Cellular and Humoral Immune Responses to Vaccination for COVID-19 Are Negatively Impacted by Senescent T Cells: A Case Report
Abstract
:1. Introduction
2. Detailed Case Description
2.1. Materials and Methods
2.2. Results
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gandhi, R.T.; Lynch, J.B.; Del Rio, C. Mild or Moderate COVID-19. N. Engl. J. Med. 2020, 383, 1757–1766. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, S.F.; Ho, Y.C. SARS-CoV-2: A storm is raging. J. Clin. Invest. 2020, 130, 2202–2205. [Google Scholar] [CrossRef]
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Lurie, N.; Saville, M.; Hatchett, R.; Halton, J. Developing COVID-19 Vaccines at Pandemic Speed. N. Engl. J. Med. 2020, 382, 1969–1973. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zeng, H.; Gu, J.; Li, H.; Zheng, L.; Zou, Q. Progress and prospects on vaccine development against SARS-CoV-2. Vaccines 2020, 8, 153. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Mok, B.W.Y.; Chen, L.L.; Chan, J.M.C.; Tsang, O.T.Y.; Lam, B.H.S.; Chuang, V.W.M.; Chu, A.W.H.; Chan, W.M.; Ip, J.D.; et al. Neutralization of Severe Acute Respiratory Syndrome Coronavirus 2 Omicron variant by sera from BNT162b2 or CoronaVac Vaccine Recipients. Clin. Infect. Dis. 2022, 75, e822–e826. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol. 2020, 92, 418–423. [Google Scholar] [CrossRef] [Green Version]
- Ranzani, O.T.; Hitchings, M.D.T.; Dorion, M.; D’Agostini, T.L.; de Paula, R.C.; de Paula, O.F.P.; Villela, E.F.D.M.; Torres, M.S.S.; de Oliveira, S.B.; Schulz, W.; et al. Effectiveness of the CoronaVac vaccine in older adults during a gamma variant associated epidemic of COVID-19 in Brazil: Test negative case-control study. BMJ 2021, 374, n2015. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, M.H.G.; de Souza, T.F.G.; Araújo, F.M.C.; de Andrade, L.O.M. Dynamics of antibody response to CoronaVac vaccine. J. Med. Virol. 2022, 94, 2139–2148. [Google Scholar] [CrossRef]
- Ortega, M.M.; da Silva, L.T.; Candido, E.D.; Zheng, Y.; Tiyo, B.T.; Ferreira, A.E.F.; Corrêa-Silva, S.; Scagion, G.P.; Leal, F.B.; Chalup, V.N.; et al. Salivary, serological, and cellular immune response to the CoronaVac vaccine in health care workers with or without previous COVID-19. Sci. Rep. 2022, 12, 10125. [Google Scholar] [CrossRef]
- Escobar, A.; Reyes-López, F.E.; Acevedo, M.L.; Alonso-Palomares, L.; Valiente-Echeverría, F.; Soto-Rifo, R.; Portillo, H.; Gatica, J.; Flores, I.; Nova-Lamperti, E.; et al. Evaluation of the immune response induced by CoronaVac 28-day schedule vaccination in a healthy population group. Front. Immunol. 2022, 12, 766278. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, W.; Li, J.; Chen, M.; Li, Q.; Lv, M.; Zhou, S.; Bai, S.; Wang, Y.; Zhang, L.; et al. Status of humoral and cellular immune responses within 12 months following CoronaVac vaccination against COVID-19. Vaccines 2022, 13, e00181-22. [Google Scholar]
- Hayashi, J.Y.; Simizo, A.; Miyamoto, J.G.; Costa, L.V.S.; Souza, O.F.; Chiarelli, T.; Bacarov, N.B.; Hidalgo, R.; Garcia, L.D.; Soane, M.M.; et al. Humoral and cellular responses to vaccination with homologous CoronaVac or ChAdOx1 and heterologous third dose with BNT162b2. J. Infect. 2022, 84, 834–872. [Google Scholar] [CrossRef] [PubMed]
- Sant, A.J.; McMichael, A. Revealing the role of CD4+ T cells in viral immunity. J. Exp. Med. 2012, 209, 1391–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swain, S.L.; McKinstry, K.K.; Strutt, T.M. Expanding roles for CD4+ T cells in immunity to viruses. Nat. Rev. Immunol. 2012, 12, 136–148. [Google Scholar] [CrossRef]
- Hirai, T.; Yoshioka, Y. Considerations of CD8+ T cells for optimized vaccine strategies against respiratory viruses. Front. Immunol. 2022, 13, 918611. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, V.; Paldino, G.; Kunkl, M.; Paroli, M.; Sorrentino, R.; Tuosto, L.; Fiorillo, M.T. CD8+ T cells senescence: Lights and shadows in viral infection, autoimmune disorders and cancer. Int. J. Mol. Sci. 2022, 23, 3374. [Google Scholar] [CrossRef]
- Agrawal, A.; Weinberger, B. Editorial: The impact of immunosenescence and senescence of immune cells on responses to infection and vaccination. Front. Aging 2022, 3, 882494. [Google Scholar] [CrossRef]
- Lian, J.; Yue, Y.; Yu, W.; Zhan, Y. Immunosenescence: A key player in cancer development. J. Hematol. Oncol. 2020, 13, 151. [Google Scholar] [CrossRef]
- Pangrazzi, L.; Reidla, J.; Arana, J.A.C.; Naismith, E.; Miggitsch, C.; Meryk, A.; Keller, M.; Krause, A.A.N.; Melzer, F.L.; Trieb, K.; et al. CD28 and CD57 define four populations with distinct phenotypic properties within human CD8+ t cells. Eur. J. Immunol 2020, 50, 363–379. [Google Scholar] [CrossRef] [Green Version]
- Oberhardt, V.; Luxenburger, H.; Kemming, J.; Schulien, I.; Ciminski, K.; Giese, S.; Csernalabics, B.; Lang-Meli, J.; Janowska, I.; Staniek, J.; et al. Rapid and stable mobilization of CD8+ T cells by SARS-CoV2 mRNA vaccine. Nature 2021, 597, 268–273. [Google Scholar] [CrossRef]
- Li, C.; Lee, A.; Grigoryan, L.; Arunachalam, P.S.; Scott, M.K.D.; Trisal, M.; Wimmers, F.; Sanyal, M.; Weidenbacher, P.; Feng, Y.; et al. Mechanisms of innate and adaptative immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nat. Immunol. 2022, 23, 543–555. [Google Scholar] [CrossRef]
- Borriello, F.; Poli, V.; Shrock, E.; Spreafico, R.; Liu, X.; Pishesha, N.; Carpenet, C.; Chou, J.; Di Gioia, M.; McGrath, M.E.; et al. An adjuvant strategy enabled by modulation of the physical properties of microbial ligands expands antigen immunogenicity. Cell 2022, 185, 614–629.e21. [Google Scholar] [CrossRef]
- Wu, Z.; Zheng, Y.; Sheng, J.; Han, Y.; Yang, Y.; Pan, H.; Yao, J. CD3+CD4-CD8- (Double-Negative) T cells in inflammation, immune disorders and cancer. Front. Immunol. 2022, 13, 816005. [Google Scholar] [CrossRef] [PubMed]
- Sundaravaradan, V.; Saleem, R.; Micci, L.; Gasper, M.A.; Ortiz, A.M.; Else, J.; Silvestri, G.; Paiardini, M.; Aitchison, J.; Sodora, D. Multifuncional double-negative T cells in sooty mangabeys mediate T-helper functions irrespective of SIV infection. PLoS Pathog. 2013, 9, e1003441. [Google Scholar] [CrossRef] [Green Version]
- Hsieh Li-En Song, J.; Grifoni, A.; Shimizu, C.; Tremoulet, A.H.; Dummer, K.B.; Burns, J.C.; Sette, A.; Franco, A. T cells in multisystem inflammatory syndrome in children (MIS-C) have a predominant CD4+ T Helper response to SARS-CoV-2 peptides and numerous virus-specific CD4-CD8- Double-Negative T cells. Int. J. Mol. Sci. 2022, 23, 7219. [Google Scholar] [CrossRef] [PubMed]
- Steinert, E.M.; Schenkel, J.M.; Fraser, K.A.; Beura, L.K.; Manlove, L.S.; Igyártó, B.Z.; Southern, P.J.; Masopust, D. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 2015, 161, 737–749. [Google Scholar] [CrossRef] [Green Version]
- Callender, L.A.; Carroll, E.C.; Beal, R.W.J.; Chambers, E.S.; Nourshargh, S.; Akbar, A.N.; Henson, S.M. Human CD8+ EMRA T cells display a senescence-associated secretory phenotype regulated by p38 MAPK. Aging Cell 2017, 17, e12675. [Google Scholar] [CrossRef]
- Lopes-Paciencia, S.; Saint-Germain, E.; Rowell, M.-C.; Ruiz, A.F.; Kalegari, P.; Ferbeyre, G. The senescence-associated secretory phenotype and its regulation. Cytokine 2019, 117, 15–22. [Google Scholar] [CrossRef]
- Caci, G.; Albini, A.; Malerba, M.; Noonan, D.M.; Pochetti, P.; Polosa, R. COVID-19 and Obesity: Dangerous Liaisons. J. Clin. Med. 2020, 9, 2511. [Google Scholar] [CrossRef] [PubMed]
- Aghili, S.M.M.; Ebrahimpur, M.; Arjmand, B.; Shadman, Z.; Sani, M.P.; Qorbani, M.; Larijani, B.; Payab, M. Obesity in COVID-19 era, implications for mechanisms, comorbidities, and prognosis: A review and meta-analysis. Int. J. Obes. 2021, 45, 998–1016. [Google Scholar] [CrossRef]
- Strioga, M.; Pasukoniene, V.; Characiejus, D. CD8+ CD28- and CD8+CD57+ T cells and their role in health and disease. Immunology 2011, 134, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Vazquez, R.; Guío-Carríon, A.; Zapatero-Gaviria, A.; Martínez, P.; Blasco, M.A. Shorter telomere lengths in patients with severe COVID-19 disease. Aging 2021, 13, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Codd, V.; Raisi-Estabragh, Z.; Musicha, C.; Bountziouka, V.; Kaptoge, S.; Allara, E.; Angelantonio, E.D.; Butterworth, A.S.; Wood, A.M.; et al. Shorter leokocyte telomere length is associated with adverse COVID-19 outcomes: A cohort study in UK Biobank. eBioMedicine 2021, 70, 103485. [Google Scholar] [CrossRef]
- Zheng, H.Y.; Zhang, M.; Yang, C.X.; Zhang, N.; Wang, X.C.; Yang, X.P.; Dong, X.Q.; Zheng, Y.T. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell. Mol. Immunol. 2020, 17, 541–543. [Google Scholar] [CrossRef]
- De Biasi, S.; Meschiari, M.; Gibellini, L.; Bellinazzi, C.; Borella, R.; Fidanza, L.; Gozzi, L.; Iannone, A.; Tartaro, D.; Mattioli, M.; et al. Market T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat. Commun. 2020, 11, 3434. [Google Scholar] [CrossRef]
- Diao, B.; Wang, C.; Tan, Y.; Chen, X.; Liu, Y.; Ning, L.; Chen, L.; Li, M.; Liu, Y.; Wang, G.; et al. Reduction and functional exhaustion of T cells in patients with Coronavirus Disease 2019 (COVID-19). Front. Immunol. 2020, 11, 827. [Google Scholar] [CrossRef] [PubMed]
Volunteer | Gender | Age | Comorbidity | CoronaVac | Pfizer Booster | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-Vaccine | Post 1st Dose (30 Days) | Post 2nd Dose (30 Days) | Post 2nd Dose (90 Days) | Post 2nd Dose (180 Days) | Post Dose (25 Days) | ||||||||||
Anti-S | Anti-N | Anti-S | Anti-N | Anti-S | Anti-N | Anti-S | Anti-N | Anti-S | Anti-N | Anti-S | Anti-N | ||||
1 | F | 49 | NONE | 0 | 0 | 12 | ≤4 | 5 | ≤4 | 6 | ≤4 | 12 | 6 | >20 | 6 |
2 | M | 58 | NONE | 0 | 0 | ≤4 | ≤4 | ≤4 | ≤4 | 0 | ≤4 | ≤4 | ≤4 | >20 | ≤4 |
3 | F | 42 | SAH and SLE * | 0 | 0 | 11 | 9 | ≤4 | ≤4 | ≤4 | ≤4 | ≤4 | ≤4 | 13 | ≤4 |
4 | F | 24 | NONE | 0 | 0 | ≤4 | 7 | 0 | ≤4 | ND | ND | 0 | 5 | 9 | 8 |
5 | F | 43 | BMI > 30 | 8 | 0 | >20 | >20 | >20 | >20 | >20 | 7 | >20 | 14 | >20 | 11 |
6 | M | 41 | ASTHMA | 0 | 0 | ND | ND | ≤4 | 6 | ND | ND | ≤4 | 6 | 14 | 5 |
7 | M | 37 | NONE | 0 | 0 | 13 | ≤4 | 8 | 5 | ≤4 | ≤4 | ≤4 | ≤4 | >20 | ≤4 |
8 | F | 46 | HYPOTHYROIDISM | 0 | 0 | ≤4 | ≤4 | ≤4 | ≤4 | ≤4 | ≤4 | 0 | 6 | 14 | >20 |
Volunteer | TNF-α (pg/mL) | IL-6 (pg/mL) | IL-10 (pg/mL) | TNF-α/IL-10 Ratio | IL-6/IL-10 Ratio |
---|---|---|---|---|---|
1 | 109.23 | 46.20 | 11.55 | 9.46 | 3.54 |
2 | 22.47 | 7.77 | 12.35 | 1.82 | 0.63 |
3 | 5.71 | 7.73 | 14.27 | 0.40 | 0.54 |
4 | 6.98 | 7.54 | 11.86 | 0.59 | 0.64 |
5 | 407.91 | 43.62 | 12.34 | 33.06 | 4.00 |
6 | 11.20 | 9.17 | 14.13 | 0.79 | 0.65 |
7 | 6.47 | 8.53 | 12.06 | 0.54 | 0.71 |
8 | 10.62 | 9.32 | 13.73 | 0.77 | 0.68 |
Responder | 24.68 ± 8.57 | 8.31 ± 0.86 | 13.27 ± 1.09 | 0.82 ± 0.51 | 0.64 ± 0.05 |
Non-responder | 258.57 ± 42.12 | 44.91 ± 1.82 | 11.95 ± 0.55 | 21.25 ± 16.68 | 3.77 ± 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosseto-Welter, E.A.; Rodrigues, S.S.; de Figueiredo, A.B.; França, C.N.; Oliveira, D.B.L.; Bachi, A.L.L.; do Amaral, J.B.; Siqueira, R.A.; Bento, L.C.; da Silva, A.P.; et al. Cellular and Humoral Immune Responses to Vaccination for COVID-19 Are Negatively Impacted by Senescent T Cells: A Case Report. Vaccines 2023, 11, 840. https://doi.org/10.3390/vaccines11040840
Rosseto-Welter EA, Rodrigues SS, de Figueiredo AB, França CN, Oliveira DBL, Bachi ALL, do Amaral JB, Siqueira RA, Bento LC, da Silva AP, et al. Cellular and Humoral Immune Responses to Vaccination for COVID-19 Are Negatively Impacted by Senescent T Cells: A Case Report. Vaccines. 2023; 11(4):840. https://doi.org/10.3390/vaccines11040840
Chicago/Turabian StyleRosseto-Welter, Eliane Aparecida, Silvia Sanches Rodrigues, Amanda Braga de Figueiredo, Carolina Nunes França, Danielle Bruna Leal Oliveira, André Luis Lacerda Bachi, Jônatas Bussador do Amaral, Ricardo Andreotti Siqueira, Laiz Camerão Bento, Ana Paula da Silva, and et al. 2023. "Cellular and Humoral Immune Responses to Vaccination for COVID-19 Are Negatively Impacted by Senescent T Cells: A Case Report" Vaccines 11, no. 4: 840. https://doi.org/10.3390/vaccines11040840
APA StyleRosseto-Welter, E. A., Rodrigues, S. S., de Figueiredo, A. B., França, C. N., Oliveira, D. B. L., Bachi, A. L. L., do Amaral, J. B., Siqueira, R. A., Bento, L. C., da Silva, A. P., Bacal, N. S., dos Santos Ferreira, C. E., Mangueira, C. L. P., & Pinho, J. R. R. (2023). Cellular and Humoral Immune Responses to Vaccination for COVID-19 Are Negatively Impacted by Senescent T Cells: A Case Report. Vaccines, 11(4), 840. https://doi.org/10.3390/vaccines11040840