Evaluation of ROTARIX® Booster Dose Vaccination at 9 Months for Safety and Enhanced Anti-Rotavirus Immunity in Zambian Children: A Randomised Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample Size Calculation
2.2. Study Participant Selection and Enrolment
2.3. Study Procedures and Randomization
2.4. Immunogenicity Assessment
2.5. Safety Assessment
2.6. Statistical Analysis
3. Results
3.1. Participant Enrolments and Baseline Characteristics
3.2. Seroconversion Rates and Anti-Rotavirus IgA Titres in Two-Dose and Booster Dose ROTARIX® Vaccinated Infants
3.3. Effect of Booster Dose ROTARIX® at 9 Months on Anti-Rotavirus IgA Geometric Mean Titres at 12 Months of Age
3.4. Safety: Incidence of Adverse Events and Serious Adverse Events by Trial Arm
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- Kotloff, K.L.; Nataro, J.P.; Blackwelder, W.C.; Nasrin, D.; Farag, T.H.; Panchalingam, S.; Wu, Y.; Sow, S.O.; Sur, D.; Breiman, R.F.; et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet 2013, 382, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Kotloff, K.L.; Nasrin, D.; Blackwelder, W.C.; Wu, Y.; Farag, T.; Panchalingham, S.; Sow, S.O.; Sur, D.; Zaidi, A.K.M.; Faruque, A.S.G.; et al. The incidence, aetiology, and adverse clinical consequences of less severe diarrhoeal episodes among infants and children residing in low-income and middle-income countries: A 12-month case-control study as a follow-on to the Global Enteric Multicenter Study (GEMS). Lancet Glob. Health 2019, 7, e568–e584. [Google Scholar] [CrossRef] [PubMed]
- Troeger, C.; Blacker, B.F.; Khalil, I.A.; Rao, P.C.; Cao, S.; Zimsen, S.R.M.; Albertson, S.B.; Stanaway, J.D.; Deshpande, A.; Abebe, Z.; et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis. 2018, 18, 1211–1228. [Google Scholar] [CrossRef] [PubMed]
- Burnett, E.; Parashar, U.D.; Tate, J.E. Global Impact of Rotavirus Vaccination on Diarrhea Hospitalizations and Deaths Among Children <5 Years Old: 2006-2019. J. Infect. Dis. 2020, 222, 1731–1739. [Google Scholar] [CrossRef] [PubMed]
- Bergman, H.; Henschke, N.; Hungerford, D.; Pitan, F.; Ndwandwe, D.; Cunliffe, N.; Soares-Weiser, K. Vaccines for preventing rotavirus diarrhoea: Vaccines in use. Cochrane Database Syst. Rev. 2021, 11, 1–4. [Google Scholar] [CrossRef]
- Lee, B. Update on rotavirus vaccine underperformance in low- to middle-income countries and next-generation vaccines. Hum. Vaccines Immunother. 2021, 17, 1787–1802. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.M.; Clark, A.D.; Sanderson, C.F.B.; Tate, J.; Parashar, U.D. Removing the Age Restrictions for Rotavirus Vaccination: A Benefit-Risk Modeling Analysis. PLoS Med. 2012, 9, e1001330. [Google Scholar] [CrossRef] [PubMed]
- Kang, G. Improving the performance of oral rotavirus vaccines. Lancet Glob. Health 2019, 7, e1472–e1473. [Google Scholar] [CrossRef] [PubMed]
- Burnett, E.; Lopman, B.A.; Parashar, U.D. Potential for a booster dose of rotavirus vaccine to further reduce diarrhea mortality. Vaccine 2017, 35, 7198–7203. [Google Scholar] [CrossRef] [PubMed]
- Zaman, K.; Fleming, J.A.; Victor, J.C.; Yunus, M.; Bari, T.I.A.; Azim, T.; Rahman, M.; Mowla, S.M.N.; Bellini, W.J.; McNeal, M.; et al. Noninterference of Rotavirus Vaccine With Measles/rubella Vaccine at 9 Months of Age and Improvements in Antirotavirus Immunity: A Randomized Trial. J. Infect. Dis. 2016, 213, 1686–1693. [Google Scholar] [CrossRef] [PubMed]
- Haidara, F.C.; Tapia, M.D.; Sow, S.O.; Doumbia, M.; Coulibaly, F.; Diallo, F.; Traoré, A.; Kodio, M.; Kelly, C.L.; Fitzpatrick, M.; et al. Evaluation of a Booster Dose of Pentavalent Rotavirus Vaccine Coadministered With Measles, Yellow Fever, and Meningitis A Vaccines in 9-Month-Old Malian Infants. J. Infect. Dis. 2018, 218, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Chilengi, R.; Simuyandi, M.; Beach, L.; Mwila, K.; Becker-Dreps, S.; Emperador, D.M.; Velasquez, D.E.; Bosomprah, S.; Jiang, B. Association of Maternal Immunity with Rotavirus Vaccine Immunogenicity in Zambian Infants. PLoS ONE 2016, 11, e0150100. [Google Scholar] [CrossRef] [PubMed]
- Mpabalwani, E.M.; Simwaka, C.J.; Mwenda, J.M.; Mubanga, C.P.; Monze, M.; Matapo, B.; Parashar, U.D.; Tate, J.E. Impact of Rotavirus Vaccination on Diarrheal Hospitalizations in Children Aged <5 Years in Lusaka, Zambia. Clin. Infect. Dis. 2016, 62 (Suppl. 2), S183–S187. [Google Scholar] [CrossRef] [PubMed]
- Chilengi, R.; Mwila- Kazimbaya, K.; Chirwa, M.; Sukwa, N.; Chipeta, C.; Velu, R.M.; Katanekwa, N.; Babji, S.; Kang, G.; McNeal, M.M.; et al. Immunogenicity and safety of two monovalent rotavirus vaccines, ROTAVAC® and ROTAVAC 5D® in Zambian infants. Vaccine 2021, 39, 3633–3640. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.L.; Bernstein, D.I.; Smith, V.E.; Sander, D.S.; Shaw, A.; Eiden, J.J.; Heaton, P.; Offit, P.A.; Clark, H.F. Rotavirus Immunoglobulin A Responses Stimulated by Each of 3 Doses of a Quadrivalent Human/ Bovine Reassortant Rotavirus Vaccine. J. Infect. Dis. 2004, 189, 2290–2293. [Google Scholar] [CrossRef] [PubMed]
- Steele, A.D.; Neuzil, K.M.; Cunliffe, N.A.; Madhi, S.A.; Bos, P.; Ngwira, B.; Witte, D.; Todd, S.; Louw, C.; Kirsten, M.; et al. Human rotavirus vaccine Rotarix™ provides protection against diverse circulating rotavirus strains in African infants: A randomized controlled trial. BMC Infect. Dis. 2012, 12, 213. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Carmolli, M.; Dickson, D.M.; Colgate, E.R.; Diehl, S.A.; Uddin, M.I.; Islam, S.; Hossain, M.; Rafique, T.A.; Bhuiyan, T.R.; et al. Rotavirus-Specific Immunoglobulin A Responses Are Impaired and Serve as a Suboptimal Correlate of Protection Among Infants in Bangladesh. Clin. Infect. Dis. 2018, 67, 186–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Total Population (N = 168 a) | ROTARIX® + MR (n = 88) | MR (n = 80) | |
---|---|---|---|
n (%) | n (%) | n (%) | |
Infant Characteristic | |||
Age, weeks | |||
Median (IQR) | 6 (6–6) | 6 (6–6) | 6 (6–6) |
Sex | |||
Male | 89 (53.0) | 38 (43.2) | 41 (51.3) |
Female | 79 (47.0) | 50 (56.8) | 39 (48.8) |
Gestation | |||
Pre-term | 11 (6.6) | 5 (5.7) | 6 (7.5) |
Full-term | 157 (93.5) | 83 (94.3) | 74 (92.5) |
Mode of Delivery | |||
Vaginal | 160 (95.2) | 84 (95.5) | 76 (95.0) |
Caesarean | 8 (4.8) | 4 (4.6) | 4 (5.0) |
Feeding | |||
Expressed/direct Breastmilk | 158 (94.1) | 83 (94.3) | 75 (93.8) |
Mixed breast and formula | 10 (6.0) | 5 (5.7) | 5 (6.3) |
Birth weight, kg (N = 167) | |||
<2.5 | 11 (6.6) | 3 (3.5) | 8 (10) |
≥2.5 | 156 (93.4) | 84 (96.6) | 72 (90.0) |
Weight at enrolment, kg | |||
Mean (SD) | 4.6 (0.6) | 4.6 (0.6) | 4.7 (0.7) |
Length at enrolment, cm | |||
Median mean (SD) | 54 (2.6) | 54 (2.7) | 54 (2.6) |
Malnourished (WLZ < −2) (N = 167) | |||
No | 164 (98.2) | 85 (97.7) | 79 (98.8) |
Yes | 3 (1.8) | 2 (2.3) | 1 (1.3) |
Stunting (LAZ < −2) | |||
No | 138 (82.1) | 70 (79.6) | 68 (85.0) |
Yes | 30 (17.9) | 18 (20.5) | 12 (15.0) |
Wasting (WAZ < −2) | |||
No | 153 (91.1) | 79 (89.8) | 74 (92.5) |
Yes | 15 (8.9) | 9 (10.2) | 6 (7.5) |
HIV exposure | |||
Unexposed | 119 (70.8) | 60 (68.2) | 59 (73.8) |
Exposed | 49 (29.2) | 28 (30.8) | 21 (26.3) |
RV-IgA seropositive (N = 166) | |||
No | 158 (95.2) | 84 (96.6) | 74 (93.7) |
Yes | 8 (4.8) | 3 (3.5) | 5 (6.3) |
Maternal characteristics | |||
Age, years | |||
<20 | 23 (13.7) | 10 (11.4) | 13 (16.3) |
20–24 | 53 (31.6) | 29 (33.0) | 24 (30.0) |
25–29 | 51 (30.4) | 27 (20.7) | 24 (30.0) |
≥30 | 41 (24.4) | 22 (25.0) | 19 (23.8) |
Parity | |||
Low parity (1–2) | 98 (58.3) | 50 (56.8) | 48 (60.0) |
Multiparity (3–4) | 54 (32.1) | 27 (30.7) | 27 (33.8) |
Grand multiparity (5+) | 16 (9.5) | 11 (12.5) | 5 (6.3) |
Education level | |||
No education | 6 (3.6) | 5 (5.7) | 1 (1.3) |
Some/complete primary | 55 (32.7) | 29 (33.0) | 26 (32.5) |
Some/complete secondary | 102 (60.7) | 52 (59.1) | 50 (62.5) |
Attended/completed university | 5 (3.0) | 2 (2.3) | 3 (3.8) |
Monthly household income, ZMW | |||
<500 | 64 (38.3) | 35 (39.8) | 29 (36.7) |
500–1000 | 49 (29.3) | 25 (28.4) | 24 (30.4) |
>1000 | 54 (32.3) | 28 (31.8) | 26 (32.9) |
Share toilet facilities | |||
No | 33 (19.6) | 23 (26.1) | 10 (12.5) |
Yes | 135 (80.4) | 65 (73.9) | 70 (87.5) |
Source of water | |||
Public tap/pipe | 93 (55.4) | 45 (51.1) | 48 (60.0) |
Piped into house/yard | 33 (37.5) | 33 (37.5) | 26 (32.5) |
Yard/public borehole | 8 (4.8) | 3 (3.4) | 5 (6.3) |
Protected/unprotected well | 8 (4.8) | 7 (8.0) | 1 (1.3) |
Arm | N (% of Total) | GMT (95% CI) | Two-Sample t-Test, p-Value | GMT Ratio (95% CI) | p-Value | Adjusted GMT Ratio * (95% CI) | p-Value |
---|---|---|---|---|---|---|---|
MR | 74 (46.5) | 3.98 (3.50–4.51) | 1 | 0.689 | 1 | 0.223 | |
ROTARIX + MR | 85 (53.5) | 3.85 (3.41–4.35) | 0.688 | 0.84 (0.35–2.00) | 0.61 (0.27–1.35) |
Arm | Diarrhoea (n), Incidence * (95% CI) | RTI (n), Incidence (95% CI) | Conjunctivitis (n), Incidence (95% CI) | Dermatitis (n), Incidence (95% CI) | Candidiasis (n), Incidence (95% CI) | Febrile Illness (n), Incidence (95% CI) | Emesis (n), Incidence (95% CI) | Otitis (n), Incidence (95% CI) |
---|---|---|---|---|---|---|---|---|
MR | 8 3.33 (1.7–6.7) | 12 5.0 (2.8–8.8) | 1 0.4 (0.05–3.0) | 0 | 1 0.4 (0.06–3.0) | 1 0.4(0.05–3.0) | 3 0.8 (0.2–3.3) | 1 0.4 (0.06–3.0) |
ROTARIX + MR | 4 2.4 (0.6–4.0) | 8 3.0 (1.5–6.1) | 2 0.8 (0.2–3.0) | 3 1.1(0.2–1.8) | 1 0.4 (0.1–2.7) | 1 0.4 (0.05–2.7) | 1 0.4 (0.05–2.7) | 0 |
Rate ratio (95% CI), p-value | 1.75 (0.14–1.51), 0.186 | 1.23 (0.25–1.48), 0.268 | 1.82 (0.17–20.05), 0.620 | - | 0.91 (0.06–14.53), 0.946 | 0.91 (0.06–14.5) 0.946 | 0.46 (0.04–5.01), 0.509 | - |
Arm | At Least One SAE, Incidence * (95% CI) | At Least One Related SAE, Incidence (95% CI) | Deaths |
---|---|---|---|
MR | 1 0.4 (0.06–3.0) | 0 | 3 |
ROTARIX + MR | 1 0.4 (0.06–2.8) | 0 | 1 |
Rate ratio, p-value | 0.94 (0.06–15.0), 0.9633 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laban, N.M.; Bosomprah, S.; Simuyandi, M.; Chibuye, M.; Chauwa, A.; Chirwa-Chobe, M.; Sukwa, N.; Chipeta, C.; Velu, R.; Njekwa, K.; et al. Evaluation of ROTARIX® Booster Dose Vaccination at 9 Months for Safety and Enhanced Anti-Rotavirus Immunity in Zambian Children: A Randomised Controlled Trial. Vaccines 2023, 11, 346. https://doi.org/10.3390/vaccines11020346
Laban NM, Bosomprah S, Simuyandi M, Chibuye M, Chauwa A, Chirwa-Chobe M, Sukwa N, Chipeta C, Velu R, Njekwa K, et al. Evaluation of ROTARIX® Booster Dose Vaccination at 9 Months for Safety and Enhanced Anti-Rotavirus Immunity in Zambian Children: A Randomised Controlled Trial. Vaccines. 2023; 11(2):346. https://doi.org/10.3390/vaccines11020346
Chicago/Turabian StyleLaban, Natasha Makabilo, Samuel Bosomprah, Michelo Simuyandi, Mwelwa Chibuye, Adriace Chauwa, Masuzyo Chirwa-Chobe, Nsofwa Sukwa, Chikumbutso Chipeta, Rachel Velu, Katanekwa Njekwa, and et al. 2023. "Evaluation of ROTARIX® Booster Dose Vaccination at 9 Months for Safety and Enhanced Anti-Rotavirus Immunity in Zambian Children: A Randomised Controlled Trial" Vaccines 11, no. 2: 346. https://doi.org/10.3390/vaccines11020346
APA StyleLaban, N. M., Bosomprah, S., Simuyandi, M., Chibuye, M., Chauwa, A., Chirwa-Chobe, M., Sukwa, N., Chipeta, C., Velu, R., Njekwa, K., Mubanga, C., Mwape, I., Goodier, M. R., & Chilengi, R. (2023). Evaluation of ROTARIX® Booster Dose Vaccination at 9 Months for Safety and Enhanced Anti-Rotavirus Immunity in Zambian Children: A Randomised Controlled Trial. Vaccines, 11(2), 346. https://doi.org/10.3390/vaccines11020346