Developments in Rabies Vaccines: The Path Traversed from Pasteur to the Modern Era of Immunization
Abstract
:1. Introduction
2. History of Rabies Vaccines
3. First Generation Vaccines: Pasteur Vaccine (Nerve Tissue Vaccine)
4. Chemically Modified Fermi & Semple Vaccines
5. Myelin-Free Tissue Vaccines
6. Embryo Vaccines
7. Second Generation Vaccines: Cell Culture Vaccines
8. Current Developments in Rabies Vaccines
8.1. Modified Live Vaccine (MLV)
8.2. Inactivated Rabies Vaccine
8.3. Adjuvanted Rabies Vaccines
9. Next-Generation Vaccines
9.1. Genetically Modified Vaccines
9.2. Recombinant Rabies Vaccines
9.3. Nucleic Acid-Based Rabies Vaccines
9.3.1. Rabies DNA Vaccines
9.3.2. Rabies RNA Vaccines
9.4. Protein Subunit and Peptide Vaccines for Rabies
9.5. Parenteral Viral Vector Rabies Vaccines
10. Oral Rabies Vaccines (ORVs)
10.1. Modified Live Rabies Virus Oral Vaccines
10.2. Viral Vector-Based Oral Rabies Vaccines
11. Intradermal Rabies Vaccination
12. Immunity to Rabies Virus: Natural Infection vs. Rabies Vaccines
12.1. Immunity to Natural Rabies Virus Infection, including Humoral and Cellular Responses
12.2. Immunity to Rabies Vaccines, including Humoral and Cellular Responses
13. Therapeutic Approaches to Rabies Using Vaccines and Antibodies
13.1. Rabies Vaccine-Based Therapy
13.2. Rabies Immune Globulin (RIG)-Based Rabies Therapy
13.3. Small Interfering RNA (siRNA)-Based Rabies Therapy
14. Future Prospects of Rabies Vaccines
15. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bilal, A. Rabies is a Zoonotic Disease: A Literature Review. Occup. Med. Health Aff. 2021, 9, 2. [Google Scholar]
- Walker, P.J.; Freitas-Astúa, J.; Bejerman, N.; Blasdell, K.R.; Breyta, R.; Dietzgen, R.G.; Fooks, A.R.; Kondo, H.; Kurath, G.; Kuzmin, I.V.; et al. ICTV Virus Taxonomy Profile: Rhabdoviridae 2022. J. Gen. Virol. 2022, 103, 10. [Google Scholar] [CrossRef]
- Hampson, K.; Coudeville, L.; Lembo, T.; Sambo, M.; Kieffer, A.; Attlan, M.; Barrat, J.; Blanton, J.D.; Briggs, D.J.; Cleaveland, S.; et al. Estimating the global burden of endemic canine rabies. PLoS Negl. Trop. Dis. 2015, 9, e0003709. [Google Scholar]
- Pastoret, P.P.; Kappeler, A.; Aubert, M. European rabies control and its history. In Historical Perspective of Rabies in Europe and the Mediterranean Basin; King, A.A., Fooks, A.R., Aubert, M., Wandeler, A.I., Eds.; OIE: Paris, France, 2004; pp. 337–347. [Google Scholar]
- Albertini, A.A.; Ruigrok, R.W.; Blondel, D. Rabies virus transcription and replication. Adv. Virus Res. 2011, 79, 1–22. [Google Scholar] [PubMed]
- Wiktor, T.J.; Gyorgy, E.; Schlumberger, D.; Sokol, F.; Koprowski, H. Antigenic properties of rabies virus components. J. Immunol. 1973, 110, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Badrane, H.; Tordo, N. Host switching in lyssavirus history from the Chiroptera to the Carnivora orders. J. Virol. 2001, 75, 8096–8104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rupprecht, C.E.; Willoughby, R.; Slate, D. Current and future trends in the prevention, treatment and control of rabies. Expert Rev. Anti-Infect. Ther. 2006, 4, 1021–1038. [Google Scholar] [CrossRef]
- Messenger, S.L.; Smith, J.S.; Rupprecht, C.E. Emerging epidemiology of bat-associated cryptic cases of rabies in humans in the United States. Clin. Infect. Dis. 2002, 35, 738–747. [Google Scholar] [CrossRef] [Green Version]
- Fooks, A.R.; Cliquet, F.; Finke, S.; Freuling, C.; Hemachudha, T.; Mani, R.S.; Müller, T.; Nadin-Davis, S.; Picard-Meyer, E.; Wilde, H.; et al. Rabies. Nat. Rev. Dis. Prim. 2017, 3, 17091. [Google Scholar] [CrossRef]
- Sudarshan, M.K.; Madhusudana, S.N.; Mahendra, B.J.; Rao, N.S.; Ashwath, N.D.H.; Abdul Rahman, S. Assessing the burden of human rabies in India: Results of a national multi-center epidemiological survey. Int. J. Infect. Dis. 2007, 11, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Isloor, S.; Marissen, W.E.; Veeresh, B.H.; Nithinprabhu, K.; Kuzmin, I.V.; Rupprecht, C.E.; Satyanarayana, M.L.; Deepti, B.R.; Sharada, R.; Neelufer, M.S.; et al. First case report of rabies in a wolf (Canis lupus pallipes) from India. J. Vet. Med. Res. 2014, 1, 1012. [Google Scholar]
- Tarantola, A.; Tejiokem, M.C.; Briggs, D.J. Evaluating new rabies post-exposure prophylaxis (PEP) regimens or vaccines. Vaccine 2019, 37, 88–93. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A. Advances in rabies prophylaxis and treatment with emphasis on immunoresponse mechanisms. Int. J. Vet. Sci. Med. 2018, 6, 8–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nandi, S.; Kumar, M. Development in Immunoprophylaxis against Rabies for Animals and Humans. Avicenna J. Med. Biotechnol. 2010, 2, 3–21. [Google Scholar]
- Zhang, W.; Cheng, N.; Wang, Y.; Zheng, X.; Zhao, Y.; Wang, H.; Wang, C.; Han, Q.; Gao, Y.; Shan, J.; et al. Adjuvant activity of PCP-II, a polysaccharide from Poria cocos, on a whole killed rabies vaccine. Virus Res. 2019, 270, 197638. [Google Scholar] [CrossRef]
- Zhu, S.; Guo, C. Rabies Control and Treatment: From Prophylaxis to Strategies with Curative Potential. Viruses 2016, 8, 279. [Google Scholar] [CrossRef]
- Shuai, L.; Feng, N.; Wang, X.; Ge, J.; Wen, Z.; Chen, W.; Qin, L.; Xia, X.; Bu, Z. Genetically modified rabies virus ERA strain is safe and induces long-lasting protective immune response in dogs after oral vaccination. Antivir. Res. 2015, 121, 9–15. [Google Scholar] [CrossRef]
- Yang, D.K.; Kim, H.H.; Choi, S.S.; Kim, J.T.; Jeong, W.H.; Song, J.Y. Oral immunization of mice with recombinant rabies vaccine strain (ERAG3G) induces complete protection. Clin. Exp. Vaccine Res. 2015, 4, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Ertl, H.C.J. New Rabies Vaccines for Use in Humans. Vaccines 2019, 7, 54. [Google Scholar] [CrossRef] [Green Version]
- Perrin, P.; Jacob, Y.; Aguilar-Setien, A.; Loza-Rubio, E.; Jallet, C.; Desmezieres, E.; Aubert, M.; Cliquet, F.; Tordo, N. Immunization of dogs with a DNA vaccine induces protection against rabies virus. Vaccine 1999, 18, 479–486. [Google Scholar] [CrossRef]
- Benmaamar, R.; Astray, R.M.; Wagner, R.; Pereira, C.A. High-level expression of rabies virus glycoprotein with the RNA-based semliki forest virus expression vector. J. Biotechnol. 2009, 139, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Yale, G.; Lopes, M.; Isloor, S.; Head, J.R.; Mazeri, S.; Gamble, L.; Dukpa, K.; Gongal, G.; Gibson, A.D. Review of oral rabies vaccination of dogs and its application in India. Viruses 2022, 14, 155. [Google Scholar] [CrossRef] [PubMed]
- Maki, J.; Guiot, A.L.; Aubert, M.; Brochier, B.; Cliquet, F.; Hanlon, C.A.; King, R.; Oertli, E.H.; Rupprecht, C.E.; Schumacher, C.; et al. Oral vaccination of wildlife using a vaccinia-rabies-glycoprotein recombinant virus vaccine (RABORAL V-RG®): A global review. Vet. Res. 2017, 48, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, L.; Rosatte, R.; Fehlner-Gardiner, C.; Ellison, J.; Jackson, F.; Bachmann, P.; Taylor, J.; Franka, R.; Donovan, D. Oral vaccination and protection of striped skunks (Mephitis mephitis) against rabies using ONRAB®. Vaccine 2014, 32, 3675–3679. [Google Scholar] [CrossRef] [PubMed]
- Gongal, G.; Sampath, G. Introduction of intradermal rabies vaccination—A paradigm shift in improving post-exposure prophylaxis in Asia. Vaccine 2019, 37, A94–A98. [Google Scholar] [CrossRef]
- Nagarajan, E.; Rupprecht, C.E. History of rabies and rabies vaccines. In Rabies and Rabies Vaccines; Ertl, H.C.J., Ed.; Springer: Philadelphia, PA, USA, 2020; pp. 11–44. [Google Scholar]
- Pasteur, L.; Chamberland, C.E.; Roux, E. Methode pour prevenir la rage après morsue (in French). C. R. Acad. Sci. 1885, 101, 765–774. [Google Scholar]
- Watson, E.M. The negri bodies in rabies. J. Exp. Med. 1913, 17, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Smith, T.G.; Rupprecht, C.E. From brain passage to cell adaptation: The road of human rabies vaccine development. Expert Rev. Vaccines 2011, 10, 1597–1608. [Google Scholar] [CrossRef]
- Sureau, P. Rabies vaccine production in animal cell cultures. Adv.Biochem.Engin./Biotechnol. 1987, 34, 111–128. [Google Scholar]
- Fermi, C. Über die ImmunisierunggegenWutkrankheit (in German). Z. Hyg. Infectionskrankh. 1908, 58, 233–276. [Google Scholar] [CrossRef]
- Semple, D. The preparation of a safe and efficient antirabic vaccine. Sci. Mem. Med. Sanit Dept India. 1911, 44, 1–31. [Google Scholar]
- Svet-Moldavskij, G.J.; Andjaparidze, O.G.; Unanov, S.S.; Karakajumcan, M.K.; Svet-Moldavskaja, I.A.; Mucnik, L.S.; Hieninson, M.A.; Ravkina, L.I.; Mtvarelidze, A.A.; Volkova, O.F.; et al. An allergen-free antirabies vaccine. Bull. World Health Organ. 1965, 32, 47–58. [Google Scholar] [PubMed]
- Fuenzalida, E.; Palacios, R.; Borgono, J.M. Anti-rabies antibody responses in man to vaccine made from infected sucklingmouse brains. Bull. World Health Organ. 1964, 30, 431–436. [Google Scholar]
- Bonito, R.F.; de Oliveira, N.M.; Nishioka, S.D.A. Adverse reactions associated with a Fuenzalida-Palacios rabies vaccine: A quasiexperimental study. Rev. Soc. Bras. Med. Trop. 2004, 37, 7–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijayakumar, K.; Jose, K.R. History, evolution and newer perspectives of rabies vaccines. J. Vet. Anim. Sci. 2021, 52, 211–221. [Google Scholar]
- Leach, C.N.; Johnson, H.N. Human rabies, with special reference to virus distribution and titer. Am. J. Trop.Med. Hyg. 1940, 20, 335–340. [Google Scholar] [CrossRef]
- Koprowski, L.; Cox, H.R. Studies on chick embryo adapted rabies virus: I. Culture characteristics and pathogenicity. J. Immunol. 1948, 60, 533–554. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.P.; Koprowski, H.; Conwell, D.P.; Black, J.; Gelfand, H.M. Study of antirabies immunization of man. Observations with HEP Flury and other vaccines, with and without hyperimmune serum, in primary and recall immunizations. Bull. Org. Mond. Sante Bull. World Health Org. 1957, 17, 869–904. [Google Scholar]
- Vodopija, I.; Clarke, H.F. Human vaccination against rabies. In The Natural History of Rabies, 2nd ed.; Baer, G.M., Ed.; CRC Press: Boca Raton, FL, USA, 1991; pp. 571–595. [Google Scholar]
- Koprowski, H.I.; Black, J.A.; Nelsen, D.J. Studies on chick-embryo-adapted rabies virus. J. Immunol. 1954, 72, 79–106. [Google Scholar] [CrossRef] [PubMed]
- Rupprecht, C.E.; Hanlon, C.A.; Hemachudha, T. Rabies reexamined. Lancet Infect. Dis. 2002, 2, 327–343. [Google Scholar] [CrossRef]
- Stoel, G. Symbiose du virus de la rage avec les cultures cellulaires. Comp. R. Soc. Biol. Fil. 1930, 104, 851–852. [Google Scholar]
- Wiktor, T.J.; Clark, H.F. Growth of rabies virus in cell culture. In The Natural History of Rabies; Baer, G.M., Ed.; Academic Press: New York, NY, USA, 1975; pp. 155–179. [Google Scholar]
- Plotz, H.; Reagan, R. In vitro cultivation of the street virus of rabies. Science 1942, 23, 102–104. [Google Scholar] [CrossRef] [PubMed]
- Kissling, R.E. Growth of rabies virus in non-nervous tissue culture. Proc. Soc. Exp. Biol. Med. 1958, 98, 223–225. [Google Scholar] [CrossRef] [PubMed]
- Fenje, P. Propagation of rabies virus in cultures of hamster kidney cells. Can. J. Microbiol. 1960, 6, 479–784. [Google Scholar] [CrossRef]
- Kissling, R.E.; Reese, D.R. Anti-rabies vaccine of tissue culture origin. J. Immunol. 1963, 91, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Abelseth, M.K. Propagation of Rabies Virus in Pig Kidney Cell Culture. Can. Vet. J. 1964, 5, 84–87. [Google Scholar]
- Kondo, A. Growth characteristics of rabies virus in primary chick embryo cells. Virology 1965, 27, 199–204. [Google Scholar] [CrossRef]
- Wiktor, T.J.; Sokol, F.; Kuwert, E.; Koprowski, H. Immunogenicity of concentrated and purified rabies vaccine of tissue culture origin. Proc. Soc. Exp. Biol. Med. 1969, 131, 799–805. [Google Scholar] [CrossRef]
- Hayflick, L.; Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 1961, 25, 585–621. [Google Scholar] [CrossRef]
- Jacobs, J.P.; Jones, C.M.; Baille, J.P. Characteristics of a human diploid cell designated MRC-5. Nature 1970, 227, 168–170. [Google Scholar] [CrossRef]
- Lavender, J.F.; Van Frank, R.M. Zonal-centrifuged purified duck embryo cell culture rabies vaccine for human vaccination. Appl. Microbiol. 1971, 22, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Barth, R.; Gruschkau, H.; Bijok, U.; Hilfenhaus, J.; Hinz, J.; Milcke, L.; Moser, H.; Jaeger, O.; Ronneberger, H.; Weinmann, E. A new inactivated tissue culture rabies vaccine for use in man. Evaluation of PCEC-vaccine by laboratory tests. J. Biol. Stand. 1984, 12, 29–46. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Notice to readers availability of new rabies vaccine for human use. Morb. Mortal. Wkly. Rep. 1998, 47, 12–19. [Google Scholar]
- Bernard, K.W.; Smith, P.W.; Kader, F.J.; Moran, M.J. Neuro Paralytic illness and Human Diploid Cell Rabies Vaccine. J. Am. Med. Assoc. 1982, 248, 3136–3138. [Google Scholar] [CrossRef]
- Roumiantzeff, M.; Ajjan, N.; Branche, R.; Fournier, P.; Montagnon, B.; Trotemann, P.; Vincent-Falquet, J.C. Rabies vaccine produced in cell culture: Production and control and clinical results. In Applied Virology; Kurstak, E., Ed.; Academic Press: Gainesville, FL, USA, 1984; pp. 241–296. [Google Scholar]
- Fournier, P.; Montagnon, B.; Vincent-Falquet, J.C.; Ajjan, N.; Drucker, J.; Roumiantzeff, M. A new vaccine produced from rabies virus cultivated on Vero cells. In Improvements in Rabies Post-Exposure Treatment; Vodopija, I., Nicholson, K.G., Smerdel, S., Bijok, U., Eds.; Institute of Public Health: Zagreb, Croatia, 1985; pp. 129–136. [Google Scholar]
- Rourou, S.; Ben Ayed, Y.; Trabelsi, K.; Majoul, S.; Kallel, H. An animal component free medium that promotes the growth of various animal cell lines for the production of viral vaccines. Vaccine 2014, 32, 2767–2769. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Huang, L.; Li, J.; Mo, Z.; He, B.; Wang, Y.; Wu, X.; Minutello, M.; Guinet-Morlot, F.; Pichon, S. A next-generation, serum-free, highly purified Vero cell rabies vaccine is safe and as immunogenic as the reference vaccine Verorab® when administered according to a post-exposure regimen in healthy children and adults in China. Vaccine 2013, 31, 5940–5947. [Google Scholar] [CrossRef] [Green Version]
- Fenje, P.; Pinteric, L. Potentiation of tissue culture rabies vaccine by adjuvants. Am. J. Public Health Nations Health 1966, 56, 2106–2113. [Google Scholar] [CrossRef]
- Yang, D.K.; Kim, H.H.; Lee, K.W.; Song, J.Y. The present and future of rabies vaccine in animals. Clin. Exp. Vaccine Res. 2013, 2, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Roumiantzeff, M. The present status of rabies vaccine development and clinical experience with rabies vaccine. Southeast Asian J. Trop. Med. Public Health 1988, 19, 549–561. [Google Scholar]
- Astray, R.M.; Jorge, S.A.; Pereira, C.A. Rabies vaccine development by expression of recombinant viral glycoprotein. Arch. Virol. 2017, 162, 323–332. [Google Scholar] [CrossRef]
- Gupta, R.K.; Siber, G.R. Adjuvants for human vaccines--current status, problems and future prospects. Vaccine 1995, 13, 1263–1276. [Google Scholar] [CrossRef] [PubMed]
- Chavali, S.R.; Barton, L.D.; Campbell, J.B. Immunopotentiation by orally-administered Quillajasaponins: Effects in mice vaccinated intraperitoneally against rabies. Clin. Exp. Immunol. 1988, 74, 339–343. [Google Scholar]
- Oleszycka, E.; McCluskey, S.; Sharp, F.A.; Muñoz-Wolf, N.; Hams, E.; Gorman, A.L.; Fallon, P.G.; Lavelle, E.C. The vaccine adjuvant alum promotes IL-10 production that suppresses Th1 responses. Eur. J. Immunol. 2018, 48, 705–715. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zheng, X.; Cheng, N.; Gai, W.; Xue, X.; Wang, Y.; Gao, Y.; Shan, J.; Yang, S.; Xia, X. Isatisindigotica root polysaccharides as adjuvants for an inactivated rabies virus vaccine. Int. J. Biol. Macromol. 2016, 87, 7–15. [Google Scholar] [CrossRef]
- Shi, W.; Kou, Y.; Xiao, J.; Zhang, L.; Gao, F.; Kong, W.; Su, W.; Jiang, C.; Zhang, Y. Comparison of immunogenicity, efficacy and transcriptome changes of inactivated rabies virus vaccine with different adjuvants. Vaccine 2018, 36, 5020–5029. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Yan, J.; Wu, W.; Tao, X.; Lu, X.; Liu, S.; Zhu, W. A CpG oligo deoxynucleotide enhances the immune response to rabies vaccination in mice. Virol. J. 2018, 15, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Zhang, C.; Li, R.; Wang, Z.; Yuan, Y.; Li, H.; Fu, Z.; Zhou, M.; Zhao, L. Monophosphoryl-Lipid A (MPLA) is an Efficacious Adjuvant for Inactivated Rabies Vaccines. Viruses 2019, 11, 1118. [Google Scholar] [CrossRef] [Green Version]
- Paris, S.; Chapat, L.; Martin-Cagnon, N.; Durand, P.Y.; Piney, L.; Cariou, C.; Bergamo, P.; Bonnet, J.M.; Poulet, H.; Freyburger, L.; et al. β-Glucan as Trained Immunity-Based Adjuvants for Rabies Vaccines in Dogs. Front. Immunol. 2020, 11, 564497. [Google Scholar] [CrossRef]
- Shebl, R.I.; Amer, M.E.; Abuamara, T.M.M.; Matar, E.R.; Ahmed, H.F.; Gomah, T.A.; El Moselhy, L.E.; Abu-Elghait, M.; Mohamed, A.F. Staphylococcus aureus derived hyaluronic acid and bacillus Calmette-Guérin purified proteins as immune enhancers to rabies vaccine and related immuno-histopathological alterations. Clin. Exp. Vaccine Res. 2021, 10, 229–239. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, B.; Wu, Y.; Guo, X. Amino Acid Mutation in Position 349 of Glycoprotein Affect the Pathogenicity of Rabies Virus. Front. Microbiol. 2020, 11, 481. [Google Scholar] [CrossRef]
- Yang, D.K.; Kim, H.H.; Choi, S.S.; Kim, J.T.; Lee, K.B.; Lee, S.H.; Cho, I.S. Safety and immunogenicity of recombinant rabies virus (ERAGS) in mice and raccoon dogs. Clin. Exp. Vaccine Res. 2016, 5, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yang, Y.; Sun, Z.; Chen, J.; Ai, J.; Dun, C.; Fu, Z.F.; Niu, X.; Guo, X. A Recombinant Rabies Virus Encoding Two Copies of the Glycoprotein Gene Confers Protection in Dogs against a Virulent Challenge. PLoS ONE 2014, 9, e87105. [Google Scholar] [CrossRef] [Green Version]
- Xue, X.H.; Zheng, X.X.; Wang, H.L.; Ma, J.Z.; Li, L.; Gai, W.W.; Wang, T.C.; Yang, S.T.; Xia, X.Z. An inactivated recombinant rabies CVS-11 virus expressing two copies of the glycoprotein elicits a higher level of neutralizing antibodies and provides better protection in mice. Virus Genes 2014, 48, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Faber, M.; Li, J.; Kean, R.B.; Hooper, D.C.; Alugupalli, K.R.; Dietzschold, B. Effective preexposure and postexposure prophylaxis of rabies with a highly attenuated recombinant rabies virus. Proc. Natl. Acad. Sci. USA 2009, 106, 11300–11305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, L.; Ge, J.; Wang, X.; Wen, Z.; Zhai, H.; Hua, T.; Zhao, B.; Kong, D.; Yang, C.; Bu, Z. Generation of a recombinant rabies Flury LEP virus carrying an additional G gene creates an improved seed virus for inactivated vaccine production. Virol. J. 2011, 8, 454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faber, M.; Pulmanausahakul, R.; Hodawadekar, S.S.; Spitsin, S.; McGettigan, J.P.; Schnell, M.J.; Dietzschold, B. Overexpression of the rabies virus glycoprotein results in enhancement of apoptosis and antiviral immune response. J. Virol. 2002, 76, 3374–3381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, F.; Xia, F.; Chen, H.; Cui, B.; Feng, Y.; Zhang, P.; Chen, J.; Luo, M. A Guide to Nucleic Acid Vaccines in the Prevention and Treatment of Infectious Diseases and Cancers: From Basic Principles to Current Applications. Front. Cell Dev. Biol. 2021, 9, 633776. [Google Scholar] [CrossRef]
- Ullas, P.; Desai, A.; Madhusudana, S. Rabies DNA Vaccines: Current Status and Future. World J. Vaccines 2012, 2, 36–45. [Google Scholar] [CrossRef]
- Xiang, Z.Q.; Spitalnik, S.; Tran, M.; Wunner, W.H.; Cheng, J.; Ertl, H.C. Vaccination with a plasmid vector carrying the rabies virus glycoprotein gene induces protective immunity against rabies virus. Virology 1994, 199, 132–140. [Google Scholar] [CrossRef]
- Margalith, M.; Vilalta, A. Sustained protective rabies neutralizing antibody titers after administration of cationic lipid-formulated pDNA vaccine. Genet. Vaccines Ther. 2006, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Kaur, M.; Rai, A.; Bhatnagar, R. Rabies DNA vaccine: No impact of MHC class I and class II targeting sequences on immune response and protection against lethal challenge. Vaccine 2009, 27, 2128–2137. [Google Scholar] [CrossRef] [PubMed]
- Sardesai, N.Y.; Weiner, D.B. Electroporation delivery of DNA vaccines: Prospects for success. Curr. Opin. Immunol. 2011, 23, 421–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, J.A.; Carnes, A.E.; Hodgson, C.P. Plasmid DNA vaccine vector design: Impact on efficacy, safety and upstream production. Biotechnol. Adv. 2009, 27, 353–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faurez, F.; Dory, D.; Le Moigne, V.; Gravier, R.; Jestin, A. Biosafety of DNA vaccines: New generation of DNA vectors and current knowledge on the fate of plasmids after injection. Vaccine 2010, 28, 3888–3895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulmer, J.B.; Mason, P.W.; Geall, A.; Mandl, C.W. RNA-based vaccines. Vaccine 2012, 30, 4414–4418. [Google Scholar] [CrossRef] [PubMed]
- Deering, R.P.; Kommareddy, S.; Ulmer, J.B.; Brito, L.A.; Geall, A.J. Nucleic acid vaccines: Prospects for non-viral delivery of mRNA vaccines. Expert Opin. Drug Deliv. 2014, 11, 885–899. [Google Scholar] [CrossRef]
- Schnee, M.; Vogel, A.B.; Voss, D.; Petsch, B.; Baumhof, P.; Kramps, T.; Stitz, L. An mRNA vaccine encoding rabies virus glycoprotein induces protection against lethal infection in mice and correlates of protection in adult and newborn pigs. PLoS Negl. Trop. Dis. 2016, 10, e0004746. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.; Jiang, X. Recent advancements in combination subunit vaccine development. Hum. Vaccines Immunother. 2017, 13, 180–185. [Google Scholar] [CrossRef] [Green Version]
- Klepfer, S.R.; Debouck, C.; Uffelman, J.; Jacobs, P.; Bollen, A.; Jones, E.V. Characterization of rabies glycoprotein expressed in yeast. Arch. Virol. 1993, 128, 269–286. [Google Scholar] [CrossRef]
- Fu, Z.F.; Rupprecht, C.E.; Dietzschold, B.; Saikumar, P.; Niu, H.S.; Babka, I.; Wunner, W.H.; Koprowski, H. Oral vaccination of racoons (Procyon lotor) with baculovirus-expressed rabies virus glycoprotein. Vaccine 1993, 11, 925–928. [Google Scholar] [CrossRef]
- Loza-Rubio, E.; Rojas, E.; Gomez, L.; Olivera, M.T.; Gomez-Lim, M.A. Development of an edible rabies vaccine in maize using the vnukovo strain. Dev. Biol. 2008, 131, 477–482. [Google Scholar]
- Park, Y.; Kang, H.; Min, K.; Kim, N.H.; Park, M.; Ouh, I.O.; Kim, H.H.; Song, J.Y.; Yang, D.K.; Sohn, E.J.; et al. Rabies virus glycoprotein produced in Nicotiana benthamiana is an immunogenic antigen in mice. Czech J. Genet. Plant Breed. 2021, 57, 26–35. [Google Scholar] [CrossRef]
- Niederhäuser, S.; Bruegger, D.; Zahno, M.L.; Vogt, H.R.; Peterhans, E.; Zanoni, R.; Bertoni, G. A synthetic peptide encompassing the G5 antigenic region of the rabies virus induces high avidity but poorly neutralizing antibody in immunized animals. Vaccine 2008, 26, 6749–6753. [Google Scholar] [CrossRef] [PubMed]
- Houimel, M.; Dellagi, K. Peptide mimotopes of rabies virus glycoprotein with immunogenic activity. Vaccine 2009, 27, 4648–4655. [Google Scholar] [CrossRef] [PubMed]
- Cid, R.; Bolívar, J. Platforms for Production of Protein-Based Vaccines: From Classical to Next-Generation Strategies. Biomolecules 2021, 11, 1072. [Google Scholar] [CrossRef]
- Liu, C.; Li, J.; Yao, Q.; Gao, Z.; Cheng, Y.; Zhou, M.; Tang, Y.; Sun, L.; Dai, J.; Cao, G.; et al. AAV-expressed G protein induces robust humoral and cellular immune response and provides durable protection from rabies virus challenges in mice. Vet. Microbiol. 2020, 242, 108578. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, D. Adenoviral vector-based strategies against infectious disease and cancer. Hum. Vaccines Immunother. 2016, 12, 2064–2074. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Mondal, M.; Zhou, D. Development of novel vaccine vectors: Chimpanzee adenoviral vectors. Hum. Vaccines Immunother. 2018, 14, 1679–1685. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Chi, Y.; Zhou, D. Development of novel vaccines against infectious diseases based on Chimpanzee adenoviral vector. Methods Mol. Biol. (Clifton N. J.). 2017, 1581, 3–13. [Google Scholar]
- Napolitano, F.; Merone, R.; Abbate, A.; Ammendola, V.; Horncastle, E.; Lanzaro, F.; Esposito, M.; Contino, A.M.; Sbrocchi, R.; Sommella, A.; et al. A next generation vaccine against human rabies based on a single dose of a chimpanzee adenovirus vector serotype C. PLoS Negl. Trop. Dis. 2020, 14, e0008459. [Google Scholar] [CrossRef]
- Li, J.; Faber, M.; Papaneri, A.; Faber, M.L.; McGettigan, J.P.; Schnell, M.J.; Dietzschold, B. A single immunization with a recombinant canine adenovirus expressing the rabies virus G protein confers protective immunity against rabies in mice. Virology 2006, 356, 147–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Liu, Y.; Fooks, A.R.; Zhang, F.; Hu, R. Oral vaccination of dogs (Canis familiaris) with baits containing the recombinant rabies-canine adenovirus type-2 vaccine confers long-lasting immunity against rabies. Vaccine 2008, 26, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.; Joshi, L.R.; Rodrigues, F.S.; Anziliero, D.; Frandoloso, R.; Kutish, G.F.; Rock, D.L.; Weiblen, R.; Flores, E.F.; Diel, D.G. Immunogenicity of ORFV-based vectors expressing the rabies virus glycoprotein in livestock species. Virology 2017, 511, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Park, J.E.; Shin, H.J. Immunogenicity of replication-deficient vesicular stomatitis virus based rabies vaccine in mice. Vet. Q. 2021, 41, 202–209. [Google Scholar] [CrossRef]
- Liang, M.; Wang, Z.; Wu, C.; Xiong, S.; Zhao, L.; Dong, C. A single dose of recombinant VSV-RABVG vaccine provides full protection against RABV challenge. Virol. Sin. 2022, 37, 455–458. [Google Scholar] [CrossRef]
- Stading, B.R.; Osorio, J.E.; Velasco-Villa, A.; Smotherman, M.; Kingstad-Bakke, B.; Rocke, T.E. Infectivity of attenuated poxvirus vaccine vectors and immunogenicity of a raccoonpox vectored rabies vaccine in the Brazilian Free-tailed bat (Tadaridabrasiliensis). Vaccine 2016, 34, 5352–5358. [Google Scholar] [CrossRef] [Green Version]
- Giel-Moloney, M.; Rumyantsev, A.A.; David, F.; Figueiredo, M.; Feilmeier, B.; Mebatsion, T.; Parrington, M.; Kleanthous, H.; Pugachev, K.V. A novel approach to a rabies vaccine based on a recombinant single-cycle flavivirus vector. Vaccine 2017, 35, 6898–6904. [Google Scholar] [CrossRef]
- Debnath, A.; Pathak, D.C.; D’silva, A.L.; Batheja, R.; Ramamurthy, N.; Vakharia, V.N.; Chellappa, M.M.; Dey, S. Newcastle disease virus vectored rabies vaccine induces strong humoral and cell mediated immune responses in mice. Vet. Microbiol. 2020, 251, 108890. [Google Scholar] [CrossRef]
- Zhao, C.; Gao, J.; Wang, Y.; Ji, L.; Qin, H.; Hu, W.; Yang, Y. A novel rabies vaccine based on a recombinant bovine herpes virus type 1 expressing rabies virus glycoprotein. Front. Microbiol. 2022, 13, 931043. [Google Scholar] [CrossRef]
- Freuling, C.M.; Hampson, K.; Selhorst, T.; Schröder, R.; Meslin, F.X.; Mettenleiter, T.C.; Müller, T. The elimination of fox rabies from Europe: Determinants of success and lessons for the future. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120142. [Google Scholar] [CrossRef] [Green Version]
- Steck, F.; Wandeler, A.; Bichsel, P.; Capt, S.; Schneider, L. Oral Immunisation of Foxes against Rabies: A Field Study. J. Vet. 1982, 29, 372–396. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.; Freuling, C.M. Rabies Vaccines for Wildlife. In Rabies and Rabies Vaccines; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 45–70. [Google Scholar]
- Müller, T.F.; Schröder, R.; Wysocki, P.; Mettenleiter, T.C.; Freuling, C.M. Spatio-temporal Use of Oral Rabies Vaccines in Fox Rabies Elimination Programmes in Europe. PLoS Negl. Trop. Dis. 2015, 9, e0003953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lafay, F.; Benejean, J.; Tuffereau, C.; Flamand, A.; Coulon, P. Vaccination against rabies: Construction and characterization of SAG2, a double avirulent derivative of SAD Bern. Vaccine 1994, 12, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Masson, E.; Cliquet, F.; Aubert, M.F.A.; Barrat, J.; Aubert, A.; Artois, M.; Schumacher, C.L. Safety study of the SAG2 rabies virus mutant in several non-target species with a view to its future use for the immunization of foxes in Europe. Vaccine 1996, 14, 1506–1510. [Google Scholar] [CrossRef]
- Wallace, R.M.; Cliquet, F.; Fehlner-Gardiner, C.; Fooks, A.R.; Sabeta, C.T.; Setién, A.A.; Tu, C.; Vuta, V.; Yakobson, B.; Yang, D.K.; et al. Role of Oral Rabies Vaccines in the Elimination of Dog-Mediated Human Rabies Deaths. Emerg. Infect. Dis. 2020, 26, e201266. [Google Scholar] [CrossRef]
- Kamp, V.T.; Friedrichs, V.; Freuling, C.; Vos, A.; Potratz, M.; Klein, A.; Zaeck, L.; Eggerbauer, E.; Schuster, P.; Kaiser, C.; et al. Comparable long-term rabies immunity in foxes after intramuscular and oral application using a third-generation oral rabies virus vaccine. Vaccines 2021, 9, 49. [Google Scholar] [CrossRef]
- Pfaff, F.; Müller, T.; Freuling, C.M.; Fehlner-Gardiner, C.; Nadin-Davis, S.; Robardet, E.; Cliquet, F.; Vuta, V.; Hostnik, P.; Mettenleiter, T.C.; et al. In-depth genome analyses of viruses from vaccine-derived rabies cases and corresponding live-attenuated oral rabies vaccines. Vaccine 2019, 37, 4758–4765. [Google Scholar] [CrossRef]
- Artois, M.; Guittré, C.; Thomas, I.; Leblois, H.; Brochier, B.; Barrat, J. Potential pathogenicity for rodents of vaccines intended for oral vaccination against rabies: A comparison. Vaccine 1992, 10, 524–528. [Google Scholar] [CrossRef]
- Chanachai, K.; Wongphruksasoong, V.; Vos, A.; Leelahapongsathon, K.; Tangwangvivat, R.; Sagarasaeranee, O.; Lekcharoen, P.; Trinuson, P.; Kasemsuwan, S. Feasibility and Effectiveness Studies with Oral Vaccination of Free-Roaming Dogs against Rabies in Thailand. Viruses 2021, 13, 571. [Google Scholar] [CrossRef]
- Smith, T.G.; Millien, M.; Vos, A.; Fracciterne, F.A.; Crowdis, K.; Chirodea, C.; Medley, A.; Chipman, R.; Qin, Y.; Blanton, J.; et al. Evaluation of immune responses in dogs to oral rabies vaccine under field conditions. Vaccine 2019, 37, 4743–4749. [Google Scholar] [CrossRef]
- Molini, U.; Hassel, R.; Ortmann, S.; Vos, A.; Loschke, M.; Shilongo, A.; Freuling, C.M.; Müller, T. Immunogenicity of the Oral Rabies Vaccine Strain SPBN GASGAS in Dogs Under Field Settings in Namibia. Front. Vet. Sci. 2021, 8, 1224. [Google Scholar] [CrossRef] [PubMed]
- Gibson, A.D.; Yale, G.; Vos, A.; Corfmat, J.; Airikkala-Otter, I.; King, A.; Wallace, R.M.; Gamble, L.; Handel, I.G.; Mellanby, R.J.; et al. Oral bait handout as a method to access roaming dogs for rabies vaccination in Goa, India: A proof of principle study. Vaccine X 2019, 1, 100015. [Google Scholar] [CrossRef] [PubMed]
- Ertl, H.C.J. Novel vaccines to human rabies. PLoS Negl. Trop. Dis. 2009, 3, e515. [Google Scholar] [CrossRef] [Green Version]
- Fooks, A.R.; Banyard, A.C.; Ertl, H.C.J. New human rabies vaccines in the pipeline. Vaccine 2019, 37, A140–A145. [Google Scholar] [CrossRef]
- Weyer, J.; Rupprecht, C.E.; Nel, L.H. Poxvirus-vectored vaccines for rabies—A review. Vaccine 2009, 27, 7198–7201. [Google Scholar] [CrossRef] [PubMed]
- Knowles, M.K.; Nadin-Davis, S.A.; Sheen, M.; Rosatte, R.; Mueller, R.; Beresford, A. Safety studies on an adenovirus recombinant vaccine for rabies (AdRG1.3-ONRAB) in target and non-target species. Vaccine 2009, 27, 6619–6626. [Google Scholar] [CrossRef] [PubMed]
- Tims, T.; Briggs, D.J.; Davis, R.D.; Moore, S.M.; Xiang, Z.; Ertl, H.C.; Fu, Z.F. Adult dogs receiving a rabies booster dose with a recombinant adenovirus expressing rabies virus glycoprotein develop high titers of neutralizing antibodies. Vaccine 2000, 18, 2804–2807. [Google Scholar] [CrossRef]
- Xiang, Z.; Gao, G.; Reyes-Sandoval, A.; Cohen, C.J.; Li, Y.; Bergelson, J.M.; Wilson, J.M.; Ertl, H.C. Novel, chimpanzee serotype 68-based adenoviral vaccine carrier for induction of antibodies to a transgene product. J. Virol. 2002, 76, 2667–2675. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Z.Q.; Gao, G.P.; Reyes-Sandoval, A.; Li, Y.; Wilson, J.M.; Ertl, H.C. Oral vaccination of mice with adenoviral vectors is not impaired by preexisting immunity to the vaccine carrier. J. Virol. 2003, 77, 10780–10789. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Fang, Z.; Xiong, J.; Yang, K.; Chi, Y.; Tang, X.; Ma, L.; Zhang, R.; Deng, F.; Lan, K.; et al. A chimpanzee adenoviral vector-based rabies vaccine protects beagle dogs from lethal rabies virus challenge. Virology 2019, 536, 32–38. [Google Scholar] [CrossRef]
- Roess, A.A.; Rea, N.; Lederman, E.; Dato, V.; Chipman, R.; Slate, D.; Reynolds, M.; Damon, I.K.; Rupprecht, C.E. National surveillance for human and pet contact with oral rabies vaccine baits, 2001–2009. J. Am. Vet. Med. 2012, 240, 163–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ura, T.; Okuda, K.; Shimada, M. Developments in Viral Vector-Based Vaccines. Vaccines 2014, 2, 624–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, N.; Okamoto, T.; Sasaki, M.; Miyamoto, S.; Takahashi, T.; Izumi, F.; Inukai, M.; Jarusombuti, S.; Okada, K.; Nakagawa, K.; et al. Safety enhancement of a genetically modified live rabies vaccine strain by introducing an attenuating Leu residue at position 333 in the glycoprotein. Vaccine 2021, 39, 3777–3784. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, Y.; Liu, H.; Zhang, X.; Baolige, D.; Zhao, S.; Hu, W.; Yang, Y. Change in the single amino acid site 83 in rabies virus glycoprotein enhances the BBB permeability and reduces viral pathogenicity. Front. Cell Dev. Biol. 2021, 8, 632957. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, B.; Lyu, Z.; Wu, Y.; Zhang, Y.; Guo, X. Single amino acid change at position 255 in rabies virus glycoprotein decreases viral pathogenicity. FASEB J. 2020, 34, 9650–9663. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Zou, J.; Li, Y.; Yu, Y. Study on an attenuated rabies virus strain CTN181-3. Biologicals 2022, 78, 10–16. [Google Scholar] [CrossRef]
- Olayan, E.; El-Khadragy, M.; Mohamed, A.F.; Mohamed, A.K.; Shebl, R.I.; Yehia, H.M. Evaluation of Different Stabilizers and Inactivating Compounds for the Enhancement of Vero Cell Rabies Vaccine Stability and Immunogenicity: In Vitro Study. Biomed. Res. Int. 2019, 2019, 4518163. [Google Scholar] [CrossRef] [Green Version]
- Byrne, J.; Knobel, D.; Moore, S.M.; Gatrell, S.; Butaye, P. The Influence of β-1,3-1,6-Glucans on Rabies Vaccination Titers in Cats. Vet. Sci. 2020, 7, 118. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, Y.; Chen, C.; Zhang, C.; Huang, F.; Zhou, M.; Chen, H.; Fu, Z.F.; Zhao, L. Colloidal Manganese Salt Improves the Efficacy of Rabies Vaccines in Mice, Cats, and Dogs. J. Virol. 2021, 95, e0141421. [Google Scholar] [CrossRef]
- Plummer, J.R.; McGettigan, J.P. Incorporating B cell activating factor (BAFF) into the membrane of rabies virus (RABV) particles improves the speed and magnitude of vaccine-induced antibody responses. PLoS Negl. Trop. Dis. 2019, 13, e0007800. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.; Chen, Y.; Zhang, J.; Pei, J.; Cui, M.; Fu, Z.F.; Zhao, L.; Zhou, M. A novel oral rabies vaccine enhances the immunogenicity through increasing dendritic cells activation and germinal center formation by expressing U-OMP19 in a mouse model. Emerg. Microbes Infect. 2021, 10, 913–928. [Google Scholar] [CrossRef] [PubMed]
- Stokes, A.; Pion, J.; Binazon, O.; Laffont, B.; Bigras, M.; Dubois, G.; Blouin, K.; Young, J.K.; Ringenberg, M.A.; Ben Abdeljelil, N.; et al. Nonclinical safety assessment of repeated administration and biodistribution of a novel rabies self-amplifying mRNA vaccine in rats. Regul. Toxicol. Pharmacol. 2020, 113, 104648. [Google Scholar] [CrossRef] [PubMed]
- Starodubova, E.S.; Kuzmenko, Y.V.; Pankova, E.O.; Latanova, A.A.; Preobrazhenskaya, O.V.; Karpov, V.L. Rabies Virus Glycoprotein with a Consensus Amino Acid Sequence and a Lysosome Targeting Signal Causes Effective Production of Antibodies in DNA-Immunized Mice. Mol. Biol. (Mosk) 2018, 52, 314–317. [Google Scholar] [CrossRef]
- Galvez-Romero, G.; Salas-Rojas, M.; Pompa-Mera, E.N.; Chávez-Rueda, K.; Aguilar-Setién, Á. Addition of C3d-P28 adjuvant to a rabies DNA vaccine encoding the G5 linear epitope enhances the humoral immune response and confers protection. Vaccine 2018, 36, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jiang, H.; Yang, R.; Zhang, S.; Zhao, W.; Hu, J.; Jiang, Y.; Yang, W.; Huang, H.; Shi, C.; et al. Construction and evaluation of recombinant Lactobacillus plantarum NC8 delivering one single or two copies of G protein fused with a DC-targeting peptide (DCpep) as novel oral rabies vaccine. Vet. Microbiol. 2020, 251, 108906. [Google Scholar] [CrossRef] [PubMed]
- Shipley, R.; Wright, E.; Lean, F.Z.X.; Selden, D.; Horton, D.L.; Fooks, A.R.; Banyard, A.C. Assessing Rabies Vaccine Protection against a Novel Lyssavirus, Kotalahti Bat Lyssavirus. Viruses 2021, 13, 947. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, F.; Merone, R.; Abbate, A.; Ammendola, V.; Horncastle, E.; Lanzaro, F.; Esposito, M.; Contino, A.M.; Sbrocchi, R.; Sommella, A.; et al. Correction: A next generation vaccine against human rabies based on a single dose of a chimpanzee adenovirus vector serotype C. PLoS Negl. Trop. Dis. 2021, 15, e0009348. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.K.; Bharti, O.K.; Prakash, V.C.; Lakshman, D.; Isloor, S.; Panda, A.K.; Sharma, J. Survival of 21 Dogs after Post-exposure Prophylaxis using Intra-dermal Rabies Vaccine in the Pre-scapular Region and Emergency Use of Expired Equine Rabies Immunoglobulin for Local Wound Infiltration in Victims of Rabid Dog Bite using One Health Approach. Epidemiol. Int. 2022, 7, 12–18. [Google Scholar]
- Namratha. Studies on Immunogenicity and Duration of Immunity of Rabies Vaccine Administered by Different Route. Master’s Thesis, Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar, India, 2021. [Google Scholar]
- Swathi, G. Comparative Evaluation of Intradermal vis-a-vis Intramuscular Pre-Exposure Prophylactic Vaccination against Rabies in Cattle. Master’s Thesis, Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar, India, 2022. [Google Scholar]
- Vescovo, P.; Rettby, N.; Ramaniraka, N.; Liberman, J.; Hart, K.; Cachemaille, A.; Piveteau, L.D.; Zanoni, R.; Bart, P.A.; Pantaleo, G. Safety, tolerability and efficacy of intradermal rabies immunization with DebioJect™. Vaccine 2017, 35, 1782–1788. [Google Scholar] [CrossRef]
- World Health Organization. Rabies vaccines: WHO position paper, April 2018–Recommendations. Vaccine 2018, 36, 5500–5503. [Google Scholar] [CrossRef]
- Camelo, S.; Lafage, M.; Lafon, M. Absence of the p55 Kd TNF-alpha receptor promotes survival in rabies virus acute encephalitis. J. Neurovirol. 2000, 6, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.C.; Rossiter, J.P.; Lafon, M. Expression of Toll-like receptor 3 in the human cerebellar cortex in rabies, herpes simplex encephalitis, and other neurological diseases. J. Neurovirol. 2006, 12, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Jochmans, D.; Neyts, J. The path towards effective antivirals against rabies. Vaccine 2019, 37, 4660–4662. [Google Scholar] [CrossRef]
- Taherizadeh, M.; Rouzbeh Bashar, R.; Golahdouz, M.; Pourhossein, B.; Fazeli, M. Rabies wonderful Strategies to Escape the Immune System. Dairy Vet. Sci. J. 2019, 11, 555801. [Google Scholar]
- Lodmell, D.L.; Ewalt, L.C. Post-exposure DNA vaccination protects mice against rabies virus. Vaccine 2001, 19, 2468–2473. [Google Scholar] [CrossRef]
- Lafon, M. Immunology. In Rabies, 2nd ed.; Jackson, A.C., Wunner, W.H., Eds.; Elsevier Academic Press: London, UK, 2007; pp. 489–504. [Google Scholar]
- World Health Organisation. Position paper on rabies vaccines. Wkly. Epidemiol. Rec. 2018, 93, 201–220. [Google Scholar]
- Kaur, M.; Garg, R.; Singh, S.; Bhatnagar, R. Rabies vaccines: Where do we stand, where are we heading? Expert Rev. Vaccines 2015, 14, 369–381. [Google Scholar] [CrossRef]
- Shantavasinkul, P.; Wilde, H. Postexposure Prophylaxis for Rabies in Resource-Limited/Poor Countries. Adv. Virus Res. 2011, 79, 291–307. [Google Scholar]
- Huang, C.T.; Li, Z.; Huang, Y.; Zhang, G.; Zhou, M.; Chai, Q.; Wu, H.; Fu, Z.F. Enhancement of blood-brain barrier permeability is required for intravenously administered virus neutralizing antibodies to clear an established rabies virus infection from the brain and prevent the development of rabies in mice. Antivir. Res. 2014, 110, 132–141. [Google Scholar] [CrossRef]
- Brandao, P.E.; Castilho, J.G.; Fahl, W.; Carnieli, P., Jr.; Oliveira Rde, N.; Macedo, C.I.; Carrieri, M.L.; Kotait, I. Short-interfering rnas as antivirals against rabies. Braz. J. Infect. Dis. 2007, 11, 224–225. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.X.; Wang, H.L.; Guo, X.F.; Yang, Y.J.; Ma, J.Z.; Wang, T.C.; Gao, Y.W.; Zhao, Y.K.; Yang, S.T.; Xia, X.Z. Adeno-associated viruses serotype 2-mediated rna interference efficiently inhibits rabies virus replication in vitro and in vivo. J. Vet. Med. Sci. 2013, 75, 1355–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, T.P.; Nel, L.H. Rabies Prophylactic and Treatment Options: An in vitro study of siRNA- and aptamer-based therapeutics. Viruses 2021, 13, 881. [Google Scholar] [CrossRef] [PubMed]
Vaccines | Vaccine Name | Research Focus | Research Outcomes | References |
---|---|---|---|---|
Modified Live rabies vaccine | ERA- G333 Leu | Arg-to-Leu mutation at G333 using reverse genetics in ERA strain | Increased neutralizing antibody response and protective immunity in 6-week-old mice and increased their survival rate | [140] |
rSAD- K83R | Lys83-to-Arg83 and Pro367-to-Ser367 in the G protein of the RABV SAD strain using site- directed mutagenesis. | Increased the level of RABV-G expression, which also caused more apoptosis in infected cells The K83 mutation increased the expression of MMP-2 and MMP-9 inDCs and increased BBB permeability | [141] | |
rGDSH- D255G | Asp255-to-Gly 255 mutation | Reduced pathogenicity andneurotropismof RABV in adult mice | [142] | |
CTN181 –3 |
G276 (Leu-to-Val) and L1496 (Met -to-Trp)in the parental virus strain CTN-1 | Raised RVNA levels and seroconversion rates to 100% | [143] | |
Inactivated rabies Vaccine | - * | Vero Cell Rabies Vaccine Inactivated and stabilized using different inactivating compounds |
Increased IgG levels | [144] |
- |
Studied the potency of βPL, BEI, and H2O2 inactivated rabies vaccines | Increased the levels of IgG with BEI and H2O2 inactivaed vaccines. Significant levels of IFN-γ with BEI inactivaed vaccines and elevation of IL-5 levels with βPL and BEI inactivaed vaccines. | [75] | |
Adjuvanted rabies vaccine | - | Effect of adjuvanticity β-glucans on inactivated rabies vaccine (Rabisin®) | Amplified adaptive immune response | [74] |
- | Effect of 1,3-1,6-glucans on cats’ rabies immunization levels | Promoted the synthesis of RVNA | [145] | |
- | Effect of colloidal manganese salts in enhancingrabies vaccination effectiveness in mice, cats, and dogs | Boosted the immunogenicity and protection rate of rabies vaccines by increasing the numbers of mature DCs, Tfh cells, GC B cells, PCs, and RABV-specific ASCs in mouse models | [146] | |
RABV- ED51- mBAFF | Studied the immune response of B cell activating factor (BAFF) withrabies virus immune response | Raised the level of particular IgM, IgG, IgG2c/IgG1, and RVNA synthesis | [147] | |
LBNSE- U-OMP 19 |
Investigated the immunogenicity of the recombinant LBNSE-U- OMP19 |
Increased levels of RABV-neutralizing antibodies and better protection in mice immunized following oral immunization | [148] | |
Nuclei based acid rabies vaccine | RG SAM (CNE) | Assessed the rabies self-amplifying mRNA vaccine in rats | Increased immune response in rats | [149] |
pVax-G -cons- CD63 | Studied the effectiveness of the rabies virus glycoprotein with a consensus amino acid sequence and a lysosome-targeting signal | Increased immune response in mice | [150] | |
pVaxF1 | Study of vaccination against rabies using a DNA vaccine expressing the G5 linear epitope and the C3d-P28 adjuvant | Increased the production of RVNAs in mice | [151] | |
Recombinant vaccines | NC8- pSIP409 -dRVG | As a new oral rabies vaccine, recombinant Lactobacillus plantarum NC8 delivers one or two copies of G protein linked with a DC-targeting peptide (DCpep) | The NC8-pSIP409-dRVG could protect 60% of inoculated mice against deadly RABV challenge, even though the titers of RABV neutralizing antibody (VNA) were less than the threshold of 0.5 IU/mL | [152] |
cSN- KBLV |
The full-length genome clone of SAD-B19 was constructed with the glycoprotein of Kotalahti Bat Lyssavirus | High levels of virus-neutralizing antibodies | [153] | |
Viral vector vaccines | rAAV-G | AAV-expressed G protein | Encouraged production of durable RVNAs in mice | [102] |
ChAd68 -Gp | Chimpanzee adenoviral vector-based rabies vaccine | Beagle dogs were completely protected even after receiving low doses of ChAd68-Gp intramuscularly and elicited potent immune responses | [137] | |
ChAd155 -RG |
Chimpanzee adenovirus vector serotype C expressing RABV-G | Augmented production of durable levels of RVNAs in mice, rabbits, and macaques | [154] | |
VSV/RABV-GP | Replication-deficient vesicular stomatitis virus expressing RABV-G | Increased levels of RVNAs in mice | [110] | |
VSV- RABVG |
A replication- competent recombinant vesicular stomatitis virus expressing RABV-G | Asingle dose of VSV-RABVG intranasally resulted incomplete resistancetoRABV challenge in mice | [111] | |
rNDV- R2B- FPCS- RVG |
Mesogenic Newcastle disease virus (NDV) strain R2B expressing RABV-G | Generation of robust humoral and CMI responses in mice | [114] | |
BHV-1 -ΔgE-G |
Recombinant Bovine Herpes Virus Type 1-expressing RABV-G |
Intramuscularly inoculated mice and cattle with no visible clinical signs had a protective level of RABV-specific virus-neutralizing antibody (VNA) | [115] | |
Intra Dermal Vaccines | A combined treatment protocol for rabies wound infiltration with eRIG and 5-day (0, 3, 7, 14, and 28) PEP regimen through an intradermal route in humans, dog, and cattle | Intradermal route was life saving in humans, cattle, and dogs | [155] | |
Inactivated cell culture rabies vaccine administration viaSC, IM, and ID in dogs | ID was found to be safe and immunogenic in dogs | [156] | ||
Effectiveness of rabies pre-exposure prophylactic vaccines given withvarious methods in cattle | Appreciable levels of antibodies that neutralize the rabies virus (RVNA) through ID route in cattle | [157] |
Vaccines | Advantages | Disadvantages |
---|---|---|
Modified live rabies vaccine | More immunogenic, long-lasting immunity with a single dose, economical | Potential reversion of virulence, more sensitive to changes in temperature, accidents of self-inoculation with MLV rabies vaccine pose a high risk to the vaccinator |
Inactivated rabies vaccine | No potential reversion of virulence and safe | Low immunogenicity, requirement of repeated booster doses, expensive |
Adjuvanted rabies vaccine | Immediate immune responses to produce higher levels and longer-lasting antibodies, elicit potent cellular and humoral immunity by enhancing antigen presentation to antigen-specific immune cells | Adverse side-effects of most of the adjuvant formulations |
Protein/peptide vaccine | Safe vaccines, suitable in immunocompromised animals, peptides that block specific viral replication processes show promise as therapeutic vaccines | Poorly immunogenic and only capable of eliciting modest immune reactions, not cost-effective due to the requirement of extensive purification of the expressed protein |
Nucleic acid vaccine | Helps in mass vaccinations, triggers both humoral and cellular immune responses | Poor immunogenicity, slow onset and modest induction of protective immune responses, multiple immunizations of high DNA doses are often required to produce enough antigen for optimal immune responses, potential risk of integration with the host genome |
Genetically modifies vaccine | Safe, even in immunocompromised subjects, elicits high VNA titers and prompts early immune responses against RABV infection | Potential reversion of virulence, probable recombination with wild strains |
Viral vector vaccines | Viral vectors carry PAMPs, which will elicit inflammatory responses needed for initiating adaptive immune responses, more immunogenic, useful as oral rabies vaccine candidates | Production of viral vectors is more complicated and costly, too reactogenic for use in humans, sometimes inadvertent infection of individuals with contact to the vaccine, immunity against the vector |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natesan, K.; Isloor, S.; Vinayagamurthy, B.; Ramakrishnaiah, S.; Doddamane, R.; Fooks, A.R. Developments in Rabies Vaccines: The Path Traversed from Pasteur to the Modern Era of Immunization. Vaccines 2023, 11, 756. https://doi.org/10.3390/vaccines11040756
Natesan K, Isloor S, Vinayagamurthy B, Ramakrishnaiah S, Doddamane R, Fooks AR. Developments in Rabies Vaccines: The Path Traversed from Pasteur to the Modern Era of Immunization. Vaccines. 2023; 11(4):756. https://doi.org/10.3390/vaccines11040756
Chicago/Turabian StyleNatesan, Krithiga, Shrikrishna Isloor, Balamurugan Vinayagamurthy, Sharada Ramakrishnaiah, Rathnamma Doddamane, and Anthony R. Fooks. 2023. "Developments in Rabies Vaccines: The Path Traversed from Pasteur to the Modern Era of Immunization" Vaccines 11, no. 4: 756. https://doi.org/10.3390/vaccines11040756
APA StyleNatesan, K., Isloor, S., Vinayagamurthy, B., Ramakrishnaiah, S., Doddamane, R., & Fooks, A. R. (2023). Developments in Rabies Vaccines: The Path Traversed from Pasteur to the Modern Era of Immunization. Vaccines, 11(4), 756. https://doi.org/10.3390/vaccines11040756