Post-COVID-19 Fungal Infection in the Aged Population
Abstract
:1. Introduction
2. Development of Fungal Infections during COVID-19
2.1. Root Cause of Coinfection
2.2. Diabetes—The Main Inducer of Opportunistic Fungal Infection
3. Fungal Infections in COVID-19 Patients
3.1. Aspergillosis
3.2. Invasive Candidiasis
3.3. Mucormycosis
3.3.1. Development of Mucormycosis in COVID-19:
3.3.2. Types of Mucormycosis
3.4. Miscellaneous Fungal Infections
4. Impact of Fungal Infections on Recovery
5. Prevention, Diagnosis, and Treatment
5.1. Prevention
5.2. Diagnosis
5.3. Treatment
- Patients receiving protracted treatment for chronic pulmonary aspergillosis showed similar outcomes in a different retrospective study. When compared to patients who received voriconazole, patients who received isavuconazole experienced markedly fewer side effects [111].
- In a recent cohort study, Shoham et al. found that 32% of 32 patients with hematological malignancies and respiratory infections responded to LAmB as the initial treatment for mucositis [110].
- The two most recent preclinical studies have looked at the effectiveness of the posaconazole combination for murine mucormycosis. According to that study, posaconazole plus LAmB did not extend survival in mucormycosis-infected neutropenic or DKA mice over LAmB monotherapy [110].
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COVID-19 | Coronavirus Disease 2019 |
SARS-CoV-2 | Severe Acute Respiratory Syndrome- Coronavirus 2 |
HIV | Human immunodeficiency virus |
RT‒PCR | Real-Time- Polymerase Chain Reaction |
CT | Computed Tomography |
CRISPR‒Cas 9 | clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9 (CRISPR‒Cas 9) |
MALDI-TOF | matrix-assisted laser desorption ionization-time of flight |
FISH | Fluorescence In Situ Hybridization |
LAmB | Liposomal amphotericin B |
FDA | Food and Drug Administrations |
EMA | European Medicines Agency |
TRB | Terbinafine |
AMB | Amphotericin B deoxycholate |
QIDP | Qualified Infectious Disease Product |
VVC | Vulvovaginal candidiasis |
CAM | COVID-19-associated mycosis |
CAPA | COVID-19-associated pulmonary aspergillosis |
CAC | COVID-19-associated Candida |
References
- Seyedjavadi, S.S.; Bagheri, P.; Nasiri, M.J.; Razzaghi-Abyaneh, M.; Goudarzi, M. Fungal Infection in Co-Infected Patients With COVID-19: An Overview of Case Reports/Case Series and Systematic Review. Front. Microbiol. 2022, 13, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sanyaolu, A.; Okorie, C.; Marinkovic, A.; Patidar, R.; Younis, K.; Desai, P.; Hosein, Z.; Padda, I.; Mangat, J.; Altaf, M. Comorbidity and Its Impact on Patients with COVID-19. SN Compr. Clin. Med. 2020, 2, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, K.; Agolli, A.; Patel, M.H.; Garimella, R.; Devi, M.; Garcia, E.; Amin, H.; Domingue, C.; Del Castillo, R.G.; Sanchez-Gonzalez, M. High Mortality Co-Infections of COVID-19 Patients: Mucormycosis and Other Fungal Infections. Discoveries 2021, 9, e126. [Google Scholar] [CrossRef] [PubMed]
- Coskun, A.S.; Durmaz, S.O. Fungal Infections in COVID-19 Intensive Care Patients. Pol. J. Microbiol. 2021, 70, 395. [Google Scholar] [CrossRef] [PubMed]
- Hughes, S.; Troise, O.; Donaldson, H.; Mughal, N.; Moore, L.S.P. Bacterial and Fungal Coinfection among Hospitalized Patients with COVID-19: A Retrospective Cohort Study in a UK Secondary-Care Setting. Clin. Microbiol. Infect. 2020, 26, 1395. [Google Scholar] [CrossRef] [PubMed]
- Senok, A.; Alfaresi, M.; Khansaheb, H.; Nassar, R.; Hachim, M.; Al Suwaidi, H.; Almansoori, M.; Alqaydi, F.; Afaneh, Z.; Mohamed, A.; et al. Coinfections in Patients Hospitalized with COVID-19: A Descriptive Study from the United Arab Emirates. Infect. Drug Resist. 2021, 14, 2289–2296. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Vidal, C.; Sanjuan, G.; Moreno-García, E.; Puerta-Alcalde, P.; Garcia-Pouton, N.; Chumbita, M.; Fernandez-Pittol, M.; Pitart, C.; Inciarte, A.; Bodro, M.; et al. Incidence of Co-Infections and Superinfections in Hospitalized Patients with COVID-19: A Retrospective Cohort Study. Clin. Microbiol. Infect. 2021, 27, 83. [Google Scholar] [CrossRef]
- Chavda, V.P.; Apostolopoulos, V. Mucormycosis—An Opportunistic Infection in the Aged Immunocompromised Individual: A Reason for Concern in COVID-19. Maturitas 2021, 154, 58. [Google Scholar] [CrossRef]
- Shishido, A.A.; Mathew, M.; Baddley, J.W. Overview of COVID-19-Associated Invasive Fungal Infection. Curr Fungal Infect Rep 2022, 16, 87–97. [Google Scholar] [CrossRef]
- Kundu, R.; Singla, N. COVID-19 and Plethora of Fungal Infections. Curr. Fungal Infect. Rep. 2022, 16, 47–54. [Google Scholar] [CrossRef]
- Arastehfar, A.; Carvalho, A.; Hong Nguyen, M.; Hedayati, M.T.; Netea, M.G.; Perlin, D.S.; Hoenigl, M. COVID-19-Associated Candidiasis (CAC): An Underestimated Complication in the Absence of Immunological Predispositions? J. Fungi 2020, 6, 1–13. [Google Scholar] [CrossRef]
- Amin, A.; Vartanian, A.; Poladian, N.; Voloshko, A.; Yegiazaryan, A.; Al-Kassir, A.L.; Venketaraman, V. Root Causes of Fungal Coinfections in COVID-19 Infected Patients. Infect. Dis. Rep. 2021, 13, 1018–1035. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Singh, R.; Joshi, S.R.; Misra, A. Mucormycosis in COVID-19: A Systematic Review of Cases Reported Worldwide and in India. Diabetes Metab. Syndr. 2021, 15, 102146. [Google Scholar] [CrossRef] [PubMed]
- Chiurlo, M.; Mastrangelo, A.; Ripa, M.; Scarpellini, P. Invasive Fungal Infections in Patients with COVID-19: A Review on Pathogenesis, Epidemiology, Clinical Features, Treatment, and Outcomes. New Microbiol. 2021, 44, 71–83. [Google Scholar] [PubMed]
- Mahalaxmi, I.; Jayaramayya, K.; Venkatesan, D.; Subramaniam, M.D.; Renu, K.; Vijayakumar, P.; Narayanasamy, A.; Gopalakrishnan, A.V.; Kumar, N.S.; Sivaprakash, P.; et al. Mucormycosis: An Opportunistic Pathogen during COVID-19. Environ. Res. 2021, 201, 111643. [Google Scholar] [CrossRef]
- Hernández, J.L.; Buckley, C.J. Mucormycosis; StatPearls Publications: Treasure Island, FL, USA, 2022. [Google Scholar]
- Zmeili, O.S.; Soubani, A.O. Pulmonary Aspergillosis: A Clinical Update. QJM: Int. J. Med. 2007, 100, 317–334. [Google Scholar] [CrossRef] [PubMed]
- Latgé, J.P.; Chamilos, G. Aspergillus Fumigatus and Aspergillosis in 2019. Clin. Microbiol. Rev. 2020, 33. [Google Scholar] [CrossRef] [PubMed]
- Dagenais, T.R.T.; Keller, N.P. Pathogenesis of Aspergillus Fumigatus in Invasive Aspergillosis. Clin. Microbiol. Rev. 2009, 22, 447–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panackal, A.A.; Bennett, J.E.; Williamson, P.R. Treatment Options in Invasive Aspergillosis. Curr. Treat. Options Infect. Dis. 2014, 6, 309. [Google Scholar] [CrossRef]
- Reichenberger, F.; Habicht, J.M.; Gratwohl, A.; Tamm, M. Diagnosis and Treatment of Invasive Pulmonary Aspergillosis in Neutropenic Patients. Eur. Respir. J. 2002, 19, 743–755. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Jiménez, S.; Rosado-de-Christenson, M.L.; Carter, B.W. Invasive Aspergillosis. Spec. Imaging HRCT Lung 2017, 2, 160–163. [Google Scholar] [CrossRef]
- Barantsevich, N.; Barantsevich, E. Diagnosis and Treatment of Invasive Candidiasis. Antibiotics 2022, 11, 718. [Google Scholar] [CrossRef] [PubMed]
- Zarrin, M.; Mahmoudabadi, A.Z. Invasive Candidiasis; A Review Article. Jundishapur J. Microbiol. 2009, 2, 1–6. [Google Scholar]
- Calandra, T.; Roberts, J.A.; Antonelli, M.; Bassetti, M.; Vincent, J.L. Diagnosis and Management of Invasive Candidiasis in the ICU: An Updated Approach to an Old Enemy. Crit. Care 2016, 20, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Corzo-Leon, D.E.; Peacock, M.; Rodriguez-Zulueta, P.; Salazar-Tamayo, G.J.; MacCallum, D.M. General Hospital Outbreak of Invasive Candidiasis Due to Azole-Resistant Candida Parapsilosis Associated with an Erg11 Y132F Mutation. Med. Mycol. 2021, 59, 664. [Google Scholar] [CrossRef]
- Van De Veerdonk, F.L.; Kullberg, B.J.; Netea, M.G. Pathogenesis of Invasive Candidiasis. Curr. Opin. Crit. Care 2010, 16, 453–459. [Google Scholar] [CrossRef]
- Pappas, P.G.; Lionakis, M.S.; Arendrup, M.C.; Ostrosky-Zeichner, L.; Kullberg, B.J. Invasive Candidiasis. Nat. Rev. Dis. Prim. 2018, 4, 1–20. [Google Scholar] [CrossRef]
- Singh, D.K.; Tóth, R.; Gácser, A. Mechanisms of Pathogenic Candida Species to Evade the Host Complement Attack. Front. Cell. Infect. Microbiol. 2020, 10, 94. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, N.; Mahmood, M.S.; Ullah, M.A.; Araf, Y.; Rahaman, T.I.; Moin, A.T.; Hosen, M.J. COVID-19-Associated Candidiasis: Possible Patho-Mechanism, Predisposing Factors, and Prevention Strategies. Curr. Microbiol. 2022, 79, 127. [Google Scholar] [CrossRef]
- Dekkers, B.G.J.; Veringa, A.; Marriott, D.J.E.; Boonstra, J.M.; van der Elst, K.C.M.; Doukas, F.F.; McLachlan, A.J.; Alffenaar, J.W.C. Invasive Candidiasis in the Elderly: Considerations for Drug Therapy. Drugs Aging 2018, 35, 781. [Google Scholar] [CrossRef] [Green Version]
- Kayaaslan, B.; Eser, F.; Kaya Kalem, A.; Bilgic, Z.; Asilturk, D.; Hasanoglu, I.; Ayhan, M.; Tezer Tekce, Y.; Erdem, D.; Turan, S.; et al. Characteristics of Candidemia in COVID-19 Patients; Increased Incidence, Earlier Occurrence and Higher Mortality Rates Compared to Non-COVID-19 Patients. Mycoses 2021, 64, 1083. [Google Scholar] [CrossRef] [PubMed]
- Flevari, A.; Theodorakopoulou, M.; Velegraki, A.; Armaganidis, A.; Dimopoulos, G. Treatment of Invasive Candidiasis in the Elderly: A Review. Clin. Interv. Aging 2013, 8, 1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spellberg, B.; Edwards, J.; Ibrahim, A. Novel Perspectives on Mucormycosis: Pathophysiology, Presentation, and Management. Clin. Microbiol. Rev. 2005, 18, 556–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mucormycosis | Fungal Diseases | CDC. Available online: https://www.cdc.gov/fungal/diseases/mucormycosis/index.html (accessed on 10 November 2022).
- Shah, N.N.; Khan, Z.; Ahad, H.; Elderdery, A.Y.; Alomary, M.N.; Atwah, B.; Alhindi, Z.; Alsugoor, M.H.; Elkhalifa, A.M.E.; Nabi, S.; et al. Mucormycosis an Added Burden to Covid-19 Patients: An in-Depth Systematic Review. J. Infect. Public Health 2022, 15, 1299. [Google Scholar] [CrossRef]
- Koehler, P.; Cornely, O.A.; Böttiger, B.W.; Dusse, F.; Eichenauer, D.A.; Fuchs, F.; Hallek, M.; Jung, N.; Klein, F.; Persigehl, T.; et al. COVID-19 Associated Pulmonary Aspergillosis. Mycoses 2020, 63, 528. [Google Scholar] [CrossRef]
- Song, G.; Liang, G.; Liu, W. Fungal Co-Infections Associated with Global COVID-19 Pandemic: A Clinical and Diagnostic Perspective from China. Mycopathologia 2020, 185, 599. [Google Scholar] [CrossRef]
- Ibrahim, A.S.; Spellberg, B.; Walsh, T.J.; Kontoyiannis, D.P. Pathogenesis of Mucormycosis. Clin. Infect. Dis. 2012, 54, S16–S22. [Google Scholar] [CrossRef] [Green Version]
- Farghly Youssif, S.; Abdelrady, M.M.; Thabet, A.A.; Abdelhamed, M.A.; Gad, M.O.A.; Abu-Elfatth, A.M.; Saied, G.M.; Goda, I.; Algammal, A.M.; Batiha, G.E.S.; et al. COVID-19 Associated Mucormycosis in Assiut University Hospitals: A Multidisciplinary Dilemma. Sci. Rep. 2022, 12, 1–11. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention; National Center for Emerging and Zoonotic Infectious Diseases (NCEZID); Division of Foodborne, Waterborne, and Environmental Diseases (DFWED). Fungal Disease- Mucormycosis. Centers for Disease Control and Prevention. 2021. Available online: https://www.cdc.gov/fungal/diseases/mucormycosis/ (accessed on 14 January 2023).
- Castrejón-Pérez, A.D.; Welsh, E.C.; Miranda, I.; Ocampo-Candiani, J.; Welsh, O. Cutaneous Mucormycosis. An. Bras. Dermatol. 2017, 92, 304–311. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Bano, G.; Malik, A. Mucormycosis: A Manifestation in COVID-19 Infection. Indian J. Pharm. Pharmacol. 2021, 8, 189–194. [Google Scholar] [CrossRef]
- Petrikkos, G.; Skiada, A.; Lortholary, O.; Roilides, E.; Walsh, T.J.; Kontoyiannis, D.P. Epidemiology and Clinical Manifestations of Mucormycosis. Clin. Infect. Dis. 2012, 54, S23–S34. [Google Scholar] [CrossRef]
- Verma, G.; Lobo, D.; Walker, R.; Bose, S.; Gupta, K. Disseminated Mucormycosis in Healthy Adults. J. Postgrad. Med. 1995, 41, 40. [Google Scholar]
- Alekseyev, K.; Didenko, L.; Chaudhry, B. Rhinocerebral Mucormycosis and COVID-19 Pneumonia. J. Med. Cases 2021, 12, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Spellberg, B. Gastrointestinal Mucormycosis: An Evolving Disease. Gastroenterol. Hepatol. 2012, 8, 140. [Google Scholar]
- Kaur, J.; Singh, U.; Pradhan, U.; Singh, G.; Agarwal, P.N. A Rare Case of Gastrointestinal Mucormycosis. Cureus 2021, 13. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, R.; Yeldandi, A.; Savas, H.; Parekh, N.D.; Lombardi, P.J.; Hart, E.M. Pulmonary Mucormycosis: Risk Factors, Radiologic Findings, and Pathologic Correlation. Radiographics 2020, 40, 656–666. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, J.F.; Maselli, D.J.; Simpson, T.; Restrepo, M.I. Pulmonary Mucormycosis: What Is the Best Strategy for Therapy? Respir. Care 2013, 58, e60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Macedo, P.M.; Freitas, A.D.; Bártholo, T.P.; Bernardes-Engemann, A.R.; Almeida, M.; de, A. Almeida-Silva, F.; Zancopé-Oliveira, R.M.; Almeida-Paes, R. Acute Pulmonary Histoplasmosis Following COVID-19: Novel Laboratorial Methods Aiding Diagnosis. J. Fungi 2021, 7, 346. [Google Scholar] [CrossRef] [PubMed]
- Gerber, V.; Ruch, Y.; Chamaraux-Tran, T.N.; Oulehri, W.; Schneider, F.; Lindner, V.; Greigert, V.; Denis, J.; Brunet, J.; Danion, F. Detection of Pneumocystis Jirovecii in Patients with Severe COVID-19: Diagnostic and Therapeutic Challenges. J. Fungi 2021, 7, 585. [Google Scholar] [CrossRef]
- Regalla, D.; VanNatta, M.; Alam, M.; Malek, A.E. COVID-19-Associated Cryptococcus Infection (CACI): A Review of Literature and Clinical Pearls. Infection 2022, 50, 1007. [Google Scholar] [CrossRef]
- Ghanem, H.; Sivasubramanian, G. Cryptococcus Neoformans Meningoencephalitis in an Immunocompetent Patient after COVID-19 Infection. Case Rep. Infect. Dis. 2021, 2021, 1–3. [Google Scholar] [CrossRef]
- Perez Del Nogal, G.; Mata, A.; Ernest, P.; Salinas, I. Disseminated Histoplasmosis in an Immunocompetent Patient with COVID-19 Pneumonia. BMJ Case Rep. CP 2022, 15, e247617. [Google Scholar] [CrossRef] [PubMed]
- Khanna, A.; Sinha, A.; Kumar, P.; Pandey, K.K. Acute Localized Pulmonary Histoplasmosis -Another Bug out of COVID’s Pandora Box! Lung India 2022, 39, 91–92. [Google Scholar] [CrossRef]
- Paul, M.; Sasidharan, J.; Taneja, J.; Chatterjee, K.; Abbas, S.Z.; Chowdhury, V.; Das, A. Invasive Mucormycosis and Aspergillosis Coinfection Associated with Post-COVID-19 Pneumonia in a Tertiary Care Hospital. Med. Mycol. J. 2022, 63, 59–64. [Google Scholar] [CrossRef] [PubMed]
- COVID-19-Associated Subacute Invasive Pulmonary Aspergillosis—Swain—2022—Mycoses—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/myc.13369 (accessed on 14 January 2023).
- Salas, B.; McCullagh, I.; Cranfield, K.; Fagan, C.; Geering, A.; Robb, A. COVID-19-Associated Pulmonary Aspergillosis: A Year-Long Retrospective Case Series. COVID 2022, 2, 976–982. [Google Scholar] [CrossRef]
- Vitale, R.G.; Afeltra, J.; Seyedmousavi, S.; Giudicessi, S.L.; Romero, S.M. An Overview of COVID-19 Related to Fungal Infections: What Do We Know after the First Year of Pandemic? Braz. J. Microbiol. 2022, 53, 759–775. [Google Scholar] [CrossRef] [PubMed]
- Hoenigl, M.; Seidel, D.; Sprute, R.; Cunha, C.; Oliverio, M.; Goldman, G.H.; Ibrahim, A.S.; Carvalho, A. COVID-19-Associated Fungal Infections. Nat. Microbiol. 2022, 7, 1127–1140. [Google Scholar] [CrossRef]
- Garre, V. Recent Advances and Future Directions in the Understanding of Mucormycosis. Front. Cell. Infect. Microbiol. 2022, 12, 175. [Google Scholar] [CrossRef]
- Al-Tawfiq, J.A.; Alhumaid, S.; Alshukairi, A.N.; Temsah, M.-H.; Barry, M.; Al Mutair, A.; Rabaan, A.A.; Al-Omari, A.; Tirupathi, R.; AlQahtani, M.; et al. COVID-19 and Mucormycosis Superinfection: The Perfect Storm. Infection 2021, 49, 833–853. [Google Scholar] [CrossRef]
- Madhavan, Y.; Sai, K.V.; Shanmugam, D.K.; Manimaran, A.; Guruviah, K.; Mohanta, Y.K.; Venugopal, D.C.; Mohanta, T.K.; Sharma, N.; Muthupandian, S. Current Treatment Options for COVID-19 Associated Mucormycosis: Present Status and Future Perspectives. J. Clin. Med. 2022, 11, 3620. [Google Scholar] [CrossRef]
- Szydłowicz, M.; Matos, O. Pneumocystis Pneumonia in the COVID-19 Pandemic Era: Similarities and Challenges. Trends Parasitol. 2021, 37, 859–862. [Google Scholar] [CrossRef] [PubMed]
- Moradians, V.; Shateri Amiri, B.; Bahadorizadeh, L.; Gholizadeh Mesgarha, M.; Sadeghi, S. Concurrent COVID-19 and Pneumocystis Carinii Pneumonia in a Patient Subsequently Found to Have Underlying Hairy Cell Leukemia. Radiol. Case Rep. 2022, 17, 3238–3242. [Google Scholar] [CrossRef] [PubMed]
- Jeican, I.I.; Inișca, P.; Gheban, D.; Tăbăran, F.; Aluaș, M.; Trombitas, V.; Cristea, V.; Crivii, C.; Junie, L.M.; Albu, S. COVID-19 and Pneumocystis Jirovecii Pulmonary Coinfection—The First Case Confirmed through Autopsy. Medicina 2021, 57, 302. [Google Scholar] [CrossRef] [PubMed]
- Chastain, D.B.; Henao-Martínez, A.F.; Dykes, A.C.; Steele, G.M.; Stoudenmire, L.L.; Thomas, G.M.; Kung, V.; Franco-Paredes, C. Missed Opportunities to Identify Cryptococcosis in COVID-19 Patients: A Case Report and Literature Review. Ther. Adv. Infect. Dis. 2022, 9. [Google Scholar] [CrossRef] [PubMed]
- Chastain, D.B.; Kung, V.M.; Golpayegany, S.; Jackson, B.T.; Franco-Paredes, C.; Barahona, L.V.; Thompson III, G.R.; Henao-Martínez, A.F. Cryptococcosis among Hospitalised Patients with COVID-19: A Multicentre Research Network Study. Mycoses 2022, 8, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.S. Pulmonary Cryptococcosis after Recovery from COVID-19 in an Immunocompetent Patient: A Rare Case Report. Medicine 2022, 101, e30143. [Google Scholar] [CrossRef]
- Maldonado, I.; Elisiri, M.E.; Fernández-Canigia, L.; Sánchez, A.V.; López, L.; Toranzo, A.I.; López-Joffre, C.; González-Fraga, S.; Canteros, C.E. COVID-19 Associated with Disseminated Histoplasmosis in a Kidney Transplant Patient. Rev. Argent. Microbiol. 2022, 54, 209–214. [Google Scholar] [CrossRef]
- Munipati, S.; Rachamadugu, H.; Avileli, S.; Avula, R.; Beladona, N.J.; Boyapally, S.R. Microbiological Profile of Post-COVID-19 Mucormycosis in Various Samples. Int. J. Sci. Res. Dent. Med. Sci. 2022, 4, 87–91. [Google Scholar] [CrossRef]
- Machado, M.; Valerio, M.; Álvarez-Uría, A.; Olmedo, M.; Veintimilla, C.; Padilla, B.; De la Villa, S.; Guinea, J.; Escribano, P.; Ruiz-Serrano, M.J.; et al. Invasive Pulmonary Aspergillosis in the COVID-19 Era: An Expected New Entity. Mycoses 2021, 64, 132. [Google Scholar] [CrossRef]
- Fungal Diseases and COVID-19|CDC. Available online: https://www.cdc.gov/fungal/covid-fungal.html (accessed on 10 November 2022).
- Zia, M.; Goli, M. Predisposing Factors of Important Invasive Fungal Coinfections in COVID-19 Patients: A Review Article. J. Int. Med. Res. 2021, 49, 03000605211043413. [Google Scholar] [CrossRef]
- Soni, S.; Namdeo Pudake, R.; Jain, U.; Chauhan, N. A Systematic Review on SARS-CoV-2-associated Fungal Coinfections. J. Med. Virol. 2022, 94, 99. [Google Scholar] [CrossRef]
- Bharadwaj, R.; Thilagavathy, S. Mucormycosis in COVID-19: A Clinico-Microbiological Dilemma. Kauverian Sci. J. 2021, 2. [Google Scholar]
- Gasmi, A.; Noor, S.; Tippairote, T.; Dadar, M.; Menzel, A.; Bjørklund, G. Individual Risk Management Strategy and Potential Therapeutic Options for the COVID-19 Pandemic. Clin. Immunol. 2020, 215, 108409. [Google Scholar] [CrossRef]
- Mani, J.S.; Johnson, J.B.; Steel, J.C.; Broszczak, D.A.; Neilsen, P.M.; Walsh, K.B.; Naiker, M. Natural Product-Derived Phytochemicals as Potential Agents against Coronaviruses: A Review. Virus Res. 2020, 284, 197989. [Google Scholar] [CrossRef]
- De Almeida Brasiel, P.G. The Key Role of Zinc in Elderly Immunity: A Possible Approach in the COVID-19 Crisis. Clin. Nutr. Espen 2020, 38, 65. [Google Scholar] [CrossRef]
- Bermano, G.; Méplan, C.; Mercer, D.K.; Hesketh, J.E. Selenium and Viral Infection: Are There Lessons for COVID-19? Br. J. Nutr. 2021, 125, 1. [Google Scholar] [CrossRef] [PubMed]
- Sio, S.; De Buomprisco, G.; La Torre, G.; Lapteva, E.; Perri, R.; Greco, E.; Mucci, N.; Cedrone, F. The Impact of COVID-19 on Doctors’ Well-Being: Results of a Web Survey during the Lockdown in Italy. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 7869–7879. [Google Scholar] [CrossRef] [PubMed]
- Anca, P.S.; Toth, P.P.; Kempler, P.; Rizzo, M. Gender Differences in the Battle against COVID-19: Impact of Genetics, Comorbidities, Inflammation and Lifestyle on Differences in Outcomes. Int. J. Clin. Pract. 2021, 75. [Google Scholar] [CrossRef] [PubMed]
- Gasmi, A.; Chirumbolo, S.; Peana, M.; Noor, S.; Menzel, A.; Dadar, M.; Bjørklund, G. The Role of Diet and Supplementation of Natural Products in COVID-19 Prevention. Biol. Trace Elem. Res. 2022, 200, 27. [Google Scholar] [CrossRef]
- Xiao, T.; Mu, T.; Shen, S.; Song, Y.; Yang, S.; He, J. A Dynamic Physical-Distancing Model to Evaluate Spatial Measures for Prevention of Covid-19 Spread. Phys. A Stat. Mech. Its Appl. 2022, 592, 126734. [Google Scholar] [CrossRef]
- Pan, L.; Wang, J.; Wang, X.; Ji, J.S.; Ye, D.; Shen, J.; Li, L.; Liu, H.; Zhang, L.; Shi, X.; et al. Prevention and Control of Coronavirus Disease 2019 (COVID-19) in Public Places. Environ. Pollut. 2022, 292, 118273. [Google Scholar] [CrossRef]
- Tripathi, M.K.; Singh, P.; Sharma, S.; Singh, T.P.; Ethayathulla, A.S.; Kaur, P. Identification of Bioactive Molecule from Withania Somnifera (Ashwagandha) as SARS-CoV-2 Main Protease Inhibitor. J. Biomol. Struct. Dyn. 2020, 1, 5668–5681. [Google Scholar] [CrossRef]
- Jayawardena, R.; Sooriyaarachchi, P.; Chourdakis, M.; Jeewandara, C.; Ranasinghe, P. Enhancing Immunity in Viral Infections, with Special Emphasis on COVID-19: A Review. Diabetes Metab. Syndr. 2020, 14, 367. [Google Scholar] [CrossRef]
- Gasmi, A.; Tippairote, T.; Mujawdiya, P.K.; Peana, M.; Menzel, A.; Dadar, M.; Benahmed, A.G.; Bjørklund, G. The Microbiota-Mediated Dietary and Nutritional Interventions for COVID-19. Clin. Immunol. 2021, 226, 108725. [Google Scholar] [CrossRef]
- Barazzoni, R.; Bischoff, S.C.; Breda, J.; Wickramasinghe, K.; Krznaric, Z.; Nitzan, D.; Pirlich, M.; Singer, P. ESPEN Expert Statements and Practical Guidance for Nutritional Management of Individuals with SARS-CoV-2 Infection. Clin. Nutr. 2020, 39, 1631. [Google Scholar] [CrossRef]
- Shin, B.; Koh, W.J.; Jeong, B.H.; Yoo, H.; Park, H.Y.; Suh, G.Y.; Kwon, O.J.; Jeon, K. Serum Galactomannan Antigen Test for the Diagnosis of Chronic Pulmonary Aspergillosis. J. Infect. 2014, 68, 494–499. [Google Scholar] [CrossRef]
- Arvanitis, M.; Anagnostou, T.; Fuchs, B.B.; Caliendo, A.M.; Mylonakis, E. Molecular and Nonmolecular Diagnostic Methods for Invasive Fungal Infections. Clin. Microbiol. Rev. 2014, 27, 490. [Google Scholar] [CrossRef] [Green Version]
- Badiee, P.; Hashemizadeh, Z. Opportunistic Invasive Fungal Infections: Diagnosis & Clinical Management. Indian J. Med. Res. 2014, 139, 195. [Google Scholar]
- Azhar, A.; Khan, W.H.; Khan, P.A.; Alhosaini, K.; Owais, M.; Ahmad, A. Mucormycosis and COVID-19 Pandemic: Clinical and Diagnostic Approach. J. Infect. Public Health 2022, 15, 466. [Google Scholar] [CrossRef]
- Kozel, T.R.; Wickes, B. Fungal Diagnostics. Cold Spring Harb. Perspect. Med. 2014, 4, a019299. [Google Scholar] [CrossRef]
- Rickerts, V.; Mousset, S.; Lambrecht, E.; Tintelnot, K.; Schwerdtleger, R.; Presterl, E.; Jacobi, V.; Just-Nübling, G.; Bialek, R. Comparison of Histopathological Analysis, Culture, and Polymerase Chain Reaction Assays to Detect Invasive Mold Infections from Biopsy Specimens. Clin. Infect. Dis. 2007, 44, 1078–1083. [Google Scholar] [CrossRef]
- Liu, G.; Rusling, J.F. COVID-19 Antibody Tests and Their Limitations. ACS Sens. 2021, 6, 593–612. [Google Scholar] [CrossRef]
- Singhal, N.; Kumar, M.; Kanaujia, P.K.; Virdi, J.S. MALDI-TOF Mass Spectrometry: An Emerging Technology for Microbial Identification and Diagnosis. Front. Microbiol. 2015, 6, 791. [Google Scholar] [CrossRef] [Green Version]
- Chavda, V.P.; Patel, A.B.; Pandya, A.; Vora, L.K.; Patravale, V.; Tambuwala, Z.M.; Aljabali, A.A.A.; Serrano-Aroca, Á.; Mishra, V.; Tambuwala, M.M. Co-Infection Associated with SARS-CoV-2 and Their Management. Futur. Sci. OA 2022, 8, FSO819. [Google Scholar] [CrossRef]
- Rahimi, H.; Salehiabar, M.; Barsbay, M.; Ghaffarlou, M.; Kavetskyy, T.; Sharafi, A.; Davaran, S.; Chauhan, S.C.; Danafar, H.; Kaboli, S.; et al. CRISPR Systems for COVID-19 Diagnosis. ACS Sens. 2021, 6, 1430–1445. [Google Scholar] [CrossRef]
- Theel, E.S.; Doern, C.D. β-d-Glucan Testing Is Important for Diagnosis of Invasive Fungal Infections. J. Clin. Microbiol. 2013, 51, 3478–3483. [Google Scholar] [CrossRef] [Green Version]
- Azar, M.M.; Hage, C.A. Laboratory Diagnostics for Histoplasmosis. J. Clin. Microbiol. 2017, 55, 1612–1620. [Google Scholar] [CrossRef] [Green Version]
- De Heer, K.; Gerritsen, M.G.; Visser, C.E.; Leeflang, M.M. Galactomannan Detection in Broncho-alveolar Lavage Fluid for Invasive Aspergillosis in Immunocompromised Patients. Cochrane Database Syst. Rev. 2019, 2019, CD012399. [Google Scholar] [CrossRef]
- Guo, Y.-L.; Chen, Y.-Q.; Wang, K.; Qin, S.-M.; Wu, C.; Kong, J.-L. Accuracy of BAL Galactomannan in Diagnosing Invasive Aspergillosis: A Bivariate Metaanalysis and Systematic Review. CHEST 2010, 138, 817–824. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.N.; de Mello, T.P.; de Souza Ramos, L.; Branquinha, M.H.; Roudbary, M.; dos Santos, A.L.S. Fungal Infections in COVID-19-Positive Patients: A Lack of Optimal Treatment Options. Curr. Top. Med. Chem. 2020, 20, 1951–1957. [Google Scholar] [CrossRef]
- Treatment for Aspergillosis|Aspergillosis|Types of Fungal Diseases|Fungal Diseases|CDC. Available online: https://www.cdc.gov/fungal/diseases/aspergillosis/treatment.html (accessed on 14 January 2023).
- Ong, V.; Hough, G.; Schlosser, M.; Bartizal, K.; Balkovec, J.M.; James, K.D.; Krishnan, B.R. Preclinical Evaluation of the Stability, Safety, and Efficacy of CD101, a Novel Echinocandin. Antimicrob. Agents Chemother. 2016, 60, 6872–6879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treatment|Invasive Candidiasis|Candidiasis|Types of Diseases|Fungal Diseases|CDC. Available online: https://www.cdc.gov/fungal/diseases/candidiasis/invasive/treatment.html (accessed on 14 January 2023).
- Menon, A.A.; Berg, D.D.; Brea, E.J.; Deutsch, A.J.; Kidia, K.K.; Thurber, E.G.; Polsky, S.B.; Yeh, T.; Duskin, J.A.; Holliday, A.M.; et al. A Case of COVID-19 and Pneumocystis Jirovecii Coinfection. Am. J. Respir. Crit. Care Med. 2020, 202, 136–138. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, E.J.C.; Spellberg, B.; Walsh, T.J.; Kontoyiannis, D.P.; Edwards, J., Jr.; Ibrahim, A.S. Recent Advances in the Management of Mucormycosis: From Bench to Bedside. Clin. Infect. Dis. 2009, 48, 1743–1751. [Google Scholar] [CrossRef]
- Ellsworth, M.; Ostrosky-Zeichner, L. Isavuconazole: Mechanism of Action, Clinical Efficacy, and Resistance. J. Fungi 2020, 6, 324. [Google Scholar] [CrossRef]
- Jones, C.T.; Kopf, R.S.; Tushla, L.; Tran, S.; Hamilton, C.; Lyman, M.; McMullen, R.; Shah, D.; Stroman, A.; Wilkinson, E.; et al. A Care Step Pathway for the Diagnosis and Treatment of COVID-19-Associated Invasive Fungal Infections in the Intensive Care Unit. Crit. Care Nurse 2022, 42, e1–e11. [Google Scholar] [CrossRef]
- Domán, M.; Bányai, K. COVID-19-Associated Fungal Infections: An Urgent Need for Alternative Therapeutic Approach? Front. Microbiol. 2022, 13, 2118. [Google Scholar] [CrossRef]
- Groll, A.H.; Gastine, S. Chapter 9—Therapeutic Drug Monitoring for Antifungal Triazoles: Pharmacologic Background and Current Status. In Methods of Therapeutic Drug Monitoring Including Pharmacogenetics; Hempel, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 1567-7192. [Google Scholar]
- Jenks, J.D.; Hoenigl, M. Treatment of Aspergillosis. J. Fungi 2018, 4, 98. [Google Scholar] [CrossRef] [Green Version]
- Shirley, M.; Scott, L.J. Isavuconazole: A Review in Invasive Aspergillosis and Mucormycosis. Drugs 2016, 76, 1647–1657. [Google Scholar] [CrossRef]
- Jenks, J.D.; Salzer, H.J.; Prattes, J.; Krause, R.; Buchheidt, D.; Hoenigl, M. Spotlight on Isavuconazole in the Treatment of Invasive Aspergillosis and Mucormycosis: Design, Development, and Place in Therapy. Drug Des. Dev. Ther. 2018, 12, 1033–1044. [Google Scholar] [CrossRef] [Green Version]
- Greer, N.D. Posaconazole (Noxafil): A New Triazole Antifungal Agent. In Baylor University Medical Center Proceedings; Taylor & Francis: Abingdon, UK, 2007; Volume 20, pp. 188–196. [Google Scholar] [CrossRef] [Green Version]
- Alexander, B.D.; Perfect, J.R.; Daly, J.S.; Restrepo, A.; Tobón, A.M.; Patino, H.; Hardalo, C.J.; Graybill, J.R. Posaconazole as Salvage Therapy in Patients with Invasive Fungal Infections After Solid Organ Transplant. Transplantation 2008, 86, 791. [Google Scholar] [CrossRef]
- Walsh, T.J.; Raad, I.; Patterson, T.F.; Chandrasekar, P.; Donowitz, G.R.; Graybill, R.; Greene, R.E.; Hachem, R.; Hadley, S.; Herbrecht, R.; et al. Treatment of Invasive Aspergillosis with Posaconazole in Patients Who Are Refractory to or Intolerant of Conventional Therapy: An Externally Controlled Trial. Clin. Infect. Dis. 2007, 44, 2–12. [Google Scholar] [CrossRef]
- Liposomal Amphotericin B (AmBisome®) Efficacy in Confirmed Invasive Aspergillosis and Other Filamentous Fungal Infections in Immunocompromised Hosts: A Pooled Analysis—Cordonnier—2007—Mycoses—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1111/j.1439-0507.2007.01362.x (accessed on 14 January 2023).
- Reichert-Lima, F.; Lyra, L.; Pontes, L.; Moretti, M.L.; Pham, C.D.; Lockhart, S.R.; Schreiber, A.Z. Surveillance for Azoles Resistance in Aspergillus spp. Highlights a High Number of Amphotericin B-Resistant Isolates. Mycoses 2018, 61, 360–365. [Google Scholar] [CrossRef]
- Posteraro, B.; Torelli, R.; Vella, A.; Leone, P.M.; De Angelis, G.; De Carolis, E.; Ventura, G.; Sanguinetti, M.; Fantoni, M. Pan-Echinocandin-Resistant Candida Glabrata Bloodstream Infection Complicating COVID-19: A Fatal Case Report. J. Fungi 2020, 6, 1–11. [Google Scholar] [CrossRef]
- Ben-Ami, R. Treatment of Invasive Candidiasis: A Narrative Review. J. Fungi 2018, 4, 97. [Google Scholar] [CrossRef] [Green Version]
- Ham, Y.Y.; Lewis, J.S.; Thompson, G.R. Rezafungin: A Novel Antifungal for the Treatment of Invasive Candidiasis. Future Microbiol. 2021, 16, 27–36. [Google Scholar] [CrossRef]
- Govindarajan, A.; Bistas, K.G.; Ingold, C.J.; Aboeed, A. Fluconazole. Kucers the Use of Antibiotics: A Clinical Review of Antibacterial, Antifungal, Antiparasitic, and Antiviral Drugs, 7th ed.; StatPearls Publishing: Treasure Island, FL, USA, 2022; pp. 2756–2785. [Google Scholar] [CrossRef]
- Berkow, E.L.; Lockhart, S.R. Fluconazole Resistance in Candida Species: A Current Perspective. IDR 2017, 10, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Delma, F.Z.; Al-Hatmi, A.M.S.; Brüggemann, R.J.M.; Melchers, W.J.G.; de Hoog, S.; Verweij, P.E.; Buil, J.B. Molecular Mechanisms of 5-Fluorocytosine Resistance in Yeasts and Filamentous Fungi. J. Fungi 2021, 7, 909. [Google Scholar] [CrossRef]
- Vermes, A.; Sijs, H.; van der Guchelaar, H.-J. Flucytosine: Correlation between Toxicity and Pharmacokinetic Parameters. CHE 2000, 46, 86–94. [Google Scholar] [CrossRef]
- Subramaniyan, V.; Fuloria, S.; Darnal, H.K.; Meenakshi, D.U.; Sekar, M.; Nordin, R.; Bin Chakravarthi, S.; Sathasivam, K.V.; Khan, S.A.; Wu, Y.S.; et al. COVID-19-Associated Mucormycosis and Treatments. Asian Pac. J. Trop. Med. 2021, 14, 401. [Google Scholar] [CrossRef]
- Lanternier, F.; Poiree, S.; Elie, C.; Garcia-Hermoso, D.; Bakouboula, P.; Sitbon, K.; Herbrecht, R.; Wolff, M.; Ribaud, P.; Lortholary, O.; et al. Prospective Pilot Study of High-Dose (10 Mg/Kg/Day) Liposomal Amphotericin B (L-AMB) for the Initial Treatment of Mucormycosis. J. Antimicrob. Chemother. 2015, 70, 3116–3123. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.N.; Healy, J.R.; Kraft, W.K. Pharmacologic and Clinical Evaluation of Posaconazole. Expert Rev. Clin. Pharmacol. 2015, 8, 321–334. [Google Scholar] [CrossRef] [PubMed]
- Rybak, J.M.; Marx, K.R.; Nishimoto, A.T.; Rogers, P.D. Isavuconazole: Pharmacology, Pharmacodynamics, and Current Clinical Experience with a New Triazole Antifungal Agent. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2015, 35, 1037–1051. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.; Lee, S.C. Current Treatments against Mucormycosis and Future Directions. PLOS Pathog. 2022, 18, e1010858. [Google Scholar] [CrossRef] [PubMed]
- Skiada, A.; Lass-Floerl, C.; Klimko, N.; Ibrahim, A.; Roilides, E.; Petrikkos, G. Challenges in the Diagnosis and Treatment of Mucormycosis. Med. Mycol. 2018, 56, S93–S101. [Google Scholar] [CrossRef] [Green Version]
- Maertens, J.; Egerer, G.; Shin, W.S.; Reichert, D.; Stek, M.; Chandwani, S.; Shivaprakash, M.; Viscoli, C. Caspofungin Use in Daily Clinical Practice for Treatment of Invasive Aspergillosis: Results of a Prospective Observational Registry. BMC Infect. Dis. 2010, 10, 182. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; Malhotra, H.S.; Saxena, P.; Singh, R.; Shukla, D.; Hasan, M.S.; Verma, V.; Banerjee, G.; Puri, B.; Dandu, H. Utility of Itraconazole and Terbinafine in Mucormycosis: A Proof-of-Concept Analysis. J. Investig. Med. 2022, 70, 914–918. [Google Scholar] [CrossRef]
- Hoenigl, M.; Sprute, R.; Egger, M.; Arastehfar, A.; Cornely, O.A.; Krause, R.; Lass-Flörl, C.; Prattes, J.; Spec, A.; Thompson, G.R.; et al. The Antifungal Pipeline: Fosmanogepix, Ibrexafungerp, Olorofim, Opelconazole, and Rezafungin. Drugs 2021, 81, 1703–1729. [Google Scholar] [CrossRef]
Pathogen | Study Type with Reference | Population | Risk Factors | Comments |
---|---|---|---|---|
Aspergillus spp. | Retrospective analysis [57] | The study was conducted on 70 patients of a tertiary hospital in North India. |
|
|
Prospective study [58] | The study was performed on 10 patients with subacute invasive pulmonary aspergillosis at All India Institute of Medical Sciences (AIIMS), New Delhi, India |
|
| |
Retrospective study [59] | The study was conducted on patients from two tertiary hospitals in the United Kingdom. |
|
| |
Candida spp. | Retrospective analysis [60] | The data was obtained from people infected globally. |
|
|
Prospective research [61] | The study considered populations from low, middle, and high-income countries. |
|
| |
Species of order Mucorales | Retrospective analysis [13] | The study was performed on 101 patients, where 82 were from India and 19 were from other parts of the world. |
|
|
Prospective study [62] | This study is generalized for the complete human population. |
|
| |
Retrospective cross-sectional study [40] | All patients with COVID-19-associated mucormycosis in the Assiut University Hospital were participants in the study. |
|
| |
Retrospective study [63] | The majority of work was on Indian populations. However, reports of COVID-19-associated mucormycosis from other parts of the world are also included. |
|
| |
Retrospective analysis [64] | The study focused on the complete human population. |
|
| |
Pneumocystis jirovecii | Prospective study [65] | The study aimed to discuss Pneumocystis pneumonia with respect to the general human population. |
|
|
Retrospective study [66] | The study focused on a 52-year-old male patient from Romania. |
|
| |
Retrospective study [67] | The study reports the case of a 71 year old male patient from Iran. |
|
| |
Cryptococcus spp. | Retrospective study [68] | The study focused on a male patient in his early 1970s from the USA. |
|
|
Retrospective study [69] | The study aimed to analyze cryptococcosis in COVID-19 patients in the global population. |
|
| |
Retrospective analysis [70] | The study was performed on a 46-year-old male patient in South Korea. |
|
| |
Histoplasma spp. | Retrospective analysis [55] | A 61-year-old male patient from Texas with a history of obesity, hypertension, diabetes, and hypothyroidism. |
|
|
Retrospective analysis [71] | The study focused on a kidney transplant recipient from Argentina having COVID-19 and disseminated histoplasmosis. |
|
| |
Retrospective analysis [56] | The study was aimed at a 65-year-old female patient from India with a comorbid condition of nonalcoholic steatohepatitis associated chronic liver disease. |
|
|
Serial | Diagnostic Technique | Principle | Advantage | Disadvantage | Comment | Reference |
---|---|---|---|---|---|---|
1. | Potassium hydroxide test | Nonfungal components are completely dissolved by the potassium hydroxide (KOH) solution and fungal hyphae and yeast cells are visualized under a microscope. |
|
|
| [93,94] |
2. | Biopsy | Infected body tissue is obtained from the patient to check for the infection. It is often performed in combinations such as CT scan guided or video-assisted methods to surgically obtain the sample in cases of deep tissues. |
|
|
| [92,95,96] |
3. | Antibody testing | Includes immunodiffusion, complement fixation, and enzyme immunoassay with immunodiffusion detecting antibodies precipitating with Histoplasma M and H antigens. |
|
|
| [94,95,97] |
4. | Polymerase Chain Reaction (PCR) | In vitro replication of DNA or RNA with the help of polymerase enzyme. It provides accurate molecular identification of the fungal pathogen. |
|
|
| [38,95] |
5. | Matrix-assisted Laser Desorption Ionization (MALDI) | An analytical technique in which the organism is identified based on its peptide mass fingerprint. |
|
|
| [38,92,98,99] |
6. | Fluorescence in situ hybridization (FISH) | An approach employs fluorescent probes to identify specific regions on the genomes of microbial pathogens in human samples, which could be detected by fluorescence microscopes. |
|
|
| [92,99,100] |
7. | Beta-D-glucan (BDG) testing | Factor G has been identified to be a component that interacts with BDG from fungi. |
|
|
| [101] |
8. | Serological testing for Histoplasma detection | These tests are based on antigen-antibody interactions. |
|
|
| [102] |
9. | BAL Galactomannan testing | This type of Galactomannan testing is done on bronchoalveolar lavage (BAL). In this technique, an instrument is passed through the oral or nasal passage and a fluid is released into a region of the lung that collects the fungi and microbes present in the lungs and analyzes them using ELISA. |
|
|
| [103,104] |
Fungal Infection | Available Treatments | Comment | Clinical Data | Reference |
---|---|---|---|---|
Aspergillosis | Voriconazole with the dose range of 6 mg/kg IV every 12 h per day, followed by 4 mg/kg every 12 h for 6–12 weeks. For Per oral administration 200 mg at every 12 h |
|
| [112,113,114,115] |
Isavuconazole in the dose range of 200 mg every 8 h per 6 doses, then 200 mg IV or oral daily for 6–12 weeks. |
|
| [112,113,116,117] NCT00634049 | |
Posaconazole was administered in the dose range in IV 300 mg twice daily and then 300 mg once daily for 6–12 weeks. |
|
| [112,118,119,120] | |
Liposomal amphotericin B should be administered at a dose of 3–5 mg/kg per day. |
|
| [61,112,113,121,122] | |
Invasive Candidiasis | Echinocandins such as anidulafungin, caspofungin, and micafungin |
|
| [123,124,125] |
Combination of Azoles such as fluconazole, voriconazaole and itraconazole, posaconazole and ravuconazole |
|
| [3,19,126,127] | |
Lipid formulation of Amphotericin B |
|
| [23,113] | |
Flucytosine |
|
| [128,129] | |
Mucormycosis | Surgical Treatment |
|
| [3,130] NCT02226705 |
First-line treatment involves the use of liposomal amphotericin B (LAMB) at doses between 5 and 10 mg/kg/day. |
|
| [47,61,130,131] | |
Posaconazole is given orally (oral suspension), in a dose range of 200 mg, three to four times daily. |
|
| [77,130,132] NCT00034671 | |
Isavuconazole in the dose range of 200 mg did on days 1–2 andthen 200 mg per day for 3–6 months. |
|
| [77,117,130,133] NCT04550936 | |
Combination Therapy: Clinical advantages of this approach include the drug’s synergistic effects and broader coverage of pathogens than monotherapy. |
|
| [133,134,135,136] | |
Terbinafine and itraconazole seem to be effective treatments for ROCM brought on by R. oryzae and R. microsporus, respectively. |
|
| [64,137] | |
Ibrexafungerp with a suggested dosage of 300 mg twice each for one day can be administered. |
|
| [138] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chavda, V.P.; Mishra, T.; Kamaraj, S.; Punetha, S.; Sengupta, O.; Joshi, Y.; Vuppu, S.; Vaghela, D.; Vora, L. Post-COVID-19 Fungal Infection in the Aged Population. Vaccines 2023, 11, 555. https://doi.org/10.3390/vaccines11030555
Chavda VP, Mishra T, Kamaraj S, Punetha S, Sengupta O, Joshi Y, Vuppu S, Vaghela D, Vora L. Post-COVID-19 Fungal Infection in the Aged Population. Vaccines. 2023; 11(3):555. https://doi.org/10.3390/vaccines11030555
Chicago/Turabian StyleChavda, Vivek P., Toshika Mishra, Sathvika Kamaraj, Swati Punetha, Oishani Sengupta, Yash Joshi, Suneetha Vuppu, Dixa Vaghela, and Lalitkumar Vora. 2023. "Post-COVID-19 Fungal Infection in the Aged Population" Vaccines 11, no. 3: 555. https://doi.org/10.3390/vaccines11030555
APA StyleChavda, V. P., Mishra, T., Kamaraj, S., Punetha, S., Sengupta, O., Joshi, Y., Vuppu, S., Vaghela, D., & Vora, L. (2023). Post-COVID-19 Fungal Infection in the Aged Population. Vaccines, 11(3), 555. https://doi.org/10.3390/vaccines11030555