Development of Autoantibodies Following BNT162b2 mRNA COVID-19 Vaccination and Their Association with Disease Flares in Adult Patients with Autoimmune Inflammatory Rheumatic Diseases (AIIRD) and the General Population: Results of 1-Year Prospective Follow-Up Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Vaccination Procedure
2.4. Vaccine Immunogenicity
2.5. Vaccine-Related Autoantibody Development
2.6. Vaccine Safety and Assessment of AIIRD Activity
2.7. Statistical Analysis
3. Results
3.1. Study Participants
3.2. Autoantibody Development
3.3. Disease Flares
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saad, M.A.; Alfishawy, M.; Nassar, M.; Mohamed, M.; Esene, I.N.; Elbendary, A. COVID-19 and Autoimmune Diseases: A Systematic Review of Reported Cases. Curr. Rheumatol. Rev. 2021, 17, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Correa, J.; Rodriguez, A. Divergent Roles of Antiself Antibodies during Infection. Trends Immunol. 2018, 39, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Estes, S.K.; Ali, R.A.; Gandhi, A.A.; Yalavarthi, S.; Shi, H.; Sule, G.; Gockman, K.; Madison, J.A.; Zuo, M.; et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci. Transl. Med. 2020, 12, eabd3876. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.E.; Feng, A.; Meng, W.; Apostolidis, S.A.; Mack, E.; Artandi, M.; Barman, L.; Bennett, K.; Chakraborty, S.; Chang, I.; et al. New-onset IgG autoantibodies in hospitalized patients with COVID-19. Nat. Commun. 2021, 12, 5417. [Google Scholar] [CrossRef] [PubMed]
- Bertin, D.; Brodovitch, A.; Beziane, A.; Hug, S.; Bouamri, A.; Mege, J.L.; Heim, X.; Bardin, N. Anticardiolipin IgG Autoantibody Level Is an Independent Risk Factor for COVID-19 Severity. Arthritis Rheumatol. 2020, 72, 1953–1955. [Google Scholar] [CrossRef]
- Trahtemberg, U.; Rottapel, R.; Dos Santos, C.C.; Slutsky, A.S.; Baker, A.; Fritzler, M.J. Anticardiolipin and other antiphospholipid antibodies in critically ill COVID-19 positive and negative patients. Ann. Rheum. Dis. 2021, 80, 1236–1240. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. C4591001 Clinical Trial Group Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. COVE Study Group Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Curtis, J.R.; Johnson, S.R.; Anthony, D.D.; Arasaratnam, R.J.; Baden, L.R.; Bass, A.R.; Calabrese, C.; Gravallese, E.M.; Harpaz, R.; Kroger, A.; et al. American College of Rheumatology Guidance for COVID-19 Vaccination in Patients with Rheumatic and Musculoskeletal Diseases: Version 2. Arthritis Rheumatol. 2021, 73, e30–e45. [Google Scholar] [CrossRef]
- Furer, V.; Eviatar, T.; Zisman, D.; Peleg, H.; Paran, D.; Levartovsky, D.; Zisapel, M.; Elalouf, O.; Kaufman, I.; Meidan, R.; et al. Immunogenicity and safety of the BNT162b2 mRNA COVID-19 vaccine in adult patients with autoimmune inflammatory rheumatic diseases and in the general population: A multicentre study. Ann. Rheum. Dis. 2021, 80, 1330–1338. [Google Scholar] [CrossRef]
- Neogi, T.; Aletaha, D.; Silman, A.J.; Naden, R.L.; Felson, D.T.; Aggarwal, R.; Bingham, C.O.; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; et al. American College of Rheumatology; European League Against Rheumatism The 2010 American College of Rheumatology/European League Against Rheumatism classification criteria for rheumatoid arthritis: Phase 2 methodological report. Arthritis Rheum. 2010, 62, 2582–2591. [Google Scholar] [CrossRef] [Green Version]
- Taylor, W.; Gladman, D.; Helliwell, P.; Marchesoni, A.; Mease, P.; Mielants, H. CASPAR Study Group Classification criteria for psoriatic arthritis: Development of new criteria from a large international study. Arthritis Rheum. 2006, 54, 2665–2673. [Google Scholar] [CrossRef]
- Sieper, J.; Rudwaleit, M.; Baraliakos, X.; Brandt, J.; Braun, J.; Burgos-Vargas, R.; Dougados, M.; Hermann, K.G.; Landewé, R.; Maksymowych, W.; et al. The Assessment of SpondyloArthritis international Society (ASAS) handbook: A guide to assess spondyloarthritis. Ann. Rheum. Dis. 2009, 68 (Suppl. S2), ii1–ii44. [Google Scholar] [CrossRef]
- Petri, M.; Orbai, A.-M.; Alarcón, G.S.; Gordon, C.; Merrill, J.T.; Fortin, P.R.; Bruce, I.N.; Isenberg, D.; Wallace, D.J.; Nived, O.; et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012, 64, 2677–2686. [Google Scholar] [CrossRef]
- van den Hoogen, F.; Khanna, D.; Fransen, J.; Johnson, S.R.; Baron, M.; Tyndall, A.; Matucci-Cerinic, M.; Naden, R.P.; Medsger, T.A.; Carreira, P.E.; et al. 2013 classification criteria for systemic sclerosis: An American college of rheumatology/European league against rheumatism collaborative initiative. Ann. Rheum. Dis. 2013, 72, 1747–1755. [Google Scholar] [CrossRef] [Green Version]
- Jennette, J.C.; Falk, R.J.; Andrassy, K.; Bacon, P.A.; Churg, J.; Gross, W.L.; Hagen, E.C.; Hoffman, G.S.; Hunder, G.G.; Kallenberg, C.G. Nomenclature of systemic vasculitides. Proposal of an international consensus conference. Arthritis Rheum. 1994, 37, 187–192. [Google Scholar] [CrossRef]
- Lundberg, I.E.; Tjärnlund, A.; Bottai, M.; Werth, V.P.; Pilkington, C.; de Visser, M.; Alfredsson, L.; Amato, A.A.; Barohn, R.J.; Liang, M.H.; et al. International Myositis Classification Criteria Project consortium, The Euromyositis register and The Juvenile Dermatomyositis Cohort Biomarker Study and Repository (JDRG) (UK and Ireland) 2017 European League Against Rheumatism/American College of Rheumatology classification criteria for adult and juvenile idiopathic inflammatory myopathies and their major subgroups. Ann. Rheum. Dis. 2017, 76, 1955–1964. [Google Scholar] [CrossRef]
- Criscuolo, E.; Diotti, R.A.; Strollo, M.; Rolla, S.; Ambrosi, A.; Locatelli, M.; Burioni, R.; Mancini, N.; Clementi, M.; Clementi, N. Weak correlation between antibody titers and neutralizing activity in sera from SARS-CoV-2 infected subjects. J. Med. Virol. 2021, 93, 2160–2167. [Google Scholar] [CrossRef]
- Toplak, N.; Kveder, T.; Trampus-Bakija, A.; Subelj, V.; Cucnik, S.; Avcin, T. Autoimmune response following annual influenza vaccination in 92 apparently healthy adults. Autoimmun. Rev. 2008, 8, 134–138. [Google Scholar] [CrossRef]
- Martinuc Porobic, J.; Avcin, T.; Bozic, B.; Kuhar, M.; Cucnik, S.; Zupancic, M.; Prosenc, K.; Kveder, T.; Rozman, B. Anti-phospholipid antibodies following vaccination with recombinant hepatitis B vaccine. Clin. Exp. Immunol. 2005, 142, 377–380. [Google Scholar] [CrossRef]
- Perdan-Pirkmajer, K.; Thallinger, G.G.; Snoj, N.; Čučnik, S.; Žigon, P.; Kveder, T.; Logar, D.; Praprotnik, S.; Tomšič, M.; Sodin-Semrl, S.; et al. Autoimmune response following influenza vaccination in patients with autoimmune inflammatory rheumatic disease. Lupus 2012, 21, 175–183. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Z.; Wang, P.; Li, X.-M.; Shuai, Z.-W.; Ye, D.-Q.; Pan, H.-F. New-onset autoimmune phenomena post-COVID-19 vaccination. Immunology 2022, 165, 386–401. [Google Scholar] [CrossRef]
- Segal, Y.; Shoenfeld, Y. Vaccine-induced autoimmunity: The role of molecular mimicry and immune crossreaction. Cell. Mol. Immunol. 2018, 15, 586–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachinidis, A.; Garyfallos, A. COVID-19 vaccination can occasionally trigger autoimmune phenomena, probably via inducing age-associated B cells. Int. J. Rheum. Dis. 2022, 25, 83–85. [Google Scholar] [CrossRef] [PubMed]
- Jara, L.J.; Vera-Lastra, O.; Mahroum, N.; Pineda, C.; Shoenfeld, Y. In response to comment on “Autoimmune post-COVID vaccine syndromes: Does the spectrum of autoimmune/inflammatory syndrome expand?” by Jara LJ et al. Clin. Rheumatol. 2022, 41, 2921–2922. [Google Scholar] [CrossRef]
- Muskardin, T.L.W.; Niewold, T.B. Type I interferon in rheumatic diseases. Nat. Rev. Rheumatol. 2018, 14, 214–228. [Google Scholar] [CrossRef] [PubMed]
- Haber, P.; DeStefano, F.; Angulo, F.J.; Iskander, J.; Shadomy, S.V.; Weintraub, E.; Chen, R.T. Guillain-Barré syndrome following influenza vaccination. JAMA 2004, 292, 2478–2481. [Google Scholar] [CrossRef] [Green Version]
- Mader, R.; Narendran, A.; Lewtas, J.; Bykerk, V.; Goodman, R.C.; Dickson, J.R.; Keystone, E.C. Systemic vasculitis following influenza vaccination—Report of 3 cases and literature review. J. Rheumatol. 1993, 20, 1429–1431. [Google Scholar]
- Watanabe, T.; Onda, H. Henoch-Schönlein purpura with antiphospholipid antibodies following an influenza vaccination. Pediatr. Nephrol. 2001, 16, 458–459; discussion 460. [Google Scholar] [CrossRef]
- Mormile, R.; D’Alterio, V.; Treccagnoli, G.; Sorrentino, P. Henoch-Schonlein purpura with antiphospholipid antibodies after influenza vaccination: How fearful is it in children? Vaccine 2004, 23, 567–568. [Google Scholar] [CrossRef]
- Mevorach, D.; Anis, E.; Cedar, N.; Bromberg, M.; Haas, E.J.; Nadir, E.; Olsha-Castell, S.; Arad, D.; Hasin, T.; Levi, N.; et al. Myocarditis after BNT162b2 mRNA Vaccine against Covid-19 in Israel. N. Engl. J. Med. 2021, 385, 2140–2149. [Google Scholar] [CrossRef]
- Perricone, C.; Ceccarelli, F.; Nesher, G.; Borella, E.; Odeh, Q.; Conti, F.; Shoenfeld, Y.; Valesini, G. Immune thrombocytopenic purpura (ITP) associated with vaccinations: A review of reported cases. Immunol. Res. 2014, 60, 226–235. [Google Scholar] [CrossRef]
- De Marco, G.; Giryes, S.; Williams, K.; Alcorn, N.; Slade, M.; Fitton, J.; Nizam, S.; Smithson, G.; Iqbal, K.; Tran, G.; et al. A Large Cluster of New Onset Autoimmune Myositis in the Yorkshire Region Following SARS-CoV-2 Vaccination. Vaccines 2022, 10, 1184. [Google Scholar] [CrossRef]
- Chen, R.T.; Pless, R.; Destefano, F. Epidemiology of autoimmune reactions induced by vaccination. J. Autoimmun. 2001, 16, 309–318. [Google Scholar] [CrossRef]
- Blank, R.B.; Haberman, R.H.; Qian, K.; Samanovic, M.; Castillo, R.; Jimenez Hernandez, A.; Vasudevapillai Girija, P.; Catron, S.; Uddin, Z.; Rackoff, P.; et al. Low incidence and transient elevation of autoantibodies post mRNA COVID-19 vaccination in inflammatory arthritis. Rheumatology 2022, 62, 467–472. [Google Scholar] [CrossRef]
- Thurm, C.; Reinhold, A.; Borucki, K.; Kahlfuss, S.; Feist, E.; Schreiber, J.; Reinhold, D.; Schraven, B. Homologous and Heterologous Anti-COVID-19 Vaccination Does Not Induce New-Onset Formation of Autoantibodies Typically Accompanying Lupus Erythematodes, Rheumatoid Arthritis, Celiac Disease and Antiphospholipid Syndrome. Vaccines 2022, 10, 333. [Google Scholar] [CrossRef]
- Noureldine, H.A.; Maamari, J.; El Helou, M.O.; Chedid, G.; Farra, A.; Husni, R.; Mokhbat, J.E. The effect of the BNT162b2 vaccine on antinuclear antibody and antiphospholipid antibody levels. Immunol. Res. 2022, 70, 800–810. [Google Scholar] [CrossRef]
- Świerkot, J.; Madej, M.; Szmyrka, M.; Korman, L.; Sokolik, R.; Andrasiak, I.; Morgiel, E.; Sebastian, A. The Risk of Autoimmunity Development following mRNA COVID-19 Vaccination. Viruses 2022, 14, 2655. [Google Scholar] [CrossRef]
- Machado, P.M.; Lawson-Tovey, S.; Strangfeld, A.; Mateus, E.F.; Hyrich, K.L.; Gossec, L.; Carmona, L.; Rodrigues, A.; Raffeiner, B.; Duarte, C.; et al. Safety of vaccination against SARS-CoV-2 in people with rheumatic and musculoskeletal diseases: Results from the EULAR Coronavirus Vaccine (COVAX) physician-reported registry. Ann. Rheum. Dis. 2022, 81, 695–709. [Google Scholar] [CrossRef]
- Connolly, C.M.; Ruddy, J.A.; Boyarsky, B.J.; Barbur, I.; Werbel, W.A.; Geetha, D.; Garonzik-Wang, J.M.; Segev, D.L.; Christopher-Stine, L.; Paik, J.J. Disease Flare and Reactogenicity in Patients with Rheumatic and Musculoskeletal Diseases Following Two-Dose SARS-CoV-2 Messenger RNA Vaccination. Arthritis Rheumatol. 2022, 74, 28–32. [Google Scholar] [CrossRef]
- Izmirly, P.M.; Kim, M.Y.; Samanovic, M.; Fernandez-Ruiz, R.; Ohana, S.; Deonaraine, K.K.; Engel, A.J.; Masson, M.; Xie, X.; Cornelius, A.R.; et al. Evaluation of Immune Response and Disease Status in Systemic Lupus Erythematosus Patients Following SARS-CoV-2 Vaccination. Arthritis Rheumatol. 2022, 74, 284–294. [Google Scholar] [CrossRef] [PubMed]
AIIRD Patients (n = 463) | Controls (n = 55) | p-Value | ||
---|---|---|---|---|
Age (Mean ± SD) | 58.1 ± 14.6 | 52.0 ± 14.4 | 0.003 | |
Sex (Female) N, % | 72.8% (n = 337) | 69.1% (n = 38) | 0.562 | |
Diagnosis | RA | 37.6% (n = 174) | N/A | |
PsA | 22.0% (n = 102) | N/A | ||
AS | 9.1% (n = 42) | N/A | ||
SLE | 12.1% (n = 56) | N/A | ||
SSCL | 5.4% (n = 25) | N/A | ||
Vasculitis | 9.7% (n = 45) | N/A | ||
IIM | 3.7% (n = 17) | N/A | ||
SS | 0.2% (n = 1) | N/A | ||
IGG4-RD | 0.2% (n = 1) | N/A | ||
AIIRD Medications | NSAIDs | 2.2% (n = 10) | N/A | |
GCS | 18.8% (n = 87) | N/A | ||
HCQ | 17.7% (n = 82) | N/A | ||
MTX | 28.3% (n = 131) | N/A | ||
SSZ | 2.2% (n = 10) | N/A | ||
LEF | 4.5% (n = 21) | N/A | ||
AZA | 3.9% (n = 18) | N/A | ||
MMF | 5.0% (n = 23) | N/A | ||
ANTI-TNF | 23.1% (n = 107) | N/A | ||
ANTI-IL-6 | 5.8% (n = 27) | N/A | ||
ANTI-IL-23 | 0.9% (n = 4) | N/A | ||
ANTI-IL17 | 5.8% (n = 27) | N/A | ||
ANTI-CD20 * | 16.0% (n = 74) | N/A | ||
BEL | 1.9% (n = 9) | N/A | ||
ABT | 2.6% (n = 12) | N/A | ||
PDE4 | 0.9% (n = 4) | N/A | ||
JAK-I | 6.5% (n = 30) | N/A | ||
IVIG | 1.5% (n = 7) | N/A | ||
COLCHICINE | 1.1% (n = 5) | N/A | ||
DMARDs by category | cDMARDs | 38.9% (n = 180) | N/A | |
bDMARDs | 56.2% (n = 260) | N/A | ||
tsDMARDs | 7.3% (n = 34) | N/A | ||
Third vaccination | Yes | 99.5% (n = 405 **) | 98.2% (n = 54) | 0.317 |
Any new autoantibody positivity after second vaccine dose | Yes | 4.0% (n = 18/453 with available data) | 5.6% (n = 3/54 with available data) | 0.481 |
Any new autoantibody positivity after third vaccine dose | Yes | 8.7% (n = 31/355 with available data) | 0% (n = 0/32 with available data) | 0.094 |
(a) | ||||
---|---|---|---|---|
Any Autoantibody Positivity | No Autoantibody Positivity | p-Value | ||
Number of patients with serologic data | n = 453 | 4.0% (n = 18) | 96.0% (n = 435) | |
Age (Mean ±SD) | 57.8 ± 14.5 | 58.0 ± 14.6 | 0.942 | |
Sex | Female | 4.9% (n = 16) | 95.1% (n = 312) | 0.176 |
Male | 1.6% (n = 2) | 98.4% (n = 123) | ||
Diagnosis | RA | 3.6% (n = 6) | 96.4% (n = 161) | 0.308 |
PsA | 4.0% (n = 4) | 96.0% (n = 97) | ||
SLE | 9.3% (n = 5) | 90.7% (n = 51) | ||
AS | 7.1% (n = 3) | 92.9% (n = 39) | ||
Vasculitis | 0.0% (n = 0) | 100% (n = 45) | ||
SSCL | 0.0% (n = 0) | 100% (n = 23) | ||
Myositis | 0.0% (n = 0) | 100% (n = 17) | ||
SS | 0.0% (n = 0) | 100% (n = 1) | ||
IgG4-RD | 0.0% (n = 0) | 100% (n = 1) | ||
Vaccine immune response (seroconversion) | Yes | 4.7% (n = 16 of 338) | 95.3% (n = 322 of 338) | 0.492 |
DMARDs | cDMARDs | 4.7% (n = 8) | 95.3% (n = 162) | 0.536 |
bDMARDs | 3.9% (n = 10) | 96.1% (n = 246) | 0.933 | |
tsDMARDs | 5.9% (n = 2) | 94.1% (n = 32) | 0.637 | |
(b) | ||||
Any Autoantibody Positivity | No Autoantibody Positivity | p-Value | ||
Number of patients with serologic data | n = 355 | 7.7% (n = 31) | 80.0% (n = 324) | |
Age (Mean ± SD) | 60.2 ± 13.7 | 58.4 ± 14.6 | 0.506 | |
Sex | Female | 9.6% (n = 25) | 90.4% (n = 236) | 0.347 |
Male | 6.4% (n = 6) | 93.6% (n = 88) | ||
Diagnosis | RA | 12.0% (n = 16) | 88.0% (n = 117) | 0.604 |
PsA | 6.3% (n = 5) | 93.8% (n = 75) | ||
SLE | 4.9% (n = 2) | 95.1% (n = 40) | ||
AS | 6.9% (n = 2) | 93.1% (n = 27) | ||
Vasculitis | 10.8% (n = 4) | 89.2% (n = 33) | ||
SSCL | 0.0% (n = 0) | 100% (n = 17) | ||
Myositis | 13.3% (n = 2) | 86.7% (n = 13) | ||
SS | 0.0% (n = 0) | 100% (n = 1) | ||
IgG4-RD | 0.0% (n = 0) | 100% (n = 1) | ||
Vaccine immune response (seroconversion) | Yes | 9.3% (n = 26 of 279) | 90.7% (n = 253 of 279) | >0.99 |
DMARDs | cDMARDs | 11.5% (n = 15) | 88.5% (n = 116) | 0.165 |
bDMARDs | 7.5% (n = 15) | 92.5% (n = 185) | 0.350 | |
tsDMARDs | 0.0% (n = 0) | 100% (n = 27) | 0.150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gazitt, T.; Eviatar, T.; Shear, J.; Meidan, R.; Furer, V.; Feld, J.; Haddad, A.; Elias, M.; Hijazi, N.; Stein, N.; et al. Development of Autoantibodies Following BNT162b2 mRNA COVID-19 Vaccination and Their Association with Disease Flares in Adult Patients with Autoimmune Inflammatory Rheumatic Diseases (AIIRD) and the General Population: Results of 1-Year Prospective Follow-Up Study. Vaccines 2023, 11, 476. https://doi.org/10.3390/vaccines11020476
Gazitt T, Eviatar T, Shear J, Meidan R, Furer V, Feld J, Haddad A, Elias M, Hijazi N, Stein N, et al. Development of Autoantibodies Following BNT162b2 mRNA COVID-19 Vaccination and Their Association with Disease Flares in Adult Patients with Autoimmune Inflammatory Rheumatic Diseases (AIIRD) and the General Population: Results of 1-Year Prospective Follow-Up Study. Vaccines. 2023; 11(2):476. https://doi.org/10.3390/vaccines11020476
Chicago/Turabian StyleGazitt, Tal, Tali Eviatar, Jacqueline Shear, Roni Meidan, Victoria Furer, Joy Feld, Amir Haddad, Muna Elias, Nizar Hijazi, Nili Stein, and et al. 2023. "Development of Autoantibodies Following BNT162b2 mRNA COVID-19 Vaccination and Their Association with Disease Flares in Adult Patients with Autoimmune Inflammatory Rheumatic Diseases (AIIRD) and the General Population: Results of 1-Year Prospective Follow-Up Study" Vaccines 11, no. 2: 476. https://doi.org/10.3390/vaccines11020476
APA StyleGazitt, T., Eviatar, T., Shear, J., Meidan, R., Furer, V., Feld, J., Haddad, A., Elias, M., Hijazi, N., Stein, N., Shaked Mishan, P., Zetser, A., Peleg, H., Elkayam, O., & Zisman, D. (2023). Development of Autoantibodies Following BNT162b2 mRNA COVID-19 Vaccination and Their Association with Disease Flares in Adult Patients with Autoimmune Inflammatory Rheumatic Diseases (AIIRD) and the General Population: Results of 1-Year Prospective Follow-Up Study. Vaccines, 11(2), 476. https://doi.org/10.3390/vaccines11020476