Immunogenicity Differences of the ChAdOx1 nCoV-19 Vaccine According to Pre-Existing Adenovirus Immunity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Selection
2.3. Adenovirus Titer Immunoassay
2.4. Immunogenicity of the ChAdOx1 nCoV-19 Vaccine
2.5. Reactogenicity to the ChAdOx1 nCoV-19 Vaccine
2.6. Statistical Analysis
3. Results
3.1. Characteristics of Patients Who Received Two Doses of the ChAdOx1 nCoV-19 Vaccine
3.2. Immunogenicity of the ChAdOx1 nCoV-19 Vaccine
3.3. Reactogenicity to the ChAdOx1 nCoV-19 Vaccine
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buchbinder, S.P.; Mehrotra, D.V.; Duerr, A.; Fitzgerald, D.W.; Mogg, R.; Li, D.; Gilbert, P.B.; Lama, J.R.; Marmor, M.; Del Rio, C.; et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): A double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 2008, 372, 1881–1893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreppel, F.; Hagedorn, C. Capsid and Genome Modification Strategies to Reduce the Immunogenicity of Adenoviral Vectors. Int. J. Mol. Sci. 2021, 22, 2417. [Google Scholar] [CrossRef] [PubMed]
- Zaiss, A.K.; Machado, H.B.; Herschman, H.R. The influence of innate and pre-existing immunity on adenovirus therapy. J. Cell. Biochem. 2009, 108, 778–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, J.P., 3rd; Fishbein, M.; Echavarria, M. Adenovirus. Semin. Respir. Crit. Care Med. 2011, 32, 494–511. [Google Scholar] [CrossRef]
- Harro, C.D.; Robertson, M.N.; Lally, M.A.; O’Neill, L.D.; Edupuganti, S.; Goepfert, P.A.; Mulligan, M.J.; Priddy, F.H.; Dubey, S.A.; Kierstead, L.S.; et al. Safety and immunogenicity of adenovirus-vectored near-consensus HIV type 1 clade B gag vaccines in healthy adults. AIDS Res. Hum. Retrovir. 2009, 25, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Cotter, M.J.; Zaiss, A.K.; Muruve, D.A. Neutrophils interact with adenovirus vectors via Fc receptors and complement receptor 1. J. Virol. 2005, 79, 14622–14631. [Google Scholar] [CrossRef] [Green Version]
- Zaiss, A.K.; Vilaysane, A.; Cotter, M.J.; Clark, S.A.; Meijndert, H.C.; Colarusso, P.; Yates, R.M.; Petrilli, V.; Tschopp, J.; Muruve, D.A. Antiviral antibodies target adenovirus to phagolysosomes and amplify the innate immune response. J. Immunol. 2009, 182, 7058–7068. [Google Scholar] [CrossRef] [Green Version]
- Zak, D.E.; Andersen-Nissen, E.; Peterson, E.R.; Sato, A.; Hamilton, M.K.; Borgerding, J.; Krishnamurty, A.T.; Chang, J.T.; Adams, D.J.; Hensley, T.R.; et al. Merck Ad5/HIV induces broad innate immune activation that predicts CD8+ T-cell responses but is attenuated by preexisting Ad5 immunity. Proc. Natl. Acad. Sci. USA 2012, 109, E3503–E3512. [Google Scholar] [CrossRef] [Green Version]
- Varnavski, A.N.; Calcedo, R.; Bove, M.; Gao, G.; Wilson, J.M. Evaluation of toxicity from high-dose systemic administration of recombinant adenovirus vector in vector-naive and pre-immunized mice. Gene Ther. 2005, 12, 427–436. [Google Scholar] [CrossRef] [Green Version]
- Seregin, S.S.; Amalfitano, A. Overcoming pre-existing adenovirus immunity by genetic engineering of adenovirus-based vectors. Expert Opin. Biol. Ther. 2009, 9, 1521–1531. [Google Scholar] [CrossRef]
- Shrotri, M.; Navaratnam, A.M.D.; Nguyen, V.; Byrne, T.; Geismar, C.; Fragaszy, E.; Beale, S.; Fong, W.L.E.; Patel, P.; Kovar, J.; et al. Spike-antibody waning after second dose of BNT162b2 or ChAdOx1. Lancet 2021, 398, 385–387. [Google Scholar] [CrossRef] [PubMed]
- Naranbhai, V.; Garcia-Beltran, W.F.; Chang, C.C.; Berrios Mairena, C.; Thierauf, J.C.; Kirkpatrick, G.; Onozato, M.L.; Cheng, J.; St Denis, K.J.; Lam, E.C.; et al. Comparative Immunogenicity and Effectiveness of mRNA-1273, BNT162b2, and Ad26.COV2.S COVID-19 Vaccines. J. Infect. Dis. 2022, 225, 1141–1150. [Google Scholar] [CrossRef] [PubMed]
- Bewig, B.; Schmidt, W.E. Accelerated titering of adenoviruses. Biotechniques 2000, 28, 870–873. [Google Scholar] [CrossRef]
- Cheng, S.M.S.; Mok, C.K.P.; Leung, Y.W.Y.; Ng, S.S.; Chan, K.C.K.; Ko, F.W.; Chen, C.; Yiu, K.; Lam, B.H.S.; Lau, E.H.Y.; et al. Neutralizing antibodies against the SARS-CoV-2 Omicron variant BA.1 following homologous and heterologous CoronaVac or BNT162b2 vaccination. Nat. Med. 2022, 28, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Lau, E.H.; Hui, D.S.; Tsang, O.T.; Chan, W.H.; Kwan, M.Y.; Chiu, S.S.; Cheng, S.M.; Ko, R.L.; Li, J.K.; Chaothai, S.; et al. Long-term persistence of SARS-CoV-2 neutralizing antibody responses after infection and estimates of the duration of protection. EClinicalMedicine 2021, 41, 101174. [Google Scholar] [CrossRef] [PubMed]
- Perera, R.A.; Mok, C.K.; Tsang, O.T.; Lv, H.; Ko, R.L.; Wu, N.C.; Yuan, M.; Leung, W.S.; Chan, J.M.; Chik, T.S.; et al. Serological assays for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), March 2020. Eurosurveillance 2020, 25, 2000421. [Google Scholar] [CrossRef] [Green Version]
- Lynch, J.P., 3rd; Kajon, A.E. Adenovirus: Epidemiology, Global Spread of Novel Serotypes, and Advances in Treatment and Prevention. Semin. Respir. Crit. Care Med. 2016, 37, 586–602. [Google Scholar] [CrossRef] [Green Version]
- Lynch, J.P., 3rd; Kajon, A.E. Adenovirus: Epidemiology, Global Spread of Novel Types, and Approach to Treatment. Semin. Respir. Crit. Care Med. 2021, 42, 800–821. [Google Scholar] [CrossRef]
- Wold, W.S.; Toth, K. Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr. Gene Ther. 2013, 13, 421–433. [Google Scholar] [CrossRef]
- Kolavic-Gray, S.A.; Binn, L.N.; Sanchez, J.L.; Cersovsky, S.B.; Polyak, C.S.; Mitchell-Raymundo, F.; Asher, L.V.; Vaughn, D.W.; Feighner, B.H.; Innis, B.L. Large epidemic of adenovirus type 4 infection among military trainees: Epidemiological, clinical, and laboratory studies. Clin. Infect. Dis. 2002, 35, 808–818. [Google Scholar] [CrossRef] [Green Version]
- Muruve, D.A.; Barnes, M.J.; Stillman, I.E.; Libermann, T.A. Adenoviral gene therapy leads to rapid induction of multiple chemokines and acute neutrophil-dependent hepatic injury in vivo. Hum. Gene Ther. 1999, 10, 965–976. [Google Scholar] [CrossRef] [PubMed]
- Yeung, R.; Eshaghi, A.; Lombos, E.; Blair, J.; Mazzulli, T.; Burton, L.; Drews, S.J. Characterization of culture-positive adenovirus serotypes from respiratory specimens in Toronto, Ontario, Canada: September 2007–June 2008. Virol. J. 2009, 6, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folegatti, P.M.; Ewer, K.J.; Aley, P.K.; Angus, B.; Becker, S.; Belij-Rammerstorfer, S.; Bellamy, D.; Bibi, S.; Bittaye, M.; Clutterbuck, E.A.; et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020, 396, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Farina, S.F.; Gao, G.P.; Xiang, Z.Q.; Rux, J.J.; Burnett, R.M.; Alvira, M.R.; Marsh, J.; Ertl, H.C.; Wilson, J.M. Replication-defective vector based on a chimpanzee adenovirus. J. Virol. 2001, 75, 11603–11613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folegatti, P.M.; Jenkin, D.; Morris, S.; Gilbert, S.; Kim, D.; Robertson, J.S.; Smith, E.R.; Martin, E.; Gurwith, M.; Chen, R.T. Vaccines based on the replication-deficient simian adenoviral vector ChAdOx1: Standardized template with key considerations for a risk/benefit assessment. Vaccine 2022, 40, 5248–5262. [Google Scholar] [CrossRef]
- Rux, J.J.; Kuser, P.R.; Burnett, R.M. Structural and phylogenetic analysis of adenovirus hexons by use of high-resolution X-ray crystallographic, molecular modeling, and sequence-based methods. J. Virol. 2003, 77, 9553–9566. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Z.; Gao, G.; Reyes-Sandoval, A.; Cohen, C.J.; Li, Y.; Bergelson, J.M.; Wilson, J.M.; Ertl, H.C. Novel, chimpanzee serotype 68-based adenoviral vaccine carrier for induction of antibodies to a transgene product. J. Virol. 2002, 76, 2667–2675. [Google Scholar] [CrossRef] [Green Version]
- Dudareva, M.; Andrews, L.; Gilbert, S.C.; Bejon, P.; Marsh, K.; Mwacharo, J.; Kai, O.; Nicosia, A.; Hill, A.V. Prevalence of serum neutralizing antibodies against chimpanzee adenovirus 63 and human adenovirus 5 in Kenyan children, in the context of vaccine vector efficacy. Vaccine 2009, 27, 3501–3504. [Google Scholar] [CrossRef]
- Zhao, H.; Xu, C.; Luo, X.; Wei, F.; Wang, N.; Shi, H.; Ren, X. Seroprevalence of Neutralizing Antibodies against Human Adenovirus Type-5 and Chimpanzee Adenovirus Type-68 in Cancer Patients. Front. Immunol. 2018, 9, 335. [Google Scholar] [CrossRef] [Green Version]
- Ersching, J.; Hernandez, M.I.; Cezarotto, F.S.; Ferreira, J.D.; Martins, A.B.; Switzer, W.M.; Xiang, Z.; Ertl, H.C.; Zanetti, C.R.; Pinto, A.R. Neutralizing antibodies to human and simian adenoviruses in humans and New-World monkeys. Virology 2010, 407, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Z.; Li, Y.; Cun, A.; Yang, W.; Ellenberg, S.; Switzer, W.M.; Kalish, M.L.; Ertl, H.C. Chimpanzee adenovirus antibodies in humans, sub-Saharan Africa. Emerg. Infect. Dis. 2006, 12, 1596–1599. [Google Scholar] [CrossRef]
- Sekine, T.; Perez-Potti, A.; Rivera-Ballesteros, O.; Strålin, K.; Gorin, J.B.; Olsson, A.; Llewellyn-Lacey, S.; Kamal, H.; Bogdanovic, G.; Muschiol, S.; et al. Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19. Cell 2020, 183, 158–168.e114. [Google Scholar] [CrossRef] [PubMed]
- Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 1205–1211. [Google Scholar] [CrossRef] [PubMed]
- Abbink, P.; Lemckert, A.A.; Ewald, B.A.; Lynch, D.M.; Denholtz, M.; Smits, S.; Holterman, L.; Damen, I.; Vogels, R.; Thorner, A.R.; et al. Comparative seroprevalence and immunogenicity of six rare serotype recombinant adenovirus vaccine vectors from subgroups B and D. J. Virol. 2007, 81, 4654–4663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasaro, M.O.; Ertl, H.C. New insights on adenovirus as vaccine vectors. Mol. Ther. 2009, 17, 1333–1339. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.C.; Guan, X.H.; Li, Y.H.; Huang, J.Y.; Jiang, T.; Hou, L.H.; Li, J.X.; Yang, B.F.; Wang, L.; Wang, W.J.; et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2020, 396, 479–488. [Google Scholar] [CrossRef] [PubMed]
Total (n = 68) | Adenovirus Immunity | p Value | ||
---|---|---|---|---|
Negative (n = 19, 27.9%) | Positive (n = 49, 72.1%) | |||
Age (years) | 55 (36–64) | 40 (30–61) | 56 (37–65) | 0.158 |
Male sex (%) | 34 (50.0%) | 10 (52.6%) | 24 (49.0%) | 0.787 |
Body mass index (kg/m2) | 22.1 (20.5–24.6) | 23.0 (20.8–25.0) | 21.5 (20.1–24.4) | 0.403 |
Hypertension | 15 (22.1%) | 3 (15.8%) | 12 (24.5%) | 0.530 |
Diabetes mellitus | 11 (16.2%) | 1 (5.3%) | 10 (20.4%) | 0.163 |
Coronary artery occlusive disease | 2 (2.9%) | 2 (10.5%) | 0 (0.0%) | 0.075 |
Congestive heart failure | 2 (2.9%) | 1 (5.3%) | 1 (2.0%) | 0.484 |
Peripheral vascular disease | 6 (8.8%) | 3 (15.8%) | 3 (6.1%) | 0.338 |
Solid tumor | 34 (50.0%) | 8 (42.1%) | 26 (53.1%) | 0.590 |
Chronic kidney disease | 3 (4.4%) | 0 (0.0%) | 3 (6.1%) | 0.554 |
Chronic obstructive pulmonary disease | 5 (7.4%) | 2 (10.5%) | 3 (6.1%) | 0.614 |
Liver disease | 4 (5.9%) | 1 (5.3%) | 3 (6.1%) | 0.999 |
Connective tissue disease | 1 (1.5%) | 0 (0.0%) | 1 (2.0%) | 0.999 |
Peptic ulcer disease | 2 (2.9%) | 2 (10.5%) | 0 (0.0%) | 0.075 |
Charlson comorbidity index | 3 (0–8) | 0 (0–9) | 4 (0–8) | 0.880 |
Intervals (days) | ||||
Interval between the first ChAdOx1 nCoV-19 dose and T1 | 21.0 (18.0–24.0) | 21.5 (18.0–24.0) | 20.0 (18.5–23.5) | 0.951 |
Interval between the first ChAdOx1 nCoV-19 dose and T2 | 71.0 (68.0–76.0) | 70.0 (67.5–74.5) | 71.0 (68.0–76.5) | 0.625 |
Interval between the second ChAdOx1 nCoV-19 dose and T3 | 16.0 (13.0–20.0) | 15.5 (13.0–16.5) | 18.0 (13.5–23.5) | 0.143 |
Interval between the second ChAdOx1 nCoV-19 dose and T4 | 103.0 (97.0–109.0) | 100.0 (96.0–105.0) | 104.0 (97.5–118.5) | 0.134 |
Immunogenicity | Total (n = 68) | Adenovirus Immunity | p Value | |
---|---|---|---|---|
Negative (n = 19, 27.9%) | Positive (n = 49, 72.1%) | |||
PRNT50 a at T0 | 5.07 (3.04–9.55) | 5.35 (3.84–14.39) | 3.77 (1.43–9.35) | 0.231 |
Spike (S)-specific IgG titers at T0 | 0.4 (0.4–0.4) | 0.4 (0.4–0.4) | 0.4 (0.4–0.4) | 0.479 |
PRNT50 at T1 | 146.5 (57.3–271.5) | 245.2 (142.6–377.1) | 94.1 (44.4–157.5) | 0.021 b |
S-specific IgG titers at T1 | 5.0 (0.4–31.6) | 29.6 (6.6–75.3) | 14.0 (1.6–84.5) | 0.109 |
PRNT50 at T2 | 37.6 (19.3–100.1) | 50.0 (22.7–105.4) | 33.6 (18.9–98.4) | 0.774 |
S-specific IgG titers at T2 | 31.9 (6.1–74.1) | 56.4 (36.6–125.0) | 51.0 (17.9–122.3) | 0.034 c |
PRNT50 at T3 | 432.2 (163.5–904.8) | 647.5 (283.2–1014.3) | 352.4 (149.2–867.9) | 0.292 |
S-specific IgG titers at T3 | 415.5 (165.3–831.0) | 629.5 (451.5–926.5) | 555.0 (287.3–926.0) | 0.049 c |
PRNT50 at T4 | 117.8 (89.8–262.3) | 245.1 (96.5–432.2) | 108.8 (85.8–166.5) | 0.065 |
S-specific IgG titers at T4 | 245.0 (141.3–339.0) | 274.5 (160.5–655.3) | 176.0 (94.3–255.3) | 0.033 c |
Seroconversion rate | ||||
After the first dose | 51 (75.0%) | 16 (84.2%) | 35 (71.4%) | 0.359 |
After the second dose | 68 (100.0%) | 19 (100.0%) | 49 (100.0%) |
Reactogenicity | Total (n = 68) | Adenovirus Immunity | p Value | |
---|---|---|---|---|
Negative (n = 19, 27.9%) | Positive (n = 49, 72.1%) | |||
Use of antipyretic medication | 48 (72.7%) | 15 (78.9%) | 33 (70.2%) | 0.471 |
Rash | 6 (9.1%) | 2 (10.5%) | 4 (8.5%) | 0.999 |
Edema | 7 (10.6%) | 3 (15.8%) | 4 (8.5%) | 0.401 |
Vomiting | 1 (1.5%) | 0 (0.0%) | 1 (2.1%) | 0.999 |
Diarrhea | 5 (7.6%) | 2 (10.5%) | 3 (6.4%) | 0.621 |
Headache | 28 (42.4%) | 11 (57.9%) | 17 (36.2%) | 0.106 |
Fatigue | 38 (57.6%) | 12 (63.2%) | 26 (55.3%) | 0.560 |
Chills | 29 (43.9%) | 14 (73.7%) | 15 (31.9%) | 0.002 a |
Myalgia | 39 (59.1%) | 12 (63.2%) | 27 (57.4%) | 0.669 |
Arthralgia | 21 (31.8%) | 7 (36.8%) | 14 (29.8%) | 0.577 |
Fever | 23 (34.8%) | 8 (42.1%) | 15 (31.9%) | 0.431 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Kim, C.; Lee, J.A.; Lee, S.J.; Lee, K.H.; Kim, J.H.; Ahn, J.Y.; Jeong, S.J.; Ku, N.S.; Yeom, J.-S.; et al. Immunogenicity Differences of the ChAdOx1 nCoV-19 Vaccine According to Pre-Existing Adenovirus Immunity. Vaccines 2023, 11, 784. https://doi.org/10.3390/vaccines11040784
Kim J, Kim C, Lee JA, Lee SJ, Lee KH, Kim JH, Ahn JY, Jeong SJ, Ku NS, Yeom J-S, et al. Immunogenicity Differences of the ChAdOx1 nCoV-19 Vaccine According to Pre-Existing Adenovirus Immunity. Vaccines. 2023; 11(4):784. https://doi.org/10.3390/vaccines11040784
Chicago/Turabian StyleKim, Jinnam, Changhyup Kim, Jung Ah Lee, Se Ju Lee, Ki Hyun Lee, Jung Ho Kim, Jin Young Ahn, Su Jin Jeong, Nam Su Ku, Joon-Sup Yeom, and et al. 2023. "Immunogenicity Differences of the ChAdOx1 nCoV-19 Vaccine According to Pre-Existing Adenovirus Immunity" Vaccines 11, no. 4: 784. https://doi.org/10.3390/vaccines11040784
APA StyleKim, J., Kim, C., Lee, J. A., Lee, S. J., Lee, K. H., Kim, J. H., Ahn, J. Y., Jeong, S. J., Ku, N. S., Yeom, J.-S., Song, Y. G., & Choi, J. Y. (2023). Immunogenicity Differences of the ChAdOx1 nCoV-19 Vaccine According to Pre-Existing Adenovirus Immunity. Vaccines, 11(4), 784. https://doi.org/10.3390/vaccines11040784