Assessing the Efficacy of VLP-Based Vaccine against Epstein-Barr Virus Using a Rabbit Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Design
2.3. Generation, Purification, and Quantification of VLPs
2.4. Immunization of Rabbits with VLPs
2.5. Preparation of EBV Inoculum
2.6. Estimation of EBV Copy Number and Inoculation
2.7. Detection of EBV Using EBER In Situ Hybridization
2.8. Detection of EBV Protein/Gene Expression Using Immunohistochemistry and qPCR
2.9. Detection of Anti-EBV Antibodies in Plasma
2.10. Statistical Analysis
3. Results
3.1. Clinical Features
3.2. Animals Vaccinated with Two Doses of VLP Triggered Higher Antibody Response to Total EBV Antigens Compared to Animals Receiving One Dose of VLP
3.3. VLP Vaccinated Animals Triggered Both IgM and IgG to EBV-Specific Proteins
3.4. Determination of EBV Viral Load and Gene Expression
3.5. Vaccinated Rabbits Were Not Protected against EBV Infection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, G.; Miyashita, E.M.; Yang, B.; Babcock, G.J.; Thorley-Lawson, D.A. Is EBV Persistence In Vivo a Model for B Cell Homeostasis? Immunity 1996, 5, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Babcock, G.J.; Decker, L.L.; Volk, M.; Thorley-Lawson, D.A. EBV Persistence in Memory B Cells In Vivo. Immunity 1998, 9, 395–404. [Google Scholar] [CrossRef] [Green Version]
- Hadinoto, V.; Shapiro, M.; Greenough, T.C.; Sullivan, J.L.; Luzuriaga, K.; Thorley-Lawson, D.A. On the Dynamics of Acute EBV Infection and the Pathogenesis of Infectious Mononucleosis. Blood 2008, 111, 1420–1427. [Google Scholar] [CrossRef]
- Balfour, H.H.; Dunmire, S.K.; Hogquist, K.A. Infectious Mononucleosis. Clin. Transl. Immunol. 2015, 4, e33. [Google Scholar] [CrossRef] [PubMed]
- Serafini, B.; Rosicarelli, B.; Franciotta, D.; Magliozzi, R.; Reynolds, R.; Cinque, P.; Andreoni, L.; Trivedi, P.; Salvetti, M.; Faggioni, A.; et al. Dysregulated Epstein-Barr Virus Infection in the Multiple Sclerosis Brain. J. Exp. Med. 2007, 204, 2899–2912. [Google Scholar] [CrossRef] [Green Version]
- Hassani, A.; Corboy, J.R.; Al-Salam, S.; Khan, G. Epstein-Barr Virus Is Present in the Brain of Most Cases of Multiple Sclerosis and May Engage More than Just B Cells. PLoS ONE 2018, 13, e0192109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjornevik, K.; Cortese, M.; Healy, B.C.; Kuhle, J.; Mina, M.J.; Leng, Y.; Elledge, S.J.; Niebuhr, D.W.; Scher, A.I.; Munger, K.L.; et al. Longitudinal Analysis Reveals High Prevalence of Epstein-Barr Virus Associated with Multiple Sclerosis. Science 2022, 375, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Lanz, T.V.; Brewer, R.C.; Ho, P.P.; Moon, J.-S.; Jude, K.M.; Fernandez, D.; Fernandes, R.A.; Gomez, A.M.; Nadj, G.-S.; Bartley, C.M.; et al. Clonally Expanded B Cells in Multiple Sclerosis Bind EBV EBNA1 and GlialCAM. Nature 2022, 603, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.C.; Akinwumi, M.S.; Cervera, C.; Mabilangan, C.; Ghosh, S.; Lai, R.; Iafolla, M.; Doucette, K.; Preiksaitis, J.K. The Changing Epidemiology of Posttransplant Lymphoproliferative Disorder in Adult Solid Organ Transplant Recipients over 30 Years: A Single-Center Experience. Transplantation 2018, 102, 1553. [Google Scholar] [CrossRef] [PubMed]
- Dierickx, D.; Habermann, T.M. Post-Transplantation Lymphoproliferative Disorders in Adults. N. Engl. J. Med. 2018, 378, 549–562. [Google Scholar] [CrossRef] [PubMed]
- Münz, C. Latency and Lytic Replication in Epstein–Barr Virus-Associated Oncogenesis. Nat. Rev. Microbiol. 2019, 17, 691–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayee, R.; Ofori, M.E.O.; Wright, E.; Quaye, O. Epstein Barr Virus Associated Lymphomas and Epithelia Cancers in Humans. J. Cancer 2020, 11, 1737–1750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, G.; Fitzmaurice, C.; Naghavi, M.; Ahmed, L.A. Global and Regional Incidence, Mortality and Disability-Adjusted Life-Years for Epstein-Barr Virus-Attributable Malignancies, 1990–2017. BMJ Open 2020, 10, e037505. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.; Meehan, M.T.; Burrows, S.R.; Doolan, D.L.; Miles, J.J. Estimating the Global Burden of Epstein–Barr Virus-Related Cancers. J. Cancer Res. Clin. Oncol. 2021, 148, 31–46. [Google Scholar] [CrossRef]
- Pender, M.P.; Csurhes, P.A.; Smith, C.; Douglas, N.L.; Neller, M.A.; Matthews, K.K.; Beagley, L.; Rehan, S.; Crooks, P.; Hopkins, T.J.; et al. Epstein-Barr Virus-Specific T Cell Therapy for Progressive Multiple Sclerosis. JCI Insight 2018, 3, e124714. [Google Scholar] [CrossRef]
- Rühl, J.; Leung, C.S.; Münz, C. Vaccination against the Epstein-Barr Virus. Cell. Mol. Life Sci. 2020, 77, 4315–4324. [Google Scholar] [CrossRef]
- Balfour, H.H.; Schmeling, D.O.; Grimm-Geris, J.M. The Promise of a Prophylactic Epstein–Barr Virus Vaccine. Pediatr. Res. 2020, 87, 345–352. [Google Scholar] [CrossRef]
- Gu, S.Y.; Huang, T.M.; Ruan, L.; Miao, Y.H.; Lu, H.; Chu, C.M.; Motz, M.; Wolf, H. First EBV Vaccine Trial in Humans Using Recombinant Vaccinia Virus Expressing the Major Membrane Antigen. Dev. Biol. Stand. 1995, 84, 171–177. [Google Scholar]
- Moutschen, M.; Léonard, P.; Sokal, E.M.; Smets, F.; Haumont, M.; Mazzu, P.; Bollen, A.; Denamur, F.; Peeters, P.; Dubin, G.; et al. Phase I/II Studies to Evaluate Safety and Immunogenicity of a Recombinant Gp350 Epstein–Barr Virus Vaccine in Healthy Adults. Vaccine 2007, 25, 4697–4705. [Google Scholar] [CrossRef]
- Elliott, S.L.; Suhrbier, A.; Miles, J.J.; Lawrence, G.; Pye, S.J.; Le, T.T.; Rosenstengel, A.; Nguyen, T.; Allworth, A.; Burrows, S.R.; et al. Phase I Trial of a CD8+ T-Cell Peptide Epitope-Based Vaccine for Infectious Mononucleosis. J. Virol. 2008, 82, 1448–1457. [Google Scholar] [CrossRef] [Green Version]
- Rees, L.; Tizard, E.J.; Morgan, A.J.; Cubitt, W.D.; Finerty, S.; Oyewole-Eletu, T.A.; Owen, K.; Royed, C.; Stevens, S.J.; Shroff, R.C.; et al. A Phase I Trial of Epstein-Barr Virus Gp350 Vaccine for Children with Chronic Kidney Disease Awaiting Transplantation. Transplantation 2009, 88, 1025–1029. [Google Scholar] [CrossRef]
- Cui, X.; Cao, Z.; Chen, Q.; Arjunaraja, S.; Snow, A.L.; Snapper, C.M. Rabbits Immunized with Epstein-Barr Virus GH/GL or GB Recombinant Proteins Elicit Higher Serum Virus Neutralizing Activity than Gp350. Vaccine 2016, 34, 4050–4055. [Google Scholar] [CrossRef] [PubMed]
- Paavonen, J.; Jenkins, D.; Bosch, F.X.; Naud, P.; Salmerón, J.; Wheeler, C.M.; Chow, S.-N.; Apter, D.L.; Kitchener, H.C.; Castellsague, X.; et al. Efficacy of a Prophylactic Adjuvanted Bivalent L1 Virus-like-Particle Vaccine against Infection with Human Papillomavirus Types 16 and 18 in Young Women: An Interim Analysis of a Phase III Double-Blind, Randomised Controlled Trial. Lancet 2007, 369, 2161–2170. [Google Scholar] [CrossRef]
- Kushnir, N.; Streatfield, S.J.; Yusibov, V. Virus-like Particles as a Highly Efficient Vaccine Platform: Diversity of Targets and Production Systems and Advances in Clinical Development. Vaccine 2012, 31, 58–83. [Google Scholar] [CrossRef]
- Ruiss, R.; Jochum, S.; Wanner, G.; Reisbach, G.; Hammerschmidt, W.; Zeidler, R. A Virus-like Particle-Based Epstein-Barr Virus Vaccine. J. Virol. 2011, 85, 13105–13113. [Google Scholar] [CrossRef] [Green Version]
- Dutta, S.; Sengupta, P. Rabbits and Men: Relating Their Ages. J. Basic Clin. Physiol. Pharmacol. 2018, 29, 427–435. [Google Scholar] [CrossRef]
- Khan, G.; Ahmed, W.; Philip, P.S.; Ali, M.H.; Adem, A. Healthy Rabbits Are Susceptible to Epstein-Barr Virus Infection and Infected Cells Proliferate in Immunosuppressed Animals. Virol. J. 2015, 12, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delecluse, H.-J.; Pich, D.; Hilsendegen, T.; Baum, C.; Hammerschmidt, W. A First-Generation Packaging Cell Line for Epstein–Barr Virus-Derived Vectors. Proc. Natl. Acad. Sci. USA 1999, 96, 5188–5193. [Google Scholar] [CrossRef] [Green Version]
- Albanese, M.; Chen, Y.-F.A.; Hüls, C.; Gärtner, K.; Tagawa, T.; Mejias-Perez, E.; Keppler, O.T.; Göbel, C.; Zeidler, R.; Shein, M.; et al. MicroRNAs Are Minor Constituents of Extracellular Vesicles That Are Rarely Delivered to Target Cells. PLoS Genet. 2021, 17, e1009951. [Google Scholar] [CrossRef] [PubMed]
- Johannsen, E.; Luftig, M.; Chase, M.R.; Weicksel, S.; Cahir-McFarland, E.; Illanes, D.; Sarracino, D.; Kieff, E. Proteins of Purified Epstein-Barr Virus. Proc. Natl. Acad. Sci. USA 2004, 101, 16286–16291. [Google Scholar] [CrossRef] [Green Version]
- Gabaev, I.; Elbasani, E.; Ameres, S.; Steinbrück, L.; Stanton, R.; Döring, M.; Lenac Rovis, T.; Kalinke, U.; Jonjic, S.; Moosmann, A.; et al. Expression of the Human Cytomegalovirus UL11 Glycoprotein in Viral Infection and Evaluation of Its Effect on Virus-Specific CD8 T Cells. J. Virol. 2014, 88, 14326–14339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hettich, E.; Janz, A.; Zeidler, R.; Pich, D.; Hellebrand, E.; Weissflog, B.; Moosmann, A.; Hammerschmidt, W. Genetic Design of an Optimized Packaging Cell Line for Gene Vectors Transducing Human B Cells. Gene Ther. 2006, 13, 844–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, J.L.; Fan, H.; Glaser, S.L.; Schichman, S.A.; Raab-Traub, N.; Gulley, M.L. Epstein-Barr Virus Quantitation by Real-Time PCR Targeting Multiple Gene Segments. J. Mol. Diagn. 2004, 6, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Khan, G.; Coates, P.J.; Kangro, H.O.; Slavin, G. Epstein Barr Virus (EBV) Encoded Small RNAs: Targets for Detection by In Situ Hybridisation with Oligonucleotide Probes. J. Clin. Pathol. 1992, 45, 616–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, G. Screening for Epstein-Barr Virus in Hodgkin’s Lymphoma. Methods Mol. Biol. 2009, 511, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Epstein, M.A.; Achong, B.G.; Barr, Y.M. Virus Particles in Cultured Lymphoblasts from Burkitt’s Lymphoma. Lancet 1964, 1, 702–703. [Google Scholar] [CrossRef] [PubMed]
- Epstein, M.A.; Achong, B.G. The EB Virus. Annu. Rev. Microbiol. 1973, 27, 413–436. [Google Scholar] [CrossRef]
- Young, L.S.; Yap, L.F.; Murray, P.G. Epstein-Barr Virus: More than 50 Years Old and Still Providing Surprises. Nat. Rev. Cancer 2017, 16, 789–802. [Google Scholar] [CrossRef]
- Cohen, J.I.; Fauci, A.S.; Varmus, H.; Nabel, G.J. Epstein-Barr Virus: An Important Vaccine Target for Cancer Prevention. Sci. Transl. Med. 2011, 3, 107fs7. [Google Scholar] [CrossRef] [Green Version]
- Pearson, G.; Dewey, F.; Klein, G.; Henle, G.; Henle, W. Relation between Neutralization of Epstein-Barr Virus and Antibodies to Cell-Membrane Antigens Induced by the Virus. JNCI J. Natl. Cancer Inst. 1970, 45, 989–995. [Google Scholar] [CrossRef]
- Jackman, W.T.; Mann, K.A.; Hoffmann, H.J.; Spaete, R.R. Expression of Epstein–Barr Virus Gp350 as a Single Chain Glycoprotein for an EBV Subunit Vaccine. Vaccine 1999, 17, 660–668. [Google Scholar] [CrossRef] [PubMed]
- Burrows, S.R.; Sculley, T.B.; Misko, I.S.; Schmidt, C.; Moss, D.J. An Epstein-Barr Virus-Specific Cytotoxic T Cell Epitope in EBV Nuclear Antigen 3 (EBNA 3). J. Exp. Med. 1990, 171, 345–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khanna, R.; Burrows, S.R.; Kurilla, M.G.; Jacob, C.A.; Misko, I.S.; Sculley, T.B.; Kieff, E.; Moss, D.J. Localization of Epstein-Barr Virus Cytotoxic T Cell Epitopes Using Recombinant Vaccinia: Implications for Vaccine Development. J. Exp. Med. 1992, 176, 169–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, X.; Cao, Z.; Sen, G.; Chattopadhyay, G.; Fuller, D.H.; Fuller, J.T.; Snapper, D.M.; Snow, A.; Mond, J.J.; Snapper, C.M. A Novel Tetrameric Gp3501-470 as a Potential Epstein-Barr Virus Vaccine. Vaccine 2013, 31, 3039–3045. [Google Scholar] [CrossRef] [Green Version]
- Hutt-Fletcher, L.M. Epstein-Barr Virus Entry. J. Virol. 2007, 81, 7825–7832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hui, E.P.; Taylor, G.S.; Jia, H.; Ma, B.B.; Chan, S.L.; Ho, R.; Wong, W.; Wilson, S.; Johnson, B.F.; Edwards, C.; et al. Phase 1 Trial of Recombinant Modified Vaccinia Ankara (MVA) Encoding Epstein-Barr Viral Tumor Antigens in Nasopharyngeal Carcinoma Patients. Cancer Res. 2013, 73, 1676–1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanekiyo, M.; Bu, W.; Joyce, M.G.; Meng, G.; Whittle, J.R.R.; Baxa, U.; Yamamoto, T.; Narpala, S.; Todd, J.-P.; Rao, S.S.; et al. Rational Design of an Epstein-Barr Virus Vaccine Targeting the Receptor-Binding Site. Cell 2015, 162, 1090–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snijder, J.; Ortego, M.S.; Weidle, C.; Stuart, A.B.; Gray, M.D.; McElrath, M.J.; Pancera, M.; Veesler, D.; McGuire, A.T. An Antibody Targeting the Fusion Machinery Neutralizes Dual-Tropic Infection and Defines a Site of Vulnerability on Epstein-Barr Virus. Immunity 2018, 48, 799–811. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.-Y.; Shan, S.; Yu, J.; Peng, S.-Y.; Sun, C.; Zuo, Y.; Zhong, L.-Y.; Yan, S.-M.; Zhang, X.; Yang, Z.; et al. A Potent and Protective Human Neutralizing Antibody Targeting a Novel Vulnerable Site of Epstein-Barr Virus. Nat. Commun. 2021, 12, 6624. [Google Scholar] [CrossRef]
- Escalante, G.M.; Foley, J.; Mutsvunguma, L.Z.; Rodriguez, E.; Mulama, D.H.; Muniraju, M.; Ye, P.; Barasa, A.K.; Ogembo, J.G. A Pentavalent Epstein-Barr Virus-Like Particle Vaccine Elicits High Titers of Neutralizing Antibodies against Epstein-Barr Virus Infection in Immunized Rabbits. Vaccines 2020, 8, 169. [Google Scholar] [CrossRef] [Green Version]
- Pavlova, S.; Feederle, R.; Gärtner, K.; Fuchs, W.; Granzow, H.; Delecluse, H.-J. An Epstein-Barr Virus Mutant Produces Immunogenic Defective Particles Devoid of Viral DNA. J. Virol. 2013, 87, 2011–2022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Zyl, D.G.; Tsai, M.-H.; Shumilov, A.; Schneidt, V.; Poirey, R.; Schlehe, B.; Fluhr, H.; Mautner, J.; Delecluse, H.-J. Immunogenic Particles with a Broad Antigenic Spectrum Stimulate Cytolytic T Cells and Offer Increased Protection against EBV Infection Ex Vivo and in Mice. PLoS Pathog. 2018, 14, e1007464. [Google Scholar] [CrossRef]
- Ogembo, J.G.; Muraswki, M.R.; McGinnes, L.W.; Parcharidou, A.; Sutiwisesak, R.; Tison, T.; Avendano, J.; Agnani, D.; Finberg, R.W.; Morrison, T.G.; et al. A Chimeric EBV Gp350/220-Based VLP Replicates the Virion B-Cell Attachment Mechanism and Elicits Long-Lasting Neutralizing Antibodies in Mice. J. Transl. Med. 2015, 13, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Zyl, D.G.; Mautner, J.; Delecluse, H.-J. Progress in EBV Vaccines. Front. Oncol. 2019, 9, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez, E.M.; Foley, J.; Tison, T.; Silva, R.; Ogembo, J.G. Novel Epstein-Barr Virus-like Particles Incorporating GH/GL-EBNA1 or GB-LMP2 Induce High Neutralizing Antibody Titers and EBV-Specific T-Cell Responses in Immunized Mice. Oncotarget 2017, 8, 19255–19273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, C.-J.; Bu, W.; Nguyen, L.A.; Batchelor, J.D.; Kim, J.; Pittaluga, S.; Fuller, J.R.; Nguyen, H.; Chou, T.-H.; Cohen, J.I.; et al. A Bivalent Epstein-Barr Virus Vaccine Induces Neutralizing Antibodies That Block Infection and Confer Immunity in Humanized Mice. Sci. Transl. Med. 2022, 14, eabf3685. [Google Scholar] [CrossRef]
- Kong, X.-W.; Zhang, X.; Bu, G.-L.; Xu, H.-Q.; Kang, Y.-F.; Sun, C.; Zhu, Q.-Y.; Ma, R.-B.; Liu, Z.; Zeng, Y.-X.; et al. Vesicular Stomatitis Virus-Based Epstein-Barr Virus Vaccines Elicit Strong Protective Immune Responses. J. Virol. 2022, 96, e00336-22. [Google Scholar] [CrossRef]
- Kanai, K.; Takashima, K.; Okuno, K.; Kato, K.; Sano, H.; Kuwamoto, S.; Higaki, H.; Nagata, K.; Sugihara, H.; Kato, M.; et al. Lifelong Persistent EBV Infection of Rabbits with EBER1-Positive Lymphocyte Infiltration and Mild Sublethal Hemophagocytosis. Virus Res. 2010, 153, 172–178. [Google Scholar] [CrossRef]
- Okuno, K.; Takashima, K.; Kanai, K.; Ohashi, M.; Hyuga, R.; Sugihara, H.; Kuwamoto, S.; Kato, M.; Sano, H.; Sairenji, T.; et al. Epstein-Barr Virus Can Infect Rabbits by the Intranasal or Peroral Route: An Animal Model for Natural Primary EBV Infection in Humans. J. Med. Virol. 2010, 82, 977–986. [Google Scholar] [CrossRef] [Green Version]
- Osborne, A.J.; Atkins, H.M.; Balogh, K.K.; Brendle, S.A.; Shearer, D.A.; Hu, J.; Sample, C.E.; Christensen, N.D. Antibody-Mediated Immune Subset Depletion Modulates the Immune Response in a Rabbit (Oryctolagus Cuniculus) Model of Epstein-Barr Virus Infection. Comp. Med. 2020, 70, 312–322. [Google Scholar] [CrossRef]
- Takashima, K.; Ohashi, M.; Kitamura, Y.; Ando, K.; Nagashima, K.; Sugihara, H.; Okuno, K.; Sairenji, T.; Hayashi, K. A New Animal Model for Primary and Persistent Epstein-Barr Virus Infection: Human EBV-Infected Rabbit Characteristics Determined Using Sequential Imaging and Pathological Analysis. J. Med. Virol. 2008, 80, 455–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jasper, P.J.; Zhai, S.-K.; Kalis, S.L.; Kingzette, M.; Knight, K.L. B Lymphocyte Development in Rabbit: Progenitor B Cells and Waning of B Lymphopoiesis. J. Immunol. 2003, 171, 6372–6380. [Google Scholar] [CrossRef] [Green Version]
- Crane, M.A.; Kingzette, M.; Knight, K.L. Evidence for Limited B-Lymphopoiesis in Adult Rabbits. J. Exp. Med. 1996, 183, 2119–2121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cimica, V.; Galarza, J.M. Adjuvant Formulations for Virus-like Particle (VLP) Based Vaccines. Clin. Immunol. 2017, 183, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Sano, H.; Nagata, K.; Kato, K.; Kanai, K.; Yamamoto, K.; Okuno, K.; Kuwamoto, S.; Higaki-Mori, H.; Sugihara, H.; Kato, M.; et al. EBNA-2 -Deleted Epstein-Barr Virus from P3HR-1 Can Infect Rabbits with Lower Efficiency than Prototype Epstein-Barr Virus from B95-8. Intervirology 2013, 56, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Priyan, V. Moderna Doses First Subject in Phase I EBV Vaccine Trial. Clinical Trials Arena. 6 January 2022. Available online: https://www.clinicaltrialsarena.com/news/moderna-ebv-vaccine-trial/ (accessed on 2 February 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reguraman, N.; Hassani, A.; Philip, P.S.; Pich, D.; Hammerschmidt, W.; Khan, G. Assessing the Efficacy of VLP-Based Vaccine against Epstein-Barr Virus Using a Rabbit Model. Vaccines 2023, 11, 540. https://doi.org/10.3390/vaccines11030540
Reguraman N, Hassani A, Philip PS, Pich D, Hammerschmidt W, Khan G. Assessing the Efficacy of VLP-Based Vaccine against Epstein-Barr Virus Using a Rabbit Model. Vaccines. 2023; 11(3):540. https://doi.org/10.3390/vaccines11030540
Chicago/Turabian StyleReguraman, Narendran, Asma Hassani, Pretty S. Philip, Dagmar Pich, Wolfgang Hammerschmidt, and Gulfaraz Khan. 2023. "Assessing the Efficacy of VLP-Based Vaccine against Epstein-Barr Virus Using a Rabbit Model" Vaccines 11, no. 3: 540. https://doi.org/10.3390/vaccines11030540
APA StyleReguraman, N., Hassani, A., Philip, P. S., Pich, D., Hammerschmidt, W., & Khan, G. (2023). Assessing the Efficacy of VLP-Based Vaccine against Epstein-Barr Virus Using a Rabbit Model. Vaccines, 11(3), 540. https://doi.org/10.3390/vaccines11030540