17,40,41,42] |
Inactivated strain NIA-4 (Auskimune IN) | Yes | NE | |||
Inactivated (Nobivac Aujeszky) | Yes | NE | |||
gE-deleted vaccine | Yes | NE | |||
Attenuated Bartha strain | Yes | NE | |||
PRRSV | 2–11 weeks | Modified live vaccine (Porcilis PRRS) | Yes | Yes | [24,43,44,45] |
Modified live vaccine (Porcilis PRRS) | Yes | NE | |||
SIV | 9–16 weeks | Bivalent inactivated whole SIV H1N1 (A/sw/Ollost/84) and H3N2 (A/Port Chalmers/1/73) | Yes | NE | [18,46,47,48,49] |
Bivalent SIV H1N1, H3N2 (FluSure) | Yes | Yes | |||
H1N1pdm09 whole inactivated virus | Yes | NE | |||
Quadrivalent H1N1-γ, H1N2-δ1, H1N1-δ2 and H3N2-IV vaccine (Flusure XP) | Yes | NE | |||
Bacterial agents | |||||
Actinobacillus pleuropneumoniae | 2–12 weeks | Subunit vaccine containing OMP and ApxI, ApxII, and ApxIII toxins (Porcilis APP) | Yes | NE | [50,51,52] |
Erysipelotrix rhusiopathiae | 8 weeks | Live vaccine (Inglevac) | Yes | Yes | [53] |
Live vaccine | Yes | NE | |||
Glässerella parasuis | 3–5 weeks | Inactivated vaccine | Yes | NE | [54,55] |
Inactivated vaccine (Suvaxyn) | Yes | Yes | |||
Mycoplasma hyopneumoniae | 2–9 weeks | Inactivated vaccine (Stellamune Mycoplasma) | Yes | NE | [23,56,57,58,59,60] |
M. hyopneumoniae inactivated bacterin | Yes | NE | |||
Inactivated vaccine (Hyoresp) | Yes | NE | |||
Bactrin (Respisure-One) | Yes | No |
Antibiotic | Dose | Route of Administration | Vaccine | Influence on Humoral Immunity | Influence on Cellular Immunity | References |
---|---|---|---|---|---|---|
Doxycycline | 12.5 mg/kg/day | PO 1 | Live-attenuated gE-deleted PRV vaccine | No | Yes | [88] |
12.5 mg/kg/day | PO | Inactivated Erysipelothrix rhusiopathiae vaccine | Yes | NE 2 | [87] | |
Enrofloxacin | 1 ml/kg/day | IM 3 | Live-attenuated gE-deleted PRV vaccine | Yes | Yes | [89] |
Ceftiofur | 3 mg/kg/day | IM | Live-attenuated gE-deleted PRV vaccine | Yes | Yes | [90] |
3 mg/kg/day | IM | Inactivated SIV vaccine | Yes | No | [90] | |
3 mg/kg/day | IM | Inactivated Erysipelothrix rhusiopathiae vaccine | Yes | NE | [87] | |
Tiamulin | 12 mg/kg/day | IM | Inactivated Erysipelothrix rhusiopathiae vaccine | Yes | NE | [87] |
Amoxicillin | 15 mg/kg/day | IM | Inactivated Erysipelothrix rhusiopathiae vaccine | Yes | NE | [87] |
Tulathromycin | 2.5 mg/kg/day | IM | Inactivated Erysipelothrix rhusiopathiae vaccine | Yes | NE | [87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Augustyniak, A.; Pomorska-Mól, M. Vaccination Failures in Pigs—The Impact of Chosen Factors on the Immunisation Efficacy. Vaccines 2023, 11, 230. https://doi.org/10.3390/vaccines11020230
Augustyniak A, Pomorska-Mól M. Vaccination Failures in Pigs—The Impact of Chosen Factors on the Immunisation Efficacy. Vaccines. 2023; 11(2):230. https://doi.org/10.3390/vaccines11020230
Chicago/Turabian StyleAugustyniak, Agata, and Małgorzata Pomorska-Mól. 2023. "Vaccination Failures in Pigs—The Impact of Chosen Factors on the Immunisation Efficacy" Vaccines 11, no. 2: 230. https://doi.org/10.3390/vaccines11020230
APA StyleAugustyniak, A., & Pomorska-Mól, M. (2023). Vaccination Failures in Pigs—The Impact of Chosen Factors on the Immunisation Efficacy. Vaccines, 11(2), 230. https://doi.org/10.3390/vaccines11020230