Skin-Based Vaccination: A Systematic Mapping Review of the Types of Vaccines and Methods Used and Immunity and Protection Elicited in Pigs
Abstract
:1. Introduction
1.1. Skin-Based Vaccination
1.2. Pigs as a Model for Skin-Based Vaccination
1.3. One Health Perspectives
Target Pathogen | Vaccine Name | Type of Vaccine | Route of Administration | Marketing Authorisation Holder |
---|---|---|---|---|
Lawsonia intracellularis | Porcilis Lawsonia ID a | Inactivated | ID | Intervet Ireland Limited |
Mycoplasma hyopneumoniae | M Hyo ID ONCE a | Inactivated | ID | Intervet Ireland Limited |
Mycoplasma hyopneumoniae + PCV2 b | Mhyosphere PCV ID | Inactivated (Mhyo)/recombinant subunit (PCV2) | ID | HIPRA |
PCV2 | Porcilis PCV ID | Subunit | ID | Intervet International BV |
PRRSV b | Porcilis© PRRS | Live attenuated | ID | Intervet International BV |
PRRSV | UNISTRAIN® PRRS a | Live attenuated | ID | HIPRA |
Actinobacillus pleuropneumoniae | Coglapix | Inactivated | IM | Ceva-Phylaxia Veterinary Biologicals Co. Ltd. |
Bordetella bronchiseptica + Pasteurella multocida | Rhiniseng | Inactivated (Bb)/subunit (Pm) | IM | HIPRA |
Bordetella bronchiseptica + Pasteurella multocida | Porcilis AR-T DF | Inactivated (Bb)/subunit (Pm) | IM | Intervet International BV |
Clostridium difficile and perfringens | Suiseng Diff/A | Subunit (toxoid) | IM | HIPRA |
Clostridium perfringens + Escherichia coli | Enteroporc COLI AC | Subunit (toxoids + fimbriae) | IM | Ceva Santé Animal |
Clostridium perfringens + Escherichia coli | Porcilis ColiClos | Subunit (toxoids + fimbriae) | IM | Intervet International BV |
CSFV b | Suvaxyn CSF Marker | Viral vector | IM | Zoetis |
Escherichia coli | VEPURED | Subunit | IM | HIPRA |
Escherichia coli | Enteroporc COLI | Subunit (fimbriae) | IM | Ceva Santé Animal |
Escherichia coli | Ecoporc SHIGA | Subunit | IM | Ceva Santé Animal |
Escherichia coli | Porcilis Porcoli Diluvac Forte | Subunit | IM | Intervet International BV |
Escherichia coli | Neocolipor | Inactivated | IM | Boehringer Ingelheim Vetmedica GmbH |
Escherichia coli | Coliprotec F4/F18 | live | Oral | Elanco GmbH |
Erysipelothrix rhusiopathiae | Eryseng | Inactivated | IM | HIPRA |
FMDV b | AFTOVAXPUR DOE | Inactivated | IM | Boehringer Ingelheim Vetmedica GmbH |
Influenza virus | Respiporc FLUpan H1N1 | Inactivated | IM | Ceva Santé Animale |
Influenza virus | Respiporc Flu3 | Inactivated | IM | Ceva Santé Animal |
Lawsonia intracellularis | Porcilis Lawsonia a | Inactivated | IM | Intervet Ireland Limited |
Mycoplasma hyopneumoniae | Suvaxyn M Hyo a | Inactivated | IM | Zoetis |
Mycoplasma hyopneumoniae | Suvaxyn MH-One a | Inactivated | IM | Zoetis |
Mycoplasma hyopneumoniae + PCV2 | CircoMax Myco | Inactivated (Mhyo)/inactivated recombinant chimeric (PCV2) | IM | Zoetis |
Mycoplasma hyopneumoniae + PCV2 | Suvaxyn Circo+MH RTU | Inactivated (Mhyo)/inactivated recombinant chimeric (PCV2) | IM | Zoetis |
Mycoplasma hyopneumoniae + PCV2 | Porcilis PCV M Hyo | Inactivated (Mhyo)/subunit (PCV2) | IM | Intervet International BV |
Porcine parvovirus | Porcilis© Parvo a | Inactivates | IM | Intervet Ireland Limited |
PCV2 | Circovac | Inactivated | IM | CEVA-PHYLAXIA |
PCV2 | Ingelvac CircoFLEX | Subunit | IM | Boehringer Ingelheim Vetmedica GmbH |
PCV2 | Porcilis PCV | Subunit | IM | Intervet International BV |
PCV2 | Suvaxyn Circo | inactivated recombinant chimeric | IM | Zoetis |
PCV2 | CircoMax | Inactivated recombinant chimeric | IM | Zoetis |
Porcine parvovirus | ReproCyc ParvoFLEX | Subunit | IM | Boehringer Ingelheim Vetmedica GmbH |
Porcine Parvovirus + Erysipelothrix rhusiopathiae | Eryseng Parvo | Inactivated | IM | HIPRA |
Porcine Parvovirus + Erysipelothrix rhusiopathiae | BIOSUIS ParvoEry a | Inactivated | IM | Bioveta |
PRRSV | Suvaxyn PRRS MLV | Live attenuated | IM | Zoetis |
PRRSV | UNISTRAIN® PRRS a | Live attenuated | IM | HIPRA |
PRRSV | Ingelvac PRRSFLEX EU a | Live attenuated | IM | Boehringer Ingelheim |
PRRSV | Porcilis© PRRS | Live attenuated | IM | Intervet International BV |
PRRSV | ReproCyc PRRS EU a | Live attenuated | IM | Boehringer Ingelheim |
PRV b | Suvaxyn Aujeszky 783 + O/W | Live attenuated | IM | Zoetis |
Salmonella enterica | BIOSUIS Salm a | Inactivated | IM | Bioveta |
2. Methodology
3. Results and Discussion
3.1. Type of Pigs
3.2. Vaccine Targets for Skin-Based Immunisation in Pigs
Pathogen | References | Publication Year |
---|---|---|
Model antigens | [117,144,199,200,201,202] | 2016–2021 |
A. pleuropneumoniae | [203] | 2008 |
ASFV * | [132] | 2021 |
C. trachomatis | [204] | 2012 |
CSFV * | [49,120,128,137,145,205] | 1948, 2002–2011 |
ETEC * | [147,150,206,207,208] | 2004–2008 |
FMDV * | [114,130,131,140,154,209,210,211,212] | 1971, 1999–2009, 2018–2020 |
Group E streptococci | [213] | 1973 |
HBV * | [83,142,178,214,215,216] | 2002–2003, 2009–2017 |
HCV * | [217,218,219] | 2006, 2016, 2019 |
HIV * | [149] | 2006 |
Influenza virus | [109,110,111,115,118,129,136,146,156,178,179,180,181,182,183,184,185,186,187,188] | 1998–2002, 2013–2022 |
L. intracellularis | [119,220] | 2020, 2021 |
M. avium | [127,221] | 1983, 1978 |
M. hyopneumoniae | [51,113,133,153,160,161,220,222] | 2012–2022 |
M. tuberculosis | [223] | 2015 |
PCV2 * | [108,116,153,159,160,161,220] | 2008, 2020–2022 |
PEDV * | [121,122] | 2017, 2021 |
Poxvirus | [224] | 1989 |
PRRSV * | [66,76,88,112,123,134,135,139,141,151,155,157,168,220,225,226,227,228,229,230,231,232,233] | 2003–2009, 2013v2022 |
PRV * | [50,124,125,126,138,148,152,158,234,235,236,237,238] | 1991–2000, 2005, 2011, 2016 |
Rotavirus | [239] | 2016 |
RSV * | [143] | 2016 |
S. japonicum | [197,198] | 2000, 2010 |
T. gondii | [196] | 2008 |
3.3. Vaccine Platforms and Adjuvant Systems
3.4. Routes and Devices
3.5. Induction of Immunity
3.5.1. Adaptive Immune Responses
3.5.2. Humoral and Cellular Immune Responses Elicited by Skin-Based Immunisation
3.6. Comparison of Routes of Immunisation
3.7. Safety and Adverse Events
4. Future and Directions for Pigs in Skin Immunisation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boylston, A. The origins of inoculation. J. R. Soc. Med. 2012, 105, 309–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belongia, E.A.; Naleway, A.L. Smallpox Vaccine: The Good, the Bad, and the Ugly. Clin. Med. Res. 2003, 1, 87–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Smallpox [Internet]. Available online: https://www.who.int/health-topics/smallpox (accessed on 19 September 2022).
- Yazdi, A.S.; Röcken, M.; Ghoreschi, K. Cutaneous immunology: Basics and new concepts. Semin. Immunopathol. 2016, 38, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Schnyder, J.L.; De Pijper, C.A.; Garcia Garrido, H.M.; Daams, J.G.; Goorhuis, A.; Stijnis, C.; Schaumburg, F.; Grobusch, M.P. Fractional dose of intradermal compared to intramuscular and subcutaneous vaccination—A systematic review and meta-analysis. Travel Med. Infect. Dis. 2020, 37, 101868. [Google Scholar] [CrossRef] [PubMed]
- Egunsola, O.; Clement, F.; Taplin, J.; Mastikhina, L.; Li, J.W.; Lorenzetti, D.L.; Dowsett, L.E.; Noseworthy, T. Immunogenicity and Safety of Reduced-Dose Intradermal vs Intramuscular Influenza Vaccines: A Systematic Review and Meta-analysis. JAMA Netw. Open. 2021, 4, e2035693. [Google Scholar] [CrossRef]
- Marshall, S.; Sahm, L.J.; Moore, A.C. The success of microneedle-mediated vaccine delivery into skin. Hum. Vaccines Immunother. 2016, 12, 2975–2983. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.C.; Prausnitz, M.R. Enabling skin vaccination using new delivery technologies. Drug Deliv. Transl. Res. 2011, 1, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Hettinga, J.; Carlisle, R. Vaccination into the Dermal Compartment: Techniques, Challenges, and Prospects. Vaccines 2020, 8, E534. [Google Scholar] [CrossRef]
- Kim, Y.C.; Jarrahian, C.; Zehrung, D.; Mitragotri, S.; Prausnitz, M.R. Delivery Systems for Intradermal Vaccination. Intradermal. Immun. 2011, 351, 77–112. [Google Scholar]
- Khiao In, M.; Richardson, K.C.; Loewa, A.; Hedtrich, S.; Kaessmeyer, S.; Plendl, J. Histological and functional comparisons of four anatomical regions of porcine skin with human abdominal skin. Anat. Histol. Embryol. 2019, 48, 207–217. [Google Scholar] [CrossRef]
- Liu, Y.; Chen J ying Shang H tao Liu C e Wang, Y.; Niu, R.; Wu, J.; Wei, H. Light Microscopic, Electron Microscopic, and Immunohistochemical Comparison of Bama Minipig (Sus scrofa domestica) and Human Skin. Comp. Med. 2010, 60, 142–148. [Google Scholar] [PubMed]
- Dawson, H.D. A Comparative Assessment of the Pig, Mouse and Human Genomes: Structural and Functional Analysis of Genes Involved in Immunity and Inflammation. In The Minipig in Biomedical Research; McAnulty, P.A., Dayan, A.D., Ganderup, N.C., Hastings, K.L., Eds.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Dawson, H.D.; Loveland, J.E.; Pascal, G.; Gilbert, J.G.; Uenishi, H.; Mann, K.M.; Sang, Y.; Zhang, J.; Carvalho-Silva, D.; Hunt, T.; et al. Structural and functional annotation of the porcine immunome. BMC Genom. 2013, 14, 332. [Google Scholar] [CrossRef] [Green Version]
- European Commission, Agriculture and Rural Development. Pork [Internet]. Available online: https://agriculture.ec.europa.eu/farming/animal-products/pork_en (accessed on 24 October 2022).
- McLean, R.K.; Graham, S.P. The pig as an amplifying host for new and emerging zoonotic viruses. One Health 2022, 14, 100384. [Google Scholar] [CrossRef]
- McLean, R.K.; Graham, S.P. Vaccine Development for Nipah Virus Infection in Pigs. Front. Vet. Sci. 2019, 6, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keay, S.; Poljak, Z.; Klapwyk, M.; O’Connor, A.; Friendship, R.M.; O’Sullivan, T.L.; Sargeant, J.M. Influenza A virus vaccine research conducted in swine from 1990 to May 2018: A scoping review. PLoS ONE 2020, 15, e0236062. [Google Scholar] [CrossRef]
- Belyakov, I.M.; Hammond, S.A.; Ahlers, J.D.; Glenn, G.M.; Berzofsky, J.A. Transcutaneous immunization induces mucosal CTLs and protective immunity by migration of primed skin dendritic cells. J. Clin. Invest. 2004, 113, 998–1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glenn, G.M.; Scharton-Kersten, T.; Vassell, R.; Mallett, C.P.; Hale, T.L.; Alving, C.R. Transcutaneous immunization with cholera toxin protects mice against lethal mucosal toxin challenge. J. Immunol. 1998, 161, 3211–3214. [Google Scholar] [CrossRef] [PubMed]
- Godefroy, S.; Goestch, L.; Plotnicky-Gilquin, H.; Nguyen, T.N.; Schmitt, D.; Staquet, M.J.; Corvaïa, N. Immunization onto shaved skin with a bacterial enterotoxin adjuvant protects mice against respiratory syncytial virus (RSV). Vaccine 2003, 21, 1665–1671. [Google Scholar] [CrossRef]
- Corbett, H.J.; Fernando, G.J.P.; Chen, X.; Frazer, I.H.; Kendall, M.A.F. Skin Vaccination against Cervical Cancer Associated Human Papillomavirus with a Novel Micro-Projection Array in a Mouse Model. PLoS ONE 2010, 5, e13460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaric, M.; Becker, P.D.; Hervouet, C.; Kalcheva, P.; Ibarzo Yus, B.; Cocita, C.; O’Neill, L.A.; Kwon, S.Y.; Klavinskis, L.S. Long-lived tissue resident HIV-1 specific memory CD8+ T cells are generated by skin immunization with live virus vectored microneedle arrays. J. Control. Release 2017, 268, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, N.G.; Paine, M.; Mosley, R.; Henry, S.; McAllister, D.V.; Kalluri, H.; Pewin, W.; Frew, P.M.; Yu, T.; Thornburg, N.J.; et al. TIV-MNP 2015 Study Group. The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): A randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet 2017, 390, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Güereña-Burgueño, F.; Hall, E.R.; Taylor, D.N.; Cassels, F.J.; Scott, D.A.; Wolf, M.K.; Roberts, Z.J.; Nesterova, G.V.; Alving, C.R.; Glenn, G.M. Safety and immunogenicity of a prototype enterotoxigenic Escherichia coli vaccine administered transcutaneously. Infect. Immun. 2002, 70, 1874–1880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, J.; Harris, S.A.; Satti, I.; Poulton, I.D.; Poyntz, H.C.; Tanner, R.; Rowland, R.; Griffiths, K.L.; Fletcher, H.A.; McShane, H. Comparing the safety and immunogenicity of a candidate TB vaccine MVA85A administered by intramuscular and intradermal delivery. Vaccine 2013, 31, 1026–1033. [Google Scholar] [CrossRef] [Green Version]
- Nicolas, J.F.; Guy, B. Intradermal, epidermal and transcutaneous vaccination: From immunology to clinical practice. Expert Rev. Vaccines 2008, 7, 1201–1214. [Google Scholar] [CrossRef] [PubMed]
- Fehres, C.M.; Garcia-Vallejo, J.J.; Unger, W.W.J.; van Kooyk, Y. Skin-resident antigen-presenting cells: Instruction manual for vaccine development. Front. Immunol. 2013, 4, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haniffa, M.; Gunawan, M.; Jardine, L. Human skin dendritic cells in health and disease. J. Dermatol. Sci. 2015, 77, 85–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klareskog, L.; Tjernlund, U.; Forsum, U.; Peterson, P.A. Epidermal Langerhans cells express Ia antigens. Nature 1977, 268, 248–250. [Google Scholar] [CrossRef]
- Levin, C.; Bonduelle, O.; Nuttens, C.; Primard, C.; Verrier, B.; Boissonnas, A.; Combadière, B. Critical Role for Skin-Derived Migratory DCs and Langerhans Cells in TFH and GC Responses after Intradermal Immunization. J. Invest. Dermatol. 2017, 137, 1905–1913. [Google Scholar] [CrossRef] [Green Version]
- Levin, C.; Perrin, H.; Combadiere, B. Tailored immunity by skin antigen-presenting cells. Hum. Vaccines Immunother. 2014, 11, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Liard, C.; Munier, S.; Joulin-Giet, A.; Bonduelle, O.; Hadam, S.; Duffy, D.; Vogt, A.; Verrier, B.; Combadière, B. Intradermal Immunization Triggers Epidermal Langerhans Cell Mobilization Required for CD8 T-Cell Immune Responses. J. Invest. Dermatol. 2012, 132 Pt 1, 615–625. [Google Scholar] [CrossRef] [Green Version]
- Vogt, A.; Mahé, B.; Costagliola, D.; Bonduelle, O.; Hadam, S.; Schaefer, G.; Schaefer, H.; Katlama, C.; Sterry, W.; Autran, B.; et al. Transcutaneous anti-influenza vaccination promotes both CD4 and CD8 T cell immune responses in humans. J. Immunol. 2008, 180, 1482–1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Combadière, B.; Vogt, A.; Mahé, B.; Costagliola, D.; Hadam, S.; Bonduelle, O.; Sterry, W.; Staszewski, S.; Schaefer, H.; van der Werf, S.; et al. Preferential Amplification of CD8 Effector-T Cells after Transcutaneous Application of an Inactivated Influenza Vaccine: A Randomized Phase I Trial. PLoS ONE 2010, 5, e10818. [Google Scholar] [CrossRef]
- Mutyambizi, K.; Berger, C.L.; Edelson, R.L. The balance between immunity and tolerance: The role of Langerhans cells. Cell. Mol. Life Sci. CMLS 2009, 66, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Klechevsky, E.; Morita, R.; Liu, M.; Cao, Y.; Coquery, S.; Thompson-Snipes, L.; Briere, F.; Chaussabel, D.; Zurawski, G.; Palucka, A.K.; et al. Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity 2008, 29, 497–510. [Google Scholar] [CrossRef] [Green Version]
- Kissenpfennig, A.; Henri, S.; Dubois, B.; Laplace-Builhé, C.; Perrin, P.; Romani, N.; Tripp, C.H.; Douillard, P.; Leserman, L.; Kaiserlian, D.; et al. Dynamics and Function of Langerhans Cells In Vivo: Dermal Dendritic Cells Colonize Lymph Node AreasDistinct from Slower Migrating Langerhans Cells. Immunity 2005, 22, 643–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, R.A.; Chong, B.; Mirchandani, N.; Brinster, N.K.; Yamanaka, K.I.; Dowgiert, R.K.; Kupper, T.S. The vast majority of CLA+ T cells are resident in normal skin. J. Immunol. 2006, 176, 4431–4439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allie, S.R.; Randall, T.D. Resident Memory B Cells. Viral Immunol. 2020, 33, 282–293. [Google Scholar] [CrossRef] [PubMed]
- Mueller, S.N.; Zaid, A.; Carbone, F.R. Tissue-Resident T Cells: Dynamic Players in Skin Immunity. Front. Immunol. 2014, 5, 332. [Google Scholar] [CrossRef] [Green Version]
- Foster, C.A.; Yokozeki, H.; Rappersberger, K.; Koning, F.; Volc-Platzer, B.; Rieger, A.; Coligan, J.E.; Wolff, K.; Stingl, G. Human epidermal T cells predominantly belong to the lineage expressing alpha/beta T cell receptor. J. Exp. Med. 1990, 171, 997–1013. [Google Scholar] [CrossRef] [Green Version]
- Quaresma, J.A.S. Organization of the Skin Immune System and Compartmentalized Immune Responses in Infectious Diseases. Clin. Microbiol. Rev. 2019, 32, e00034-18. [Google Scholar] [CrossRef]
- Hu, W.; Shang, R.; Yang, J.; Chen, C.; Liu, Z.; Liang, G.; He, W.; Luo, G. Skin γδ T Cells and Their Function in Wound Healing. Front. Immunol. 2022, 13, 875076. [Google Scholar] [CrossRef] [PubMed]
- Mestas, J.; Hughes, C.C.W. Of Mice and Not Men: Differences between Mouse and Human Immunology. J. Immunol. 2004, 172, 2731–2738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sallusto, F.; Lenig, D.; Förster, R.; Lipp, M.; Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999, 401, 708–712. [Google Scholar] [CrossRef] [PubMed]
- Debes, G.F.; McGettigan, S.E. Skin-associated B cells in health and inflammation. J. Immunol. 2019, 202, 1659–1666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawson, L.B.; Clements, J.D.; Freytag, L.C. Mucosal immune responses induced by transcutaneous vaccines. Curr. Top. Microbiol. Immunol. 2012, 354, 19–37. [Google Scholar] [PubMed]
- Frey, C.F.; Bauhofer, O.; Ruggli, N.; Summerfield, A.; Hofmann, M.A.; Tratschin, J.D. Classical swine fever virus replicon particles lacking the Erns gene: A potential marker vaccine for intradermal application. Vet. Res. 2006, 37, 655–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Luduec, J.B.; Debeer, S.; Piras, F.; Andréoni, C.; Boudet, F.; Laurent, P.; Kaiserlian, D.; Dubois, B. Intradermal vaccination with un-adjuvanted sub-unit vaccines triggers skin innate immunity and confers protective respiratory immunity in domestic swine. Vaccine 2016, 34, 914–922. [Google Scholar] [CrossRef]
- Martelli, P.; Saleri, R.; Cavalli, V.; De Angelis, E.; Ferrari, L.; Benetti, M.; Ferrarini, G.; Merialdi, G.; Borghetti, P. Systemic and local immune response in pigs intradermally and intramuscularly injected with inactivated Mycoplasma hyopneumoniae vaccines. Vet. Microbiol. 2014, 168, 357–364. [Google Scholar] [CrossRef]
- Vrdoljak, A.; Allen, E.A.; Ferrara, F.; Temperton, N.J.; Crean, A.M.; Moore, A.C. Induction of broad immunity by thermostabilised vaccines incorporated in dissolvable microneedles using novel fabrication methods. J. Control. Release 2016, 225, 192–204. [Google Scholar] [CrossRef] [Green Version]
- Flynn, O.; Dillane, K.; Lanza, J.S.; Marshall, J.M.; Jin, J.; Silk, S.E.; Draper, S.J.; Moore, A.C. Low Adenovirus Vaccine Doses Administered to Skin Using Microneedle Patches Induce Better Functional Antibody Immunogenicity as Compared to Systemic Injection. Vaccines 2021, 9, 299. [Google Scholar] [CrossRef]
- Zehrung, D.; Jarrahian, C.; Wales, A. Intradermal delivery for vaccine dose sparing: Overview of current issues. Vaccine 2013, 31, 3392–3395. [Google Scholar] [CrossRef] [PubMed]
- Beraud, G. Shortages Without Frontiers: Antimicrobial Drug and Vaccine Shortages Impact Far Beyond the Individual! Front. Med. 2021, 8, 593712. [Google Scholar] [CrossRef] [PubMed]
- Resik, S.; Mach, O.; Tejeda, A.; Jeyaseelan, V.; Fonseca, M.; Diaz, M.; Alemany, N.; Hung, L.H.; Aleman, Y.; Mesa, I.; et al. Immunogenicity of Intramuscular Fractional Dose of Inactivated Poliovirus Vaccine. J. Infect. Dis. 2020, 221, 895–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mashunye, T.R.; Ndwandwe, D.E.; Dube, K.R.; Shey, M.; Shelton, M.; Wiysonge, C.S. Fractional dose compared with standard dose inactivated poliovirus vaccine in children: A systematic review and meta-analysis. Lancet Infect. Dis. 2021, 21, 1161–1174. [Google Scholar] [CrossRef]
- Resik, S.; Tejeda, A.; Mas Lago, P.; Diaz, M.; Carmenates, A.; Sarmiento, L.; Alemañi, N.; Galindo, B.; Burton, A.; Friede, M.; et al. Randomized Controlled Clinical Trial of Fractional Doses of Inactivated Poliovirus Vaccine Administered Intradermally by Needle-Free Device in Cuba. J. Infect. Dis. 2010, 201, 1344–1352. [Google Scholar] [CrossRef] [Green Version]
- Anand, A.; Zaman, K.; Estívariz, C.F.; Yunus, M.; Gary, H.E.; Weldon, W.C.; Bari, T.I.; Steven Oberste, M.; Wassilak, S.G.; Luby, S.P.; et al. Early priming with inactivated poliovirus vaccine (IPV) and intradermal fractional dose IPV administered by a microneedle device: A randomized controlled trial. Vaccine 2015, 33, 6816–6822. [Google Scholar] [CrossRef]
- Okayasu, H.; Sein, C.; Chang Blanc, D.; Gonzalez, A.R.; Zehrung, D.; Jarrahian, C.; Macklin, G.; Sutter, R.W. Intradermal Administration of Fractional Doses of Inactivated Poliovirus Vaccine: A Dose-Sparing Option for Polio Immunization. J. Infect. Dis. 2017, 216 (Suppl. 1), S161–S167. [Google Scholar] [CrossRef] [Green Version]
- Flynn, P.M.; Shenep, J.L.; Mao, L.; Crawford, R.; Williams, B.F.; Williams, B.G. Influence of Needle Gauge in Mantoux Skin Testing. Chest 1994, 106, 1463–1465. [Google Scholar] [CrossRef] [Green Version]
- Lambert, P.H.; Laurent, P.E. Intradermal vaccine delivery: Will new delivery systems transform vaccine administration? Vaccine 2008, 26, 3197–3208. [Google Scholar] [CrossRef]
- Pasteur, M.C.; Hall, D.R. The effects of inadvertent intramuscular injection of BCG vaccine. Scand. J. Infect. Dis. 2001, 33, 473–474. [Google Scholar]
- Kis, E.E.; Winter, G.; Myschik, J. Devices for intradermal vaccination. Vaccine 2012, 30, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Resik, S.; Tejeda, A.; Mach, O.; Sein, C.; Molodecky, N.; Jarrahian, C.; Saganic, L.; Zehrung, D.; Fonseca, M.; Diaz, M.; et al. Needle-free jet injector intradermal delivery of fractional dose inactivated poliovirus vaccine: Association between injection quality and immunogenicity. Vaccine 2015, 33, 5873–5877. [Google Scholar] [CrossRef] [PubMed]
- Barfoed, A.M.; Kristensen, B.; Dannemann-Jensen, T.; Viuff, B.; Bøtner, A.; Kamstrup, S.; Blixenkrone Møller, M. Influence of routes and administration parameters on antibody response of pigs following DNA vaccination. Vaccine 2004, 22, 1395–1405. [Google Scholar] [CrossRef] [PubMed]
- Donadei, A.; Kraan, H.; Ophorst, O.; Flynn, O.; O’Mahony, C.; Soema, P.C.; Moore, A.C. Skin delivery of trivalent Sabin inactivated poliovirus vaccine using dissolvable microneedle patches induces neutralizing antibodies. J. Control. Release 2019, 311–312, 96–103. [Google Scholar] [CrossRef]
- Lanza, J.S.; Vucen, S.; Flynn, O.; Donadei, A.; Cojean, S.; Loiseau, P.M.; Fernandes, A.P.S.M.; Frézard, F.; Moore, A.C. A TLR9-adjuvanted vaccine formulated into dissolvable microneedle patches or cationic liposomes protects against leishmaniasis after skin or subcutaneous immunization. Int. J. Pharm. 2020, 586, 119390. [Google Scholar] [CrossRef]
- Momin, T.; Kansagra, K.; Patel, H.; Sharma, S.; Sharma, B.; Patel, J.; Mittal, R.; Sanmukhani, J.; Maithal, K.; Dey, A.; et al. Safety and Immunogenicity of a DNA SARS-CoV-2 vaccine (ZyCoV-D): Results of an open-label, non-randomized phase I part of phase I/II clinical study by intradermal route in healthy subjects in India. eClinicalMedicine 2021, 38, 101020. [Google Scholar] [CrossRef]
- Hirobe, S.; Azukizawa, H.; Hanafusa, T.; Matsuo, K.; Quan, Y.S.; Kamiyama, F.; Katayama, I.; Okada, N.; Nakagawa, S. Clinical study and stability assessment of a novel transcutaneous influenza vaccination using a dissolving microneedle patch. Biomaterials 2015, 57, 50–58. [Google Scholar] [CrossRef]
- Hirobe, S.; Azukizawa, H.; Matsuo, K.; Zhai, Y.; Quan, Y.S.; Kamiyama, F.; Suzuki, H.; Katayama, I.; Okada, N.; Nakagawa, S. Development and clinical study of a self-dissolving microneedle patch for transcutaneous immunization device. Pharm. Res. 2013, 30, 2664–2674. [Google Scholar] [CrossRef]
- Ono, A.; Azukizawa, H.; Ito, S.; Nakamura, Y.; Asada, H.; Quan, Y.S.; Kamiyama, F.; Katayama, I.; Hirobe, S.; Okada, N. Development of novel double-decker microneedle patches for transcutaneous vaccine delivery. Int. J. Pharm. 2017, 532, 374–383. [Google Scholar] [CrossRef]
- Frew, P.M.; Paine, M.B.; Rouphael, N.; Schamel, J.; Chung, Y.; Mulligan, M.J.; Prausnitz, M.R. Acceptability of an inactivated influenza vaccine delivered by microneedle patch: Results from a phase I clinical trial of safety, reactogenicity, and immunogenicity. Vaccine 2020, 38, 7175–7181. [Google Scholar] [CrossRef]
- Fernando, G.J.P.; Hickling, J.; Jayashi Flores, C.M.; Griffin, P.; Anderson, C.D.; Skinner, S.R.; Davies, C.; Witham, K.; Pryor, M.; Bodle, J.; et al. Safety, tolerability, acceptability and immunogenicity of an influenza vaccine delivered to human skin by a novel high-density microprojection array patch (NanopatchTM). Vaccine 2018, 36, 3779–3788. [Google Scholar] [CrossRef] [PubMed]
- Iwata, H.; Kakita, K.; Imafuku, K.; Takashima, S.; Haga, N.; Yamaguchi, Y.; Taguchi, K.; Oyamada, T. Safety and dose-sparing effect of Japanese encephalitis vaccine administered by microneedle patch in uninfected, healthy adults (MNA-J): A randomised, partly blinded, active-controlled, phase 1 trial. Lancet Microbe 2022, 3, e96–e104. [Google Scholar] [CrossRef] [PubMed]
- Martelli, P.; Gozio, S.; Ferrari, L.; Rosina, S.; De Angelis, E.; Quintavalla, C.; Bottarelli, E.; Borghetti, P. Efficacy of a modified live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine in pigs naturally exposed to a heterologous European (Italian cluster) field strain: Clinical protection and cell-mediated immunity. Vaccine 2009, 27, 3788–3799. [Google Scholar] [CrossRef] [PubMed]
- Pandya, M.; Pacheco, J.M.; Bishop, E.; Kenney, M.; Milward, F.; Doel, T.; Golde, W.T. An alternate delivery system improves vaccine performance against foot-and-mouth disease virus (FMDV). Vaccine 2012, 30, 3106–3111. [Google Scholar] [CrossRef]
- MSD Animal Health United Kingdom. IDAL Intradermal Vaccination [Internet]. Available online: https://www.msd-animal-health.co.uk/species/pigs/idal-intradermal-vaccination/ (accessed on 29 July 2022).
- Hipradermic. Needle-free Device for Intradermal Vaccination [Internet]. Available online: https://hipradermic.com/hipradermic/ (accessed on 24 October 2022).
- Gerdts, V.; Wilson, H.L.; Meurens, F.; van Drunen Littel-van den Hurk, S.; Wilson, D.; Walker, S.; Wheler, C.; Townsend, H.; Potter, A.A. Large Animal Models for Vaccine Development and Testing. ILAR J. 2015, 56, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Rajao, D.S.; Vincent, A.L. Swine as a model for influenza A virus infection and immunity. ILAR J. 2015, 56, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Meurens, F.; Summerfield, A.; Nauwynck, H.; Saif, L.; Gerdts, V. The pig: A model for human infectious diseases. Trends Microbiol. 2012, 20, 50–57. [Google Scholar] [CrossRef]
- Ploemen, I.H.; Hirschberg, H.J.; Kraan, H.; Zeltner, A.; van Kuijk, S.; Lankveld, D.P.; Royals, M.; Kersten, G.F.; Amorij, J.P. Minipigs as an Animal Model for Dermal Vaccine Delivery. Comp. Med. 2014, 64, 50–54. [Google Scholar]
- Swindle, M.M.; Makin, A.; Herron, A.J.; Clubb, F.J.; Frazier, K.S. Swine as models in biomedical research and toxicology testing. Vet. Pathol. 2012, 49, 344–356. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, K.; Dicks, N.; Glanzner, W.; Agellon, L.; Bordignon, V. Efficacy of the porcine species in biomedical research. Front. Genet. 2015, 6, 293. [Google Scholar] [CrossRef] [Green Version]
- Wernersson, R.; Schierup, M.H.; Jørgensen, F.G.; Gorodkin, J.; Panitz, F.; Stærfeldt, H.H.; Christensen, O.F.; Mailund, T.; Hornshøj, H.; Klein, A.; et al. Pigs in sequence space: A 0.66X coverage pig genome survey based on shotgun sequencing. BMC Genom. 2005, 6, 70. [Google Scholar] [CrossRef] [Green Version]
- Rothkötter, H.J. Anatomical particularities of the porcine immune system—A physician’s view. Dev. Comp. Immunol. 2009, 33, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Vreman, S.; Rebel, J.M.J.; McCaffrey, J.; Ledl, K.; Arkhipova, K.; Collins, D.; McDaid, D.; Savelkoul, H.F.J.; Skovgaard, K.; Moore, A.C.; et al. Early immune responses in skin and lymph node after skin delivery of Toll-like receptor agonists in neonatal and adult pigs. Vaccine 2021, 39, 1857–1869. [Google Scholar] [CrossRef] [PubMed]
- Kong, R.; Bhargava, R. Characterization of porcine skin as a model for human skin studies using infrared spectroscopic imaging. Analyst 2011, 136, 2359–2366. [Google Scholar] [CrossRef] [PubMed]
- Ranamukhaarachchi, S.A.; Lehnert, S.; Ranamukhaarachchi, S.L.; Sprenger, L.; Schneider, T.; Mansoor, I.; Rai, K.; Häfeli, U.O.; Stoeber, B. A micromechanical comparison of human and porcine skin before and after preservation by freezing for medical device development. Sci. Rep. 2016, 6, 32074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Summerfield, A.; Meurens, F.; Ricklin, M.E. The immunology of the porcine skin and its value as a model for human skin. Mol. Immunol. 2015, 66, 14–21. [Google Scholar] [CrossRef]
- Romano, J.; Balaguer, L. Ultrastructural identification of Langerhans cells in normal swine epidermis. J. Anat. 1991, 179, 43–46. [Google Scholar]
- Marquet, F.; Manh, T.P.V.; Maisonnasse, P.; Elhmouzi-Younes, J.; Urien, C.; Bouguyon, E.; Jouneau, L.; Bourge, M.; Simon, G.; Ezquerra, A.; et al. Pig Skin Includes Dendritic Cell Subsets Transcriptomically Related to Human CD1a and CD14 Dendritic Cells Presenting Different Migrating Behaviors and T Cell Activation Capacities. J. Immunol. 2014, 193, 5883–5893. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Parkhouse, R.M. Phenotypic classification of porcine lymphocyte subpopulations in blood and lymphoid tissues. Immunology 1996, 89, 76–83. [Google Scholar] [CrossRef]
- Braun, R.O.; Python, S.; Summerfield, A. Porcine B Cell Subset Responses to Toll-like Receptor Ligands. Front. Immunol. 2017, 8, 1044. [Google Scholar] [CrossRef] [Green Version]
- Takamatsu, H.H.; Denyer, M.S.; Stirling, C.; Cox, S.; Aggarwal, N.; Dash, P.; Wileman, T.E.; Barnett, P.V. Porcine γδ T cells: Possible roles on the innate and adaptive immune responses following virus infection. Vet. Immunol. Immunopathol. 2006, 112, 49–61. [Google Scholar] [CrossRef]
- Saalmüller, A.; Reddehase, M.J.; Bühring, H.J.; Jonjić, S.; Koszinowski, U.H. Simultaneous expression of CD4 and CD8 antigens by a substantial proportion of resting porcine T lymphocytes. Eur. J. Immunol. 1987, 17, 1297–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuckermann, F.A.; Husmann, R.J. Functional and phenotypic analysis of porcine peripheral blood CD4/CD8 double-positive T cells. Immunology 1996, 87, 500–512. [Google Scholar] [PubMed]
- Adisasmito, W.B.; Almuhairi, S.; Behravesh, C.B.; Bilivogui, P.; Bukachi, S.A.; Casas, N.; Cediel Becerra, N.; Charron, D.F.; Chaudhary, A.; One Health High-Level Expert Panel (OHHLEP); et al. One Health: A new definition for a sustainable and healthy future. PLoS Pathog. 2022, 18, e1010537. [Google Scholar]
- Smith, G.J.D.; Vijaykrishna, D.; Bahl, J.; Lycett, S.J.; Worobey, M.; Pybus, O.G.; Ma, S.K.; Cheung, C.L.; Raghwani, J.; Bhatt, S.; et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 2009, 459, 1122–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mena, I.; Nelson, M.I.; Quezada-Monroy, F.; Dutta, J.; Cortes-Fernández, R.; Lara-Puente, J.H.; Castro-Peralta, F.; Cunha, L.F.; Trovão, N.S.; Lozano-Dubernard, B.; et al. Origins of the 2009 H1N1 influenza pandemic in swine in Mexico. eLife 2016, 5, e16777. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Couceiro, J.N.; Kelm, S.; Baum, L.G.; Krauss, S.; Castrucci, M.R.; Donatelli, I.; Kida, H.; Paulson, J.C.; Webster, R.G.; et al. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J. Virol. 1998, 72, 7367–7373. [Google Scholar] [CrossRef] [Green Version]
- Holzer, B.; Martini, V.; Edmans, M.; Tchilian, E. T and B Cell Immune Responses to Influenza Viruses in Pigs. Front. Immunol. 2019, 10, 98. [Google Scholar] [CrossRef] [Green Version]
- EMA. European Medicines Agency. Medicines-Veterinary [Internet]. Available online: https://www.ema.europa.eu/en/medicines/field_ema_web_categories%253Aname_field/Veterinary (accessed on 22 September 2022).
- HPRA. Veterinary Medicines Information [Internet]. Available online: http://www.hpra.ie/homepage/veterinary/veterinary-medicines-information/find-a-medicine?query=porcilis&field= (accessed on 14 December 2022).
- New World Encyclopedia. Pig [Internet]. Available online: https://www.newworldencyclopedia.org/p/index.php?title=Pig&oldid=687347 (accessed on 25 October 2022).
- Ganderup, N.C. Chapter 3—Minipig models for toxicity testing and biomarkers. In Biomarkers in Toxicology; Gupta, R.C., Ed.; Academic Press: Boston, MA, USA, 2014; pp. 71–91. [Google Scholar]
- Temple, D.; Jiménez, M.; Escribano, D.; Martín-Valls, G.; Díaz, I.; Manteca, X. Welfare Benefits of Intradermal Vaccination of Piglets. Animals 2020, 10, E1898. [Google Scholar] [CrossRef]
- Bragstad, K.; Vinner, L.; Hansen, M.S.; Nielsen, J.; Fomsgaard, A. A polyvalent influenza A DNA vaccine induces heterologous immunity and protects pigs against pandemic A(H1N1)pdm09 virus infection. Vaccine 2013, 31, 2281–2288. [Google Scholar] [CrossRef]
- Borggren, M.; Nielsen, J.; Karlsson, I.; Dalgaard, T.S.; Trebbien, R.; Williams, J.A.; Fomsgaard, A. A polyvalent influenza DNA vaccine applied by needle-free intradermal delivery induces cross-reactive humoral and cellular immune responses in pigs. Vaccine 2016, 34, 3634–3640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hewitt, J.S.; Karuppannan, A.K.; Tan, S.; Gauger, P.; Halbur, P.G.; Gerber, P.F.; De Groot, A.S.; Moise, L.; Opriessnig, T. A prime-boost concept using a T-cell epitope-driven DNA vaccine followed by a whole virus vaccine effectively protected pigs in the pandemic H1N1 pig challenge model. Vaccine 2019, 37, 4302–4309. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; O’Connell, C.M.; Costa, A.; Pan, Y.; Smyth, J.A.; Verardi, P.H.; Burgess, D.J.; Van Kruiningen, H.J.; Garmendia, A.E. A PRRSV GP5-Mosaic vaccine: Protection of pigs from challenge and ex vivo detection of IFNγ responses against several genotype 2 strains. PLoS ONE 2019, 14, e0208801. [Google Scholar]
- Tassis, P.D.; Papatsiros, V.G.; Nell, T.; Maes, D.; Alexopoulos, C.; Kyriakis, S.C.; Tzika, E.D. Clinical evaluation of intradermal vaccination against porcine enzootic pneumonia (Mycoplasma hyopneumoniae). Vet. Rec. 2012, 170, 261. [Google Scholar] [CrossRef] [Green Version]
- Beard, C.; Ward, G.; Rieder, E.; Chinsangaram, J.; Grubman, M.J.; Mason, P.W. Development of DNA vaccines for foot-and-mouth disease, evaluation of vaccines encoding replicating and non-replicating nucleic acids in swine. J. Biotechnol. 1999, 73, 243–249. [Google Scholar] [CrossRef]
- Sisteré-Oró, M.; López-Serrano, S.; Veljkovic, V.; Pina-Pedrero, S.; Vergara-Alert, J.; Córdoba, L.; Pérez-Maillo, M.; Pleguezuelos, P.; Vidal, E.; Segalés, J.; et al. DNA vaccine based on conserved HA-peptides induces strong immune response and rapidly clears influenza virus infection from vaccinated pigs. PLoS ONE 2019, 14, e0222201. [Google Scholar] [CrossRef] [Green Version]
- Opriessnig, T.; Madson, D.M.; Prickett, J.R.; Kuhar, D.; Lunney, J.K.; Elsener, J.; Halbur, P.G. Effect of porcine circovirus type 2 (PCV2) vaccination on porcine reproductive and respiratory syndrome virus (PRRSV) and PCV2 coinfection. Vet. Microbiol. 2008, 131, 103–114. [Google Scholar] [CrossRef]
- Hernandez-Franco, J.F.; Mosley, Y.Y.C.; Franco, J.; Ragland, D.; Yao, Y.; HogenEsch, H. Effective and Safe Stimulation of Humoral and Cell-Mediated Immunity by Intradermal Immunization with a Cyclic Dinucleotide/Nanoparticle Combination Adjuvant. J. Immunol. 2021, 206, 700–711. [Google Scholar] [CrossRef]
- Larsen, D.L.; Olsen, C.W. Effects of DNA dose, route of vaccination, and coadministration of porcine interleukin-6 DNA on results of DNA vaccination against influenza virus infection in pigs. Am. J. Vet. Res. 2002, 63, 653–659. [Google Scholar] [CrossRef]
- Jacobs, A.A.C.; Harks, F.; Pauwels, R.; Cao, Q.; Holtslag, H.; Pel, S.; Segers, R.P.A.M. Efficacy of a novel intradermal Lawsonia intracellularis vaccine in pigs against experimental infection and under field conditions. Porc. Health Manag. 2020, 6, 25. [Google Scholar] [CrossRef]
- Dortmans, J.C.F.M.; Loeffen, W.L.A.; Weerdmeester, K.; van der Poel, W.H.M.; de Bruin, M.G.M. Efficacy of intradermally administrated E2 subunit vaccines in reducing horizontal transmission of classical swine fever virus. Vaccine 2008, 26, 1235–1242. [Google Scholar] [CrossRef] [PubMed]
- Choe, S.; Park, G.N.; Song, S.; Shin, J.; Le, V.P.; Nguyen, V.G.; Kim, K.S.; Kim, H.K.; Hyun, B.H.; An, D.J. Efficacy of Needle-Less Intradermal Vaccination against Porcine Epidemic Diarrhea Virus. Pathogens 2021, 10, 1115. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, S.; Cao, D.; Tian, D.; Cao, Q.M.; Overend, C.; Yugo, D.M.; Matzinger, S.R.; Rogers, A.J.; Heffron, C.L.; Catanzaro, N.; et al. Efficient priming of CD4 T cells by Langerin-expressing dendritic cells targeted with porcine epidemic diarrhea virus spike protein domains in pigs. Virus. Res. 2017, 227, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Bustamante-Córdova, L.; Reséndiz-Sandoval, M.; Hernández, J. Evaluation of a Recombinant Mouse X Pig Chimeric Anti-Porcine DEC205 Antibody Fused with Structural and Nonstructural Peptides of PRRS Virus. Vaccines 2019, 7, E43. [Google Scholar] [CrossRef] [Green Version]
- Vanderpooten, A.; Goddeeris, B.; De Roose, P.; Hendrickx, L.; Biront, P.; Desmettre, P. Evaluation of parenteral vaccination methods with glycoproteins against Aujeszky’s disease in pigs. Vet. Microbiol. 1997, 55, 81–89. [Google Scholar] [CrossRef]
- Ferrari, L.; Borghetti, P.; Gozio, S.; De Angelis, E.; Ballotta, L.; Smeets, J.; Blanchaert, A.; Martelli, P. Evaluation of the immune response induced by intradermal vaccination by using a needle-less system in comparison with the intramuscular route in conventional pigs. Res. Vet. Sci. 2011, 90, 64–71. [Google Scholar] [CrossRef]
- van der Leek, M.L.; Feller, J.A.; Sorensen, G.; Isaacson, W.; Adams, C.L.; Borde, D.J.; Pfeiffer, N.; Tran, T.; Moyer, R.W.; Gibbs, E.P. Evaluation of swinepox virus as a vaccine vector in pigs using an Aujeszky’s disease (pseudorabies) virus gene insert coding for glycoproteins gp50 and gp63. Vet. Rec. 1994, 134, 13–18. [Google Scholar] [CrossRef]
- Jørgensen, J.B. Experimental infection with Mycobacterium avium, serotype 2, in pigs. 5. The immunizing effect of BCG vaccine against M. avium infection. Acta Vet. Scand. 1978, 19, 430–440. [Google Scholar] [CrossRef]
- van Gennip, H.G.P.; Bouma, A.; van Rijn, P.A.; Widjojoatmodjo, M.N.; Moormann, R.J.M. Experimental non-transmissible marker vaccines for classical swine fever (CSF) by trans-complementation of E(rns) or E2 of CSFV. Vaccine 2002, 20, 1544–1556. [Google Scholar] [CrossRef]
- Magiri, R.B.; Lai, K.J.; Mutwiri, G.K.; Wilson, H.L. Experimental PCEP-Adjuvanted Swine Influenza H1N1 Vaccine Induced Strong Immune Responses but Did Not Protect Piglets against Heterologous H3N2 Virus Challenge. Vaccines 2020, 8, E235. [Google Scholar] [CrossRef]
- Eschbaumer, M.; Dill, V.; Carlson, J.C.; Arzt, J.; Stenfeldt, C.; Krug, P.W.; Hardham, J.M.; Stegner, J.E.; Rodriguez, L.L.; Rieder, E. Foot-and-Mouth Disease Virus Lacking the Leader Protein and Containing Two Negative DIVA Markers (FMDV LL3B3D A24) Is Highly Attenuated in Pigs. Pathogens 2020, 9, E129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dory, D.; Rémond, M.; Béven, V.; Cariolet, R.; Zientara, S.; Jestin, A. Foot-and-Mouth Disease Virus neutralizing antibodies production induced by pcDNA3 and Sindbis virus based plasmid encoding FMDV P1-2A3C3D in swine. Antivir. Res. 2009, 83, 45–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cadenas-Fernández, E.; Sánchez-Vizcaíno, J.M.; van den Born, E.; Kosowska, A.; van Kilsdonk, E.; Fernández-Pacheco, P.; Gallardo, C.; Arias, M.; Barasona, J.A. High Doses of Inactivated African Swine Fever Virus Are Safe, but Do Not Confer Protection against a Virulent Challenge. Vaccines 2021, 9, 242. [Google Scholar] [CrossRef] [PubMed]
- Martelli, P.; Saleri, R.; Andrani, M.; Cavalli, V.; De Angelis, E.; Ferrari, L.; Borghetti, P. Immune B cell responsiveness to single-dose intradermal vaccination against Mycoplasma hyopneumoniae. Res. Vet. Sci. 2021, 141, 66–75. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, X.; Yu, L.; Tong, W.; Chen, P.; Wang, S.; Zhao, K.; Tan, X.; Gao, F.; Yu, H.; et al. Immune efficacy of a candidate porcine reproductive and respiratory syndrome vaccine rHN-NP49 administered by a Needle-free intradermal delivery system in comparison with intramuscular injection. Vaccine 2021, 39, 5557–5562. [Google Scholar] [CrossRef]
- Madapong, A.; Saeng-Chuto, K.; Chaikhumwang, P.; Tantituvanont, A.; Saardrak, K.; Pedrazuela Sanz, R.; Miranda Alvarez, J.; Nilubol, D. Immune response and protective efficacy of intramuscular and intradermal vaccination with porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) modified live vaccine against highly pathogenic PRRSV-2 (HP-PRRSV-2) challenge, either alone or in combination with of PRRSV-1. Vet. Microbiol. 2020, 244, 108655. [Google Scholar]
- Macklin, M.D.; McCabe, D.; McGregor, M.W.; Neumann, V.; Meyer, T.; Callan, R.; Hinshaw, V.S.; Swain, W.F. Immunization of pigs with a particle-mediated DNA vaccine to influenza A virus protects against challenge with homologous virus. J. Virol. 1998, 72, 1491–1496. [Google Scholar] [CrossRef] [Green Version]
- Suter, R.; Summerfield, A.; Thomann-Harwood, L.J.; McCullough, K.C.; Tratschin, J.D.; Ruggli, N. Immunogenic and replicative properties of classical swine fever virus replicon particles modified to induce IFN-α/β and carry foreign genes. Vaccine 2011, 29, 1491–1503. [Google Scholar] [CrossRef]
- Visser, N.; Egger, W.; Lütticken, D. Intradermal application of Aujeszky’s disease virus strain Begonia with tocopherol-based adjuvant and a novel design injection device. Acta Vet. Hung. 1994, 42, 413–418. [Google Scholar]
- Park, C.; Lee, M.S.; Baek, J.H.; Cho, S.H.; Hyun, B.H.; You, S.H.; Cha, S.H. Intradermal co-inoculation of codon pair deoptimization (CPD)-attenuated chimeric porcine reproductive and respiratory syndrome virus (PRRSV) with Toll like receptor (TLR) agonists enhanced the protective effects in pigs against heterologous challenge. Vet. Microbiol. 2021, 256, 109048. [Google Scholar] [CrossRef]
- Eblé, P.L.; Weerdmeester, K.; van Hemert-Kluitenberg, F.; Dekker, A. Intradermal vaccination of pigs against FMD with 1/10 dose results in comparable vaccine efficacy as intramuscular vaccination with a full dose. Vaccine 2009, 27, 1272–1278. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, L.; Martelli, P.; Saleri, R.; De Angelis, E.; Cavalli, V.; Bresaola, M.; Benetti, M.; Borghetti, P. Lymphocyte activation as cytokine gene expression and secretion is related to the porcine reproductive and respiratory syndrome virus (PRRSV) isolate after in vitro homologous and heterologous recall of peripheral blood mononuclear cells (PBMC) from pigs vaccinated and exposed to natural infection. Vet. Immunol. Immunopathol. 2013, 151, 193–206. [Google Scholar] [PubMed]
- Babiuk, S.; Baca-Estrada, M.E.; Foldvari, M.; Baizer, L.; Stout, R.; Storms, M.; Rabussay, D.; Widera, G.; Babiuk, L. Needle-free topical electroporation improves gene expression from plasmids administered in porcine skin. Mol. Ther. J. Am. Soc. Gene Ther. 2003, 8, 992–998. [Google Scholar] [CrossRef] [PubMed]
- Hervé, P.L.; Descamps, D.; Deloizy, C.; Dhelft, V.; Laubreton, D.; Bouguyon, E.; Boukadiri, A.; Dubuquoy, C.; Larcher, T.; Benhamou, P.H.; et al. Non-invasive epicutaneous vaccine against Respiratory Syncytial Virus: Preclinical proof of concept. J. Control. Release 2016, 243, 146–159. [Google Scholar] [CrossRef] [PubMed]
- Oreskovic, Z.; Kudlackova, H.; Krejci, J.; Nechvatalova, K.; Faldyna, M. Oil-based adjuvants delivered intradermally induce high primary IgG2 immune response in swine. Res. Vet. Sci. 2017, 114, 41–43. [Google Scholar] [CrossRef] [PubMed]
- Maurer, R.; Stettler, P.; Ruggli, N.; Hofmann, M.A.; Tratschin, J.D. Oronasal vaccination with classical swine fever virus (CSFV) replicon particles with either partial or complete deletion of the E2 gene induces partial protection against lethal challenge with highly virulent CSFV. Vaccine 2005, 23, 3318–3328. [Google Scholar] [CrossRef] [PubMed]
- Arrington, J.; Braun, R.P.; Dong, L.; Fuller, D.H.; Macklin, M.D.; Umlauf, S.W.; Wagner, S.J.; Wu, M.S.; Payne, L.G.; Haynes, J.R. Plasmid vectors encoding cholera toxin or the heat-labile enterotoxin from Escherichia coli are strong adjuvants for DNA vaccines. J. Virol. 2002, 76, 4536–4546. [Google Scholar] [CrossRef] [Green Version]
- Melkebeek, V.; Verdonck, F.; Stuyven, E.; Goddeeris, B.; Cox, E. Plasmid-encoded GM-CSF induces priming of the F4(K88)-specific serum IgA response by FaeG DNA vaccination in pigs. Vaccine 2006, 24, 4592–4594. [Google Scholar] [CrossRef]
- Gerdts, V.; Jöns, A.; Mettenleiter, T.C. Potency of an experimental DNA vaccine against Aujeszky’s disease in pigs. Vet. Microbiol. 1999, 66, 1–13. [Google Scholar] [CrossRef]
- Dincer, Z.; Jones, S.; Haworth, R. Preclinical safety assessment of a DNA vaccine using particle-mediated epidermal delivery in domestic pig, minipig and mouse. Exp. Toxicol. Pathol. 2006, 57, 351–357. [Google Scholar] [CrossRef]
- Verfaillie, T.; Melkebeek, V.; Snoek, V.; Douterlungne, S.; Cox, E.; Verdonck, F.; Vanrompay, D.; Goddeeris, B.; Cox, E. Priming of piglets against enterotoxigenic E. coli F4 fimbriae by immunisation with FAEG DNA. Vaccine 2004, 22, 1640–1647. [Google Scholar] [CrossRef] [PubMed]
- Martelli, P.; Cordioli, P.; Alborali, L.G.; Gozio, S.; De Angelis, E.; Ferrari, L.; Lombardi, G.; Borghetti, P. Protection and immune response in pigs intradermally vaccinated against porcine reproductive and respiratory syndrome (PRRS) and subsequently exposed to a heterologous European (Italian cluster) field strain. Vaccine 2007, 25, 3400–3408. [Google Scholar] [CrossRef]
- Gerdts, V.; Jöns, A.; Makoschey, B.; Visser, N.; Mettenleiter, T.C. Protection of pigs against Aujeszky’s disease by DNA vaccination. J. Gen. Virol. 1997, 78 Pt 9, 2139–2146. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.I.; Jeong, C.G.; Ul Salam Mattoo, S.; Nazki, S.; Prasad Aganja, R.; Kim, S.C.; Khatun, A.; Oh, Y.; Noh, S.H.; Lee, S.M.; et al. Protective immunity induced by concurrent intradermal injection of porcine circovirus type 2 and Mycoplasma hyopneumoniae inactivated vaccines in pigs. Vaccine 2021, 39, 6691–6699. [Google Scholar] [CrossRef] [PubMed]
- Ko, E.Y.; Cho, J.; Cho, J.H.; Jo, K.; Lee, S.H.; Chung, Y.J.; Jung, S. Reduction in Lesion Incidence in Pork Carcass Using Transdermal Needle-free Injection of Foot-and-Mouth Disease Vaccine. Korean J. Food Sci. Anim. Resour. 2018, 38, 1155–1159. [Google Scholar] [CrossRef] [PubMed]
- Madapong, A.; Saeng-Chuto, K.; Tantituvanont, A.; Nilubol, D. Safety of PRRSV-2 MLV vaccines administrated via the intramuscular or intradermal route and evaluation of PRRSV transmission upon needle-free and needle delivery. Sci. Rep. 2021, 11, 23107. [Google Scholar] [CrossRef] [PubMed]
- Deloizy, C.; Fossum, E.; Barnier-Quer, C.; Urien, C.; Chrun, T.; Duval, A.; Codjovi, M.; Bouguyon, E.; Maisonnasse, P.; Hervé, P.L.; et al. The anti-influenza M2e antibody response is promoted by XCR1 targeting in pig skin. Sci. Rep. 2017, 7, 7639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suradhat, S.; Wongyanin, P.; Sirisereewan, C.; Nedumpun, T.; Lumyai, M.; Triyarach, S.; Chaturavittawong, D.; Paphavasit, T.; Panyatong, R.; Thanawongnuwech, R. Transdermal delivery of plasmid encoding truncated nucleocapsid protein enhanced PRRSV-specific immune responses. Vaccine 2016, 34, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Vannier, P.; Cariolet, R. Vaccination of pigs against Aujeszky’s disease by the intradermal route using live attenuated and inactivated virus vaccines. Vet. Microbiol. 1991, 26, 11–23. [Google Scholar] [CrossRef]
- Melgoza-González, E.A.; Reséndiz-Sandoval, M.; Hinojosa-Trujillo, D.; Hernández-Valenzuela, S.; García-Vega, M.; Mata-Haro, V.; Tepale-Segura, A.; Bonifaz, L.C.; Perez-Torres, A.; Hernández, J. Antigen Targeting of Porcine Skin DEC205(+) Dendritic Cells. Vaccines 2022, 10, 684. [Google Scholar] [CrossRef]
- Puig, A.; Bernal, I.; Sabaté, D.; Ballarà, I.; Montané, J.; Nodar, L.; Angelats, D.; Jordà, R. Comparison of effects of a single dose of MHYOSPHERE® PCV ID with three commercial porcine vaccine associations against Mycoplasma hyopneumoniae (Mhyo) and porcine circovirus type 2 (PCV2) on piglet growth during the nursery period under field conditions. Vet. Res. Commun. 2022, 46, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Jin, M.; Yoon, I.; Yoo, H.S. Efficacy of bivalent vaccines of porcine circovirus type 2 and Mycoplasma hyopneumoniae in specific pathogen-free pigs challenged with porcine circovirus type 2d. J. Vet. Sci. 2022, 23, e49. [Google Scholar] [CrossRef] [PubMed]
- The Pig Site. Assessment of the Economic Impact of PRRSV on United States Pork Producers [Internet]. Available online: https://www.thepigsite.com/articles/assessment-of-the-economic-impact-of-prrsv-on-united-states-pork-producers (accessed on 13 October 2022).
- Pig333. PRRS Cost for the European Swine Industry [Internet]. Available online: https://www.pig333.com/articles/prrs-cost-for-the-european-swine-industry_10069/ (accessed on 26 October 2022).
- HIPRA. UNISTRAIN® PRRS Vaccine against PRRS [Internet]. Available online: https://www.hipra.com/portal/en/hipra/animalhealth/products/detail/unistrain-prrs (accessed on 26 October 2022).
- MSD Animal Health HUB. Porcilis® PRRS Lyophilisate and Solvent for Suspension for Injection for Pigs [Internet]. Available online: https://www.msd-animal-health-hub.co.uk/Products/Porcilis-PRRS (accessed on 26 October 2022).
- Nan, Y.; Wu, C.; Gu, G.; Sun, W.; Zhang, Y.J.; Zhou, E.M. Improved Vaccine against PRRSV: Current Progress and Future Perspective. Front. Microbiol. 2017, 8, 1635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tizard, I.R. Porcine vaccines. Vaccines Vet. 2021, 225–242.e1. [Google Scholar] [CrossRef]
- Temple, D.; Escribano, D.; Jiménez, M.; Mainau, E.; Cerón, J.J.; Manteca, X. Effect of the needle-free ‘intra dermal application of liquids’ vaccination on the welfare of pregnant sows. Porc. Health Manag. 2017, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Van Reeth, K.; Vincent, A.L. Influenza Viruses. In Diseases of Swine; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 576–593. [Google Scholar]
- Mancera Gracia, J.C.; Pearce, D.S.; Masic, A.; Balasch, M. Influenza A Virus in Swine: Epidemiology, Challenges and Vaccination Strategies. Front. Vet. Sci. 2020, 7, 647. [Google Scholar] [CrossRef]
- Paules, C.; Subbarao, K. Influenza. Lancet 2017, 390, 697–708. [Google Scholar] [CrossRef]
- World Health Organization. Estimating Disease Burden of Influenza [Internet]. Available online: https://www.who.int/europe/activities/estimating-disease-burden-of-influenza (accessed on 13 October 2022).
- Putri, W.C.W.S.; Muscatello, D.J.; Stockwell, M.S.; Newall, A.T. Economic burden of seasonal influenza in the United States. Vaccine 2018, 36, 3960–3966. [Google Scholar] [CrossRef]
- Janke, B.H. Clinicopathological features of Swine influenza. Curr. Top. Microbiol. Immunol. 2013, 370, 69–83. [Google Scholar]
- Baudon, E.; Peyre, M.; Peiris, M.; Cowling, B.J. Epidemiological features of influenza circulation in swine populations: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0179044. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Gobla Influenza Programme Vaccines [Internet]. Available online: https://www.who.int/teams/global-influenza-programme/vaccines (accessed on 27 October 2022).
- Ma, W.; Kahn, R.E.; Richt, J.A. The pig as a mixing vessel for influenza viruses: Human and veterinary implications. J. Mol. Genet. Med. Int. J. Biomed. Res. 2008, 3, 158–166. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Shah, D.; Chen, X.; Anderson, R.R.; Wu, M.X. A micro-sterile inflammation array as an adjuvant for influenza vaccines. Nat. Commun. 2014, 5, 4447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engert, J.; Anamur, C.; Engelke, L.; Fellner, C.; Lell, P.; Henke, S.; Stadler, J.; Zöls, S.; Ritzmann, M.; Winter, G. A pilot study using a novel pyrotechnically driven prototype applicator for epidermal powder immunization in piglets. Int. J. Pharm. 2018, 545, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Bernelin-Cottet, C.; Deloizy, C.; Stanek, O.; Barc, C.; Bouguyon, E.; Urien, C.; Boulesteix, O.; Pezant, J.; Richard, C.A.; Moudjou, M.; et al. A Universal Influenza Vaccine Can Lead to Disease Exacerbation or Viral Control Depending on Delivery Strategies. Front. Immunol. 2016, 7, 641. [Google Scholar] [CrossRef] [Green Version]
- Grodeland, G.; Fredriksen, A.B.; Løset, G.Å.; Vikse, E.; Fugger, L.; Bogen, B. Antigen Targeting to Human HLA Class II Molecules Increases Efficacy of DNA Vaccination. J. Immunol. 2016, 197, 3575–3585. [Google Scholar] [CrossRef] [Green Version]
- Sisteré-Oró, M.; Vergara-Alert, J.; Stratmann, T.; López-Serrano, S.; Pina-Pedrero, S.; Córdoba, L.; Pérez-Maillo, M.; Pleguezuelos, P.; Vidal, E.; Veljkovic, V.; et al. Conserved HA-peptide NG34 formulated in pCMV-CTLA4-Ig reduces viral shedding in pigs after a heterosubtypic influenza virus SwH3N2 challenge. PLoS ONE 2019, 14, e0212431. [Google Scholar] [CrossRef]
- Wang, J.; Li, B.; Wu, M.X. Effective and lesion-free cutaneous influenza vaccination. Proc. Natl. Acad. Sci. USA 2015, 112, 5005–5010. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, E.; Yao, F.; Svensjö, T.; Winkler, T.; Slama, J.; Macklin, M.D.; Andree, C.; McGregor, M.; Hinshaw, V.; Swain, W.F. In vivo gene transfer to skin and wound by microseeding. J. Surg. Res. 1998, 78, 85–91. [Google Scholar] [CrossRef]
- Wei, J.C.; Cartmill, I.D.; Kendall, M.A.; Crichton, M.L. In vivo, in situ and ex vivo comparison of porcine skin for microprojection array penetration depth, delivery efficiency and elastic modulus assessment. J. Mech. Behav. Biomed. Mater. 2022, 130, 105187. [Google Scholar] [CrossRef]
- Magiri, R.; Lai, K.; Chaffey, A.; Zhou, Y.; Pyo, H.M.; Gerdts, V.; Wilson, H.L.; Mutwiri, G. Intradermal immunization with inactivated swine influenza virus and adjuvant polydi(sodium carboxylatoethylphenoxy)phosphazene (PCEP) induced humoral and cell-mediated immunity and reduced lung viral titres in pigs. Vaccine 2018, 36, 1606–1613. [Google Scholar] [CrossRef]
- Wang, J.; Li, P.; Wu, M.X. Natural STING Agonist as an ‘Ideal’ Adjuvant for Cutaneous Vaccination. J. Invest. Dermatol. 2016, 136, 2183–2191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlsson, I.; Borggren, M.; Rosenstierne, M.W.; Trebbien, R.; Williams, J.A.; Vidal, E.; Vergara-Alert, J.; Foz, D.S.; Darji, A.; Sisteré-Oró, M.; et al. Protective effect of a polyvalent influenza DNA vaccine in pigs. Vet. Immunol. Immunopathol. 2018, 195, 25–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.Y.S.; Wilson, M.R. A Review of Pseudorabies (Aujeszky’s Disease) in Pigs. Can. Vet. J. 1979, 20, 65–69. [Google Scholar] [PubMed]
- Wong, G.; Lu, J.; Zhang, W.; Gao, G.F. Pseudorabies virus: A neglected zoonotic pathogen in humans? Emerg. Microbes Infect. 2019, 8, 150–154. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Chen, Q.; Rao, X.; Diao, X.; Yang, L.; Fang, X.; Hogeveen, H. An economic assessment of pseudorabies (Aujeszky’ disease) elimination on hog farms in China. Prev. Vet. Med. 2019, 163, 24–30. [Google Scholar] [CrossRef]
- Wang, D.; Tao, X.; Fei, M.; Chen, J.; Guo, W.; Li, P.; Wang, J. Human encephalitis caused by pseudorabies virus infection: A case report. J. Neurovirol. 2020, 26, 442–448. [Google Scholar] [CrossRef]
- Maes, D.; Boyen, F.; Devriendt, B.; Kuhnert, P.; Summerfield, A.; Haesebrouck, F. Perspectives for improvement of Mycoplasma hyopneumoniae vaccines in pigs. Vet. Res. 2021, 52, 67. [Google Scholar] [CrossRef]
- World Health Organization. Enterotoxigenic Escherichia coli (ETEC) [Internet]. Available online: https://www.who.int/teams/immunization-vaccines-and-biologicals/diseases/enterotoxigenic-escherichia-coli-(etec) (accessed on 27 October 2022).
- Dubreuil, J.D. Pig vaccination strategies based on enterotoxigenic Escherichia coli toxins. Braz. J. Microbiol. Publ. Braz. Soc. Microbiol. 2021, 52, 2499–2509. [Google Scholar] [CrossRef]
- Jongert, E.; Melkebeek, V.; De Craeye, S.; Dewit, J.; Verhelst, D.; Cox, E. An enhanced GRA1-GRA7 cocktail DNA vaccine primes anti-Toxoplasma immune responses in pigs. Vaccine 2008, 26, 1025–1031. [Google Scholar] [CrossRef]
- Tian, F.; Lin, D.; Wu, J.; Gao, Y.; Zhang, D.; Ji, M.; Wu, G. Immune events associated with high level protection against Schistosoma japonicum infection in pigs immunized with UV-attenuated cercariae. PLoS ONE 2010, 5, e13408. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Nara, T.; Zeng, X.; Satoh, M.; Wu, G.; Jiang, W.; Yi, F.; Kojima, S.; Zhang, S.; Hirayama, K. Vaccination of domestic pig with recombinant paramyosin. against Schistosoma japonicum in China. Vaccine 2000, 18, 2142–2146. [Google Scholar] [CrossRef] [PubMed]
- Oreskovic, Z.; Nechvatalova, K.; Krejci, J.; Kummer, V.; Faldyna, M. Aspects of intradermal immunization with different adjuvants: The role of dendritic cells and Th1/Th2 response. PLoS ONE 2019, 14, e0211896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.H.; Lai, K.Y.; Chiu, Y.H.; Wu, Y.W.; Shiau, A.L.; Chen, M.C. Implantable microneedles with an immune-boosting function for effective intradermal influenza vaccination. Acta Biomater. 2019, 97, 230–238. [Google Scholar] [CrossRef]
- Chen, X.; Kositratna, G.; Zhou, C.; Manstein, D.; Wu, M.X. Micro-fractional epidermal powder delivery for improved skin vaccination. J. Control. Release 2014, 192, 310–316. [Google Scholar] [CrossRef] [Green Version]
- McKay, P.F.; King, D.F.L.; Mann, J.F.S.; Barinaga, G.; Carter, D.; Shattock, R.J. TLR4 and TLR7/8 Adjuvant Combinations Generate Different Vaccine Antigen-Specific Immune Outcomes in Minipigs when Administered via the ID or IN Routes. PLoS ONE 2016, 11, e0148984. [Google Scholar] [CrossRef] [Green Version]
- Bernardy, J.; Nechvatalova, K.; Krejci, J.; Kudlacková, H.; Brazdova, I.; Kucerova, Z.; Faldyna, M. Comparison of different doses of antigen for intradermal administration in pigs: The Actinobacillus pleuropneumoniae model. Vaccine 2008, 26, 6368–6372. [Google Scholar] [CrossRef]
- Schautteet, K.; De Clercq, E.; Jönsson, Y.; Lagae, S.; Chiers, K.; Cox, E.; Vanrompay, D. Protection of pigs against genital Chlamydia trachomatis challenge by parenteral or mucosal DNA immunization. Vaccine 2012, 30, 2869–2881. [Google Scholar] [CrossRef] [Green Version]
- D’apice, M.; Penha, A.M.; Cury, R. Vaccination against hog cholera with crystal violet vaccine by the intradermic route. J. Am. Vet. Med. Assoc. 1948, 112, 230–233. [Google Scholar]
- Melkebeek, V.; Verdonck, F.; Goddeeris, B.M.; Cox, E. Comparison of immune responses in parenteral FaeG DNA primed pigs boosted orally with F4 protein or reimmunized with the DNA vaccine. Vet. Immunol. Immunopathol. 2007, 116, 199–214. [Google Scholar] [CrossRef] [Green Version]
- Melkebeek, V.; Van den Broeck, W.; Verdonck, F.; Goddeeris, B.M.; Cox, E. Effect of plasmid DNA encoding the porcine granulocyte-macrophage colony-stimulating factor on antigen-presenting cells in pigs. Vet. Immunol. Immunopathol. 2008, 125, 354–360. [Google Scholar] [CrossRef]
- Melkebeek, V.; Sonck, E.; Verdonck, F.; Goddeeris, B.M.; Cox, E. Optimized FaeG expression and a thermolabile enterotoxin DNA adjuvant enhance priming of an intestinal immune response by an FaeG DNA vaccine in pigs. Clin. Vaccine Immunol. CVI 2007, 14, 28–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benvenisti, L.; Rogel, A.; Kuznetzova, L.; Bujanover, S.; Becker, Y.; Stram, Y. Gene gun-mediate DNA vaccination against foot-and-mouth disease virus. Vaccine 2001, 19, 3885–3895. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.C.; Masters, R.C.; Mowat, G.N. Immune response of pigs to inactivated foot-and-mouth disease vaccines. Response to emulsion vaccines. Res. Vet. Sci. 1971, 12, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.H.; Lee, K.N.; Kim, S.M.; Lee, G.; Moon, Y.; Kim, B.; Lee, J.S.; Park, J.H. Needleless intradermal vaccination for foot-and-mouth disease induced granuloma-free effective protection in pigs. J. Vet. Sci. 2019, 20, e29. [Google Scholar] [CrossRef]
- Bergamin, F.; Saurer, L.; Neuhaus, V.; McCullough, K.C.; Summerfield, A. Porcine B-cell activating factor promotes anti-FMDV antibodies in vitro but not in vivo after DNA vaccination of pigs. Vet. Immunol. Immunopathol. 2007, 120, 115–123. [Google Scholar] [CrossRef]
- Gosser, H.S.; Olson, L.D. Failure to immunize swine against streptococcic lymphadenitis with autogenous bacterins. Am. J. Vet. Res. 1973, 34, 129–130. [Google Scholar]
- Poirier, D.; Renaud, F.; Dewar, V.; Strodiot, L.; Wauters, F.; Janimak, J.; Shimada, T.; Nomura, T.; Kabata, K.; Kuruma, K.; et al. Hepatitis B surface antigen incorporated in dissolvable microneedle array patch is antigenic and thermostable. Biomaterials 2017, 145, 256–265. [Google Scholar] [CrossRef]
- Andrianov, A.K.; DeCollibus, D.P.; Gillis, H.A.; Kha, H.H.; Marin, A.; Prausnitz, M.R.; Babiuk, L.A.; Townsend, H.; Mutwiri, G. Poly[di(carboxylatophenoxy)phosphazene] is a potent adjuvant for intradermal immunization. Proc. Natl. Acad. Sci. USA 2009, 106, 18936–18941. [Google Scholar] [CrossRef] [Green Version]
- Pilling, A.M.; Harman, R.M.; Jones, S.A.; McCormack, N.A.M.; Lavender, D.; Haworth, R. The assessment of local tolerance, acute toxicity, and DNA biodistribution following particle-mediated delivery of a DNA vaccine to minipigs. Toxicol. Pathol. 2002, 30, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.P.; Kang, H.N.; Babiuk, L.A.; Liu, Q. Elicitation of strong immune responses by a DNA vaccine expressing a secreted form of hepatitis C virus envelope protein E2 in murine and porcine animal models. World J. Gastroenterol. 2006, 12, 7126–7135. [Google Scholar] [CrossRef]
- Grubor-Bauk, B.; Yu, W.; Wijesundara, D.; Gummow, J.; Garrod, T.; Brennan, A.J.; Voskoboinik, I.; Gowans, E.J. Intradermal delivery of DNA encoding HCV NS3 and perforin elicits robust cell-mediated immunity in mice and pigs. Gene Ther. 2016, 23, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, D.; Earnest-Silveira, L.; Grubor-Bauk, B.; Wijesundara, D.K.; Boo, I.; Ramsland, P.A.; Vincan, E.; Drummer, H.E.; Gowans, E.J.; Torresi, J. Pre-clinical evaluation of a quadrivalent HCV VLP vaccine in pigs following microneedle delivery. Sci. Rep. 2019, 9, 9251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horsington, J.; Witvliet, M.; Jacobs, A.A.C.; Segers, R.P.A.M. Efficacy of Simultaneous Intradermal Vaccination of Swine against Porcine Circovirus 2, Porcine Reproductive and Respiratory Syndrome Virus, Mycoplasma hyopneumoniae and Lawsonia intracellularis. Animals 2021, 11, 2225. [Google Scholar] [CrossRef] [PubMed]
- Renshaw, H.W.; Gessner, J.W.; Woodard, L.F.; Everson, D.O. Delayed-type skin hypersensitivity and in vitro lymphocyte immunostimulation responses of swine following inoculation with Mycobacterium avium cell walls and a mycobacterial immunopotentiating glycolipid. Vet. Microbiol. 1983, 8, 281–291. [Google Scholar] [CrossRef]
- Beffort, L.; Weiß, C.; Fiebig, K.; Jolie, R.; Ritzmann, M.; Eddicks, M. Field study on the safety and efficacy of intradermal versus intramuscular vaccination against Mycoplasma hyopneumoniae. Vet. Rec. 2017, 181, 348. [Google Scholar] [CrossRef]
- Bruffaerts, N.; Pedersen, L.E.; Vandermeulen, G.; Préat, V.; Stockhofe-Zurwieden, N.; Huygen, K.; Romano, M. Increased B and T Cell Responses in M. bovis Bacille Calmette-Guérin Vaccinated Pigs Co-Immunized with Plasmid DNA Encoding a Prototype Tuberculosis Antigen. PLoS ONE 2015, 10, e0132288. [Google Scholar] [CrossRef]
- Imada, T.; Kawamura, H.; Nishimori, T.; Murata, H.; Narita, M.; Honda, Y.; Ishigaki, K. Evaluation of the pathogenicity and immunogenicity of vaccinia virus to piglets. Nihon Juigaku Zasshi Jpn. J. Vet. Sci. 1989, 51, 96–104. [Google Scholar] [CrossRef]
- Dalmau, A.; Sánchez-Matamoros, A.; Molina, J.M.; Xercavins, A.; Varvaró-Porter, A.; Muñoz, I.; Moles, X.; Baulida, B.; Fàbrega, E.; Velarde, A.; et al. Intramuscular vs. Intradermic Needle-Free Vaccination in Piglets: Relevance for Animal Welfare Based on an Aversion Learning Test and Vocalizations. Front. Vet. Sci. 2021, 8, 715260. [Google Scholar] [CrossRef]
- Bernelin-Cottet, C.; Urien, C.; McCaffrey, J.; Collins, D.; Donadei, A.; McDaid, D.; Jakob, V.; Barnier-Quer, C.; Collin, N.; Bouguyon, E.; et al. Electroporation of a nanoparticle-associated DNA vaccine induces higher inflammation and immunity compared to its delivery with microneedle patches in pigs. J. Control. Release 2019, 308, 14–28. [Google Scholar] [CrossRef]
- Vreman, S.; Stockhofe-Zurwieden, N.; Popma-de Graaf, D.J.; Savelkoul, H.F.J.; Barnier-Quer, C.; Collin, N.; Collins, D.; McDaid, D.; Moore, A.C.; Rebel, J.M.J. Immune responses induced by inactivated porcine reproductive and respiratory syndrome virus (PRRSV) vaccine in neonatal pigs using different adjuvants. Vet. Immunol. Immunopathol. 2021, 232, 110170. [Google Scholar] [CrossRef]
- Vreman, S.; McCaffrey, J.; Popma-de Graaf, D.J.; Nauwynck, H.; Savelkoul, H.F.J.; Moore, A.; Rebel, J.M.J.; Stockhofe-Zurwieden, N. Toll-like receptor agonists as adjuvants for inactivated porcine reproductive and respiratory syndrome virus (PRRSV) vaccine. Vet. Immunol. Immunopathol. 2019, 212, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Bernelin-Cottet, C.; Urien, C.; Stubsrud, E.; Jakob, V.; Bouguyon, E.; Bordet, E.; Barc, C.; Boulesteix, O.; Contreras, V.; Barnier-Quer, C.; et al. A DNA-Modified Live Vaccine Prime-Boost Strategy Broadens the T-Cell Response and Enhances the Antibody Response against the Porcine Reproductive and Respiratory Syndrome Virus. Viruses 2019, 11, E551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernelin-Cottet, C.; Urien, C.; Fretaud, M.; Langevin, C.; Trus, I.; Jouneau, L.; Blanc, F.; Leplat, J.J.; Barc, C.; Boulesteix, O.; et al. A DNA Prime Immuno-Potentiates a Modified Live Vaccine against the Porcine Reproductive and Respiratory Syndrome Virus but Does Not Improve Heterologous Protection. Viruses 2019, 11, 576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gagnon, C.A.; Lachapelle, G.; Langelier, Y.; Massie, B.; Dea, S. Adenoviral-expressed GP5 of porcine respiratory and reproductive syndrome virus differs in its cellular maturation from the authentic viral protein but maintains known biological functions. Arch. Virol. 2003, 148, 951–972. [Google Scholar] [CrossRef]
- Maragkakis, G.; Korou, L.M.; Chaintoutis, S.C.; Christodoulopoulos, G.; Dovas, C.I.; Perrea, D.; Athanasiou, L.V.; Konstantopoulos, P.; Maes, D.; Papatsiros, V.G. Investigation of Fas (APO-1)-Related Apoptosis in Piglets Intradermally or Intramuscularly Vaccinated with a Commercial PRRSV MLV. Viral Immunol. 2022, 35, 129–137. [Google Scholar] [CrossRef]
- Stadler, J.; Naderer, L.; Beffort, L.; Ritzmann, M.; Emrich, D.; Hermanns, W.; Fiebig, K.; Saalmüller, A.; Gerner, W.; Glatthaar-Saalmüller, B.; et al. Safety and immune responses after intradermal application of Porcilis PRRS in either the neck or the perianal region. PLoS ONE 2018, 13, e0203560. [Google Scholar] [CrossRef]
- Ferrari, M.; Brack, A.; Romanelli, M.G.; Mettenleiter, T.C.; Corradi, A.; Dal Mas, N.; Losio, M.N.; Silini, R.; Pinoni, C.; Pratelli, A. A study of the ability of a TK-negative and gI/gE-negative pseudorabies virus (PRV) mutant inoculated by different routes to protect pigs against PRV infection. J. Vet. Med. B Infect. Dis. Vet. Public Health 2000, 47, 753–762. [Google Scholar] [CrossRef]
- van Rooij, E.M.; Haagmans, B.L.; de Visser, Y.E.; de Bruin, M.G.; Boersma, W.; Bianchi, A.T. Effect of vaccination route and composition of DNA vaccine on the induction of protective immunity against pseudorabies infection in pigs. Vet. Immunol. Immunopathol. 1998, 66, 113–126. [Google Scholar] [CrossRef]
- Mikulska-Skupień, E.; Szweda, W.; Procajło, Z. Evaluation of specific humoral immune response in pigs vaccinated intradermally with deleted Aujeszky’s disease vaccine and challenged with virulent strain of Herpesvirus suis type 1. Pol. J. Vet. Sci. 2005, 8, 11–16. [Google Scholar]
- Artursson, K.; Lindersson, M.; Varela, N.; Scheynius, A.; Alm, G.V. Interferon-alpha production and tissue localization of interferon-alpha/beta producing cells after intradermal administration of Aujeszky’s disease virus-infected cells in pigs. Scand. J. Immunol. 1995, 41, 121–129. [Google Scholar] [CrossRef]
- Ferrari, M.; Gualandi, G.L.; Corradi, A.; Monaci, C.; Romanelli, M.G.; Losio, M.N.; Cantoni, A.M.; Pratelli, A. The response of pigs inoculated with a thymidine kinase-negative (TK-) pseudorabies virus to challenge infection with virulent virus. Comp. Immunol. Microbiol. Infect. Dis. 2000, 23, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Vlasova, A.; Velasquez, D.E.; Saif, L.J.; Kandasamy, S.; Kochba, E.; Levin, Y.; Jiang, B. Skin Vaccination against Rotavirus Using Microneedles: Proof of Concept in Gnotobiotic Piglets. PLoS ONE 2016, 11, e0166038. [Google Scholar] [CrossRef] [Green Version]
- Opriessnig, T.; Mattei, A.A.; Karuppannan, A.K.; Halbur, P.G. Future perspectives on swine viral vaccines: Where are we headed? Porc. Health Manag. 2021, 7, 1. [Google Scholar] [CrossRef]
- Redding, L.; Werner, D.B. DNA vaccines in veterinary use. Expert Rev. Vaccines 2009, 8, 1251–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebrahimi, M. DNA Vaccine and its Importance in Veterinary. J. Dairy Vet. Sci. 2019, 11, 1–2. [Google Scholar] [CrossRef]
- Hobernik, D.; Bros, M. DNA Vaccines—How Far from Clinical Use? Int. J. Mol. Sci. 2018, 19, 3605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Accensi, F.; Bosch-Camós, L.; Monteagudo, P.L.; Rodríguez, F. DNA Vaccines in Pigs: From Immunization to Antigen Identification. Methods Mol. Biol. 2022, 2465, 109–124. [Google Scholar] [PubMed]
- Gary, E.N.; Weiner, D.B. DNA vaccines: Prime time is now. Curr. Opin. Immunol. 2020, 65, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Dey, A.; Chozhavel Rajanathan, T.M.; Chandra, H.; Pericherla, H.P.R.; Kumar, S.; Choonia, H.S.; Bajpai, M.; Singh, A.K.; Sinha, A.; Saini, G.; et al. Immunogenic potential of DNA vaccine candidate, ZyCoV-D against SARS-CoV-2 in animal models. Vaccine 2021, 39, 4108–4116. [Google Scholar] [CrossRef] [PubMed]
- Mallapaty, S. India’s DNA COVID vaccine is a world first–more are coming. Nature 2021, 597, 161–162. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Adjuvants in Vaccines for Human Use [Internet]. 2018. Available online: https://www.ema.europa.eu/en/adjuvants-vaccines-human-use (accessed on 28 July 2022).
- Madera, R.; Burakova, Y.; Shi, J. Emulsion Adjuvants for Use in Veterinary Vaccines. Methods Mol. Biol. 2022, 2412, 247–253. [Google Scholar]
- Burakova, Y.; Madera, R.; McVey, S.; Schlup, J.R.; Shi, J. Adjuvants for Animal Vaccines. Viral Immunol. 2018, 31, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Fukanoki, S.; Iwakura, T.; Iwaki, S.; Matsumoto, K.; Takeda, R.; Ikeda, K.; Shi, Z.; Mori, H. Safety and efficacy of water-in-oil-in-water emulsion vaccines containing Newcastle disease virus haemagglutinin-neuraminidase glycoprotein. Avian Pathol. J. WVPA 2001, 30, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Buonavoglia, D.; Greco, G.; Quaranta, V.; Corrente, M.; Martella, V.; Decaro, N. An oil-emulsion vaccine induces full-protection against Mycoplasma agalactiae infection in sheep. New Microbiol. 2008, 31, 117–123. [Google Scholar] [PubMed]
- Aucouturier, J.; Dupuis, L.; Ganne, V. Adjuvants designed for veterinary and human vaccines. Vaccine 2001, 19, 2666–2672. [Google Scholar] [CrossRef]
- Vogelbruch, M.; Nuss, B.; Körner, M.; Kapp, A.; Kiehl, P.; Bohm, W. Aluminium-induced granulomas after inaccurate intradermal hyposensitization injections of aluminium-adsorbed depot preparations. Allergy 2000, 55, 883–887. [Google Scholar] [PubMed]
- SEPPIC. Animal Species and Veterinary Vaccines [Internet]. Available online: https://www.seppic.com/en/animal-health/animal-species (accessed on 21 December 2022).
- van Doorn, E.; Liu, H.; Huckriede, A.; Hak, E. Safety and tolerability evaluation of the use of Montanide ISATM51 as vaccine adjuvant: A systematic review. Hum. Vaccines Immunother. 2016, 12, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Nanishi, E.; Dowling, D.J.; Levy, O. Toward precision adjuvants: Optimizing science and safety. Curr. Opin. Pediatr. 2020, 32, 125–138. [Google Scholar] [CrossRef] [Green Version]
- Vreman, S.; Auray, G.; Savelkoul, H.F.J.; Rebel, A.; Summerfield, A.; Stockhofe-Zurwieden, N. Neonatal porcine blood derived dendritic cell subsets show activation after TLR2 or TLR9 stimulation. Dev. Comp. Immunol. 2018, 84, 361–370. [Google Scholar] [CrossRef]
- Di Pasquale, A.; Preiss, S.; Tavares Da Silva, F.; Garçon, N. Vaccine Adjuvants: From 1920 to 2015 and Beyond. Vaccines 2015, 3, 320–343. [Google Scholar] [CrossRef] [Green Version]
- FDA. Route of Administration [Internet]. Available online: https://www.fda.gov/drugs/data-standards-manual-monographs/route-administration (accessed on 28 July 2022).
- Sattler, T.; Pikalo, J.; Wodak, E.; Schmoll, F. Ability of ELISAs to detect antibodies against porcine respiratory and reproductive syndrome virus in serum of pigs after inactivated vaccination and subsequent challenge. BMC Vet. Res. 2016, 12, 259. [Google Scholar] [CrossRef] [Green Version]
- Hingson, R.A.; Hughes, J.G. Clinical studies with jet injection; a new method of drug administration. Curr. Res. Anesth. Analg. 1947, 26, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Hingson, R.A.; Davis, H.S.; Bloomfield, R.A.; Brailey, R.F. Mass inoculation of the Salk polio vaccine with the multiple dose jet injector. GP 1957, 15, 94–96. [Google Scholar] [PubMed]
- Plotkin, S.A.; Orenstein, W.A.; Offit, P.A.; Edwards, K.M. 9—General Immunization Practices. In Plotkin’s Vaccines, 7th ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 96–120.e6. [Google Scholar]
- Chase, C.C.L.; Daniels, C.S.; Garcia, R.; Milward, F.; Nation, T. Needle-free injection technology in swine: Progress toward vaccine efficacy and pork quality. J. Swine Health Prod. 2008, 16, 8. [Google Scholar]
- Kale, T.R.; Momin, M. Needle free injection technology—An overview. Innov. Pharm. 2014, 5, 192–199. [Google Scholar] [CrossRef] [Green Version]
- Corporate Home Page—MSD Animal Health. The IDAL® Way, 20 Years and Counting [Internet]. Available online: https://www.msd-animal-health.com/the-idal-way-20-years-and-counting/ (accessed on 17 August 2022).
- Diotti, R.A.; Caputo, V.; Sautto, G.A. 12—Conventional and nontraditional delivery methods and routes of vaccine administration. In Practical Aspects of Vaccine Development; Kolhe, P., Ohtake, S., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 329–355. [Google Scholar]
- Godbey, W.T. Chapter 13—Gene Delivery. In An Introduction to Biotechnology; Godbey, W.T., Ed.; Woodhead Publishing: Southton, UK, 2014; pp. 275–312. [Google Scholar]
- Su, F.; Patel, G.B.; Hu, S.; Chen, W. Induction of mucosal immunity through systemic immunization: Phantom or reality? Hum. Vaccines Immunother. 2016, 12, 1070–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hervé, C.; Laupèze, B.; Del Giudice, G.; Didierlaurent, A.M.; Tavares Da Silva, F. The how’s and what’s of vaccine reactogenicity. NPJ Vaccines 2019, 4, 39. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Có-Rives, I.; Chen, A.Y.-A.; Moore, A.C. Skin-Based Vaccination: A Systematic Mapping Review of the Types of Vaccines and Methods Used and Immunity and Protection Elicited in Pigs. Vaccines 2023, 11, 450. https://doi.org/10.3390/vaccines11020450
Có-Rives I, Chen AY-A, Moore AC. Skin-Based Vaccination: A Systematic Mapping Review of the Types of Vaccines and Methods Used and Immunity and Protection Elicited in Pigs. Vaccines. 2023; 11(2):450. https://doi.org/10.3390/vaccines11020450
Chicago/Turabian StyleCó-Rives, Inés, Ann Ying-An Chen, and Anne C. Moore. 2023. "Skin-Based Vaccination: A Systematic Mapping Review of the Types of Vaccines and Methods Used and Immunity and Protection Elicited in Pigs" Vaccines 11, no. 2: 450. https://doi.org/10.3390/vaccines11020450
APA StyleCó-Rives, I., Chen, A. Y. -A., & Moore, A. C. (2023). Skin-Based Vaccination: A Systematic Mapping Review of the Types of Vaccines and Methods Used and Immunity and Protection Elicited in Pigs. Vaccines, 11(2), 450. https://doi.org/10.3390/vaccines11020450