Role of Magnesium in the Intensive Care Unit and Immunomodulation: A Literature Review
Abstract
:1. Introduction
2. Materials and Methods
3. Discussion
3.1. Magnesium and the Immune System
3.2. Sepsis and Septic Shock
Study (Year), Study Design | Field of Study | Population | Intervention | Findings |
---|---|---|---|---|
Tonai (2022) [53], Observational retrospective | Hypomagnesemia and coagulopathy in septic patients | 753 patients | No intervention | Hypomagnesemia independently associated with risk of DIC (OR 1.69) |
Wang (2022) [54], Observational retrospective | Mg levels: mortality predictor in critically ill children with sepsis | 974 patients | No intervention | Hypermagnesemia associated with a six-fold increase in mortality; AKI and liver dysfunction higher in both hypermagnesemia and hypomagnesemia, compared to normal concentrations |
Noormandi (2019) [51], RCT | Mg on lactate clearance | 58 patients (30 Mg group; 28 placebo group) | Mg administration aiming > 2 mg/dL for 3 days | Mg supplementation increased lactate clearance, and reduced both the time to lactate clearance and the ICU LOS |
Thongprayoon (2015) [46], Observational retrospective | Mg levels and septic shock | 2589 patients with SIRS | No intervention | Hypomagnesemia associated with increased risk of developing septic shock (OR 1.86). Mg 2.1–2.3 mg/dL has the lowest septic shock incidence |
Huang (2015) [55], Observational retrospective | Association between dietary or plasma Mg and diabetes incidence, and with mortality, in the elderly | 1400 patients aged ≥ 65 years | No intervention | Normal and high plasma Mg in conjunction with high DDS had relative risks of 0.58 and 0.46 in mortality, compared to low plasma Mg and lower DDS |
3.3. Respiratory Diseases
3.4. Cardiac Surgery
3.5. Neurological Intensive Care
3.6. Kidney Injury and Electrolyte Disorders
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wacker, W.E.C.; Parisi, A.F. Magnesium Metabolism. N. Engl. J. Med. 1968, 278, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Yunes, P.; Mojtaba, M.; Atabak, N.; Mohammad, R.G.; Mohammad, A.; Mohammad, S.; Arezoo, A.; Seyyed, M.R.; Amirhossein, S. The role of magnesium sulfate in the intensive care unit. EXCLI J. 2017, 16, 464–482. [Google Scholar]
- Mazur, A.; Maier, J.A.M.; Rock, E.; Gueux, E.; Nowacki, W.; Rayssiguier, Y. Magnesium and the inflammatory response: Potential physiopathological implications. Arch. Biochem. Biophys. 2007, 458, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Tam, M.; Gómez, S.; González-Gross, M.; Marcos, A. Possible roles of magnesium on the immune system. Eur. J. Clin. Nutr. 2003, 57, 1193–1197. [Google Scholar] [CrossRef] [Green Version]
- Cascella, M.; Vaqar, S. Hypermagnesemia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Hansen, B.-A.; Bruserud, Ø. Hypomagnesemia in critically ill patients. J. Intensive Care 2018, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Van Laecke, S. Hypomagnesemia and hypermagnesemia. Acta Clin. Belg. 2019, 74, 41–47. [Google Scholar] [CrossRef]
- Muir, K.W.; Lees, K.R.; Ford, I.; Davis, S. Intravenous Magnesium Efficacy in Stroke (IMAGES) Study Investigators. Magnesium for acute stroke (Intravenous Magnesium Efficacy in Stroke trial): Randomised controlled trial. Lancet 2004, 363, 439–445. [Google Scholar]
- Saver, J.L.; Starkman, S.; Eckstein, M.; Stratton, S.J.; Pratt, F.D.; Hamilton, S.; Conwit, R.; Liebeskind, D.S.; Sung, G.; Kramer, I.; et al. Prehospital Use of Magnesium Sulfate as Neuroprotection in Acute Stroke. N. Engl. J. Med. 2015, 372, 528–536. [Google Scholar] [CrossRef] [Green Version]
- Sen, A.P.; Gulati, A. Use of magnesium in traumatic brain injury. Neurotherapeutics 2010, 7, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Fairley, J.L.; Zhang, L.; Glassford, N.J.; Bellomo, R. Magnesium status and magnesium therapy in cardiac surgery: A systematic review and meta-analysis focusing on arrhythmia prevention. J. Crit. Care 2017, 42, 69–77. [Google Scholar] [CrossRef]
- Baker, W.L. Treating arrhythmias with adjunctive magnesium: Identifying future research directions. Eur. Heart J. Cardiovasc. Pharmacother. 2017, 3, 108–117. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, B.; Kew, K.M. Intravenous magnesium sulfate for treating children with acute asthma in the emergency department. Cochrane Database Syst. Rev. 2016, 4, CD011050. [Google Scholar]
- Irazuzta, J.E.; Paredes, F.; Pavlicich, V.; Domínguez, S.L. High-Dose Magnesium Sulfate Infusion for Severe Asthma in the Emergency Department: Efficacy Study. Pediatr. Crit. Care Med. 2016, 17, e29–e33. [Google Scholar] [CrossRef]
- Kharb. Role of Magnesium in Preeclampsia. Available online: https://www.bmbtrj.org/article.asp?issn=2588-9834;year=2018;volume=2;issue=3;spage=178;epage=180;aulast=Kharb (accessed on 11 May 2023).
- Cavell, G.F.; Bryant, C.; Jheeta, S. Iatrogenic magnesium toxicity following intravenous infusion of magnesium sulfate: Risks and strategies for prevention. BMJ Case Rep. 2015, 2015, bcr2015209499. [Google Scholar] [CrossRef] [Green Version]
- Hypermagnesemia: Causes, Symptoms, and Treatment—UpToDate. Available online: https://www.uptodate.com/contents/hypermagnesemia-causes-symptoms-and-treatment (accessed on 11 May 2023).
- Czarnetzki, C.; Albrecht, E.; Masouyé, P.; Moira, B.; Antoine, P.; Matthias, R.; Christian, K.; Martin, R.T. Rapid Sequence Induction with a Standard Intubation Dose of Rocuronium After Magnesium Pretreatment Compared with Succinylcholine: A Randomized Clinical Trial. Anesth. Analg. 2021, 133, 1540–1549. [Google Scholar] [CrossRef]
- Guler, A.; Satilmis, T.; Akinci, S.B.; Celebioglu, B.; Kanbak, M. Magnesium sulfate pretreatment reduces myoclonus after etomidate. Anesth. Analg. 2005, 101, 705–709. [Google Scholar] [CrossRef]
- Di Benedetto, P.; Pelli, M.; Loffredo, C.; La Regina, R.; Policastro, F.; Fiorelli, S.; De Blasi, R.A.; Coluzzi, F.; Rocco, M. Opioid-free anesthesia versus opioid-inclusive anesthesia for breast cancer surgery: A retrospective study. J. Anesth. Analg. Crit. Care 2021, 1, 6. [Google Scholar] [CrossRef]
- Sinha, R.; Sharma, A.; Ray, B.R.; Chandiran, R.; Chandralekha, C.; Sinha, R. Effect of addition of magnesium to local anesthetics for peribulbar block: A prospective randomized double-blind study. Saudi J. Anaesth. 2016, 10, 64–67. [Google Scholar]
- Zeng, J.; Chen, Q.; Yu, C.; Zhou, J.; Yang, B. The Use of Magnesium Sulfate and Peripheral Nerve Blocks: An Updated Meta-analysis and Systematic Review. Clin. J. Pain 2021, 37, 629–637. [Google Scholar] [CrossRef]
- Johnson, S. The multifaceted and widespread pathology of magnesium deficiency. Med. Hypotheses 2001, 56, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Dyckner, T.; Ek, B.; Nyhlin, H.; Wester, P.O. Aggravation of thiamine deficiency by magnesium depletion. A case report. Acta Med. Scand. 1985, 218, 129–131. [Google Scholar] [CrossRef] [PubMed]
- Bussière, F.I.; Gueux, E.; Rock, E.; Girardeau, J.P.; Tridon, A.; Mazur, A.; Rayssiguier, Y. Increased phagocytosis and production of reactive oxygen species by neutrophils during magnesium deficiency in rats and inhibition by high magnesium concentration. Br. J. Nutr. 2002, 87, 107–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugimoto, J.; Romani, A.M.; Valentin-Torres, A.M.; Luciano, A.A.; Ramirez Kitchen, C.M.; Funderburg, N.; Mesiano, S.; Bernstein, H.B. Magnesium Decreases Inflammatory Cytokine Production: A Novel Innate Immunomodulatory Mechanism. J. Immunol. 2012, 188, 6338–6346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feske, S.; Skolnik, E.Y.; Prakriya, M. Ion channels and transporters in lymphocyte function and immunity. Nat. Rev. Immunol. 2012, 12, 532–547. [Google Scholar] [CrossRef] [Green Version]
- Mg2+ Regulation of Kinase Signaling and Immune Function. Journal of Experimental Medicine. Rockefeller University Press. Available online: https://rupress.org/jem/article/216/8/1828/120573/Mg2-regulation-of-kinase-signaling-and-immune (accessed on 11 May 2023).
- Malpuech-Brugère, C.; Nowacki, W.; Gueux, E.; Kuryszko, J.; Rock, E.; Rayssiguier, Y.; Mazur, A. Accelerated thymus involution in magnesium-deficient rats is related to enhanced apoptosis and sensitivity to oxidative stress. Br. J. Nutr. 1999, 81, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, C.; Perraud, A.L.; Johnson, C.O.; Inabe, K.; Smith, M.K.; Penner, R.; Kurosaki, T.; Fleig, A.; Scharenberg, A.M. Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 2003, 114, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Desai, B.N.; Navarro, B.; Donovan, A.; Andrews, N.C.; Clapham, D.E. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science 2008, 322, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Lötscher, J.; Martí i Líndez, A.-A.; Kirchhammer, N.; Cribioli, E.; Attianese, G.M.P.G.; Trefny, M.P.; Lenz, M.; Rothschild, S.I.; Strati, P.; Künzli, M.; et al. Magnesium sensing via LFA-1 regulates CD8+ T cell effector function. Cell 2022, 185, 585–602.e29. [Google Scholar] [CrossRef]
- Nielsen, F.H. Magnesium deficiency and increased inflammation: Current perspectives. J. Inflamm. Res. 2018, 11, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Mazidi, M.; Rezaie, P.; Banach, M. Effect of magnesium supplements on serum C-reactive protein: A systematic review and meta-analysis. Arch. Med. Sci. 2018, 14, 707–716. [Google Scholar] [CrossRef]
- Liu, Z.; Chang, Y.; Zhang, J.; Huang, X.; Jiang, J.; Li, S.; Wang, Z. Magnesium deficiency promotes secretion of high-mobility group box 1 protein from lipopolysaccharide-activated macrophages in vitro. J. Surg. Res. 2013, 180, 310–316. [Google Scholar] [CrossRef]
- Weglicki, W.B.; Phillips, T.M. Pathobiology of magnesium deficiency: A cytokine/neurogenic inflammation hypothesis. Am. J. Physiol. 1992, 263, R734–R737. [Google Scholar] [CrossRef] [Green Version]
- Weglicki, W.B.; Phillips, T.M.; Freedman, A.M.; Cassidy, M.M.; Dickens, B.F. Magnesium-deficiency elevates circulating levels of inflammatory cytokines and endothelin. Mol. Cell. Biochem. 1992, 110, 169–173. [Google Scholar] [CrossRef]
- Mak, I.T.; Dickens, B.F.; Komarov, A.M.; Wagner, T.L.; Phillips, T.M.; Weglicki, W.B. Activation of the neutrophil and loss of plasma glutathione during Mg-deficiency--modulation by nitric oxide synthase inhibition. Mol. Cell. Biochem. 1997, 176, 35–39. [Google Scholar] [CrossRef]
- Wang, D.; Zheng, J.; Hu, Q.; Zhao, C.; Chen, Q.; Shi, P.; Chen, Q.; Zou, Y.; Zou, D.; Liu, Q.; et al. Magnesium protects against sepsis by blocking gasdermin D N-terminal-induced pyroptosis. Cell Death Differ. 2020, 27, 466–481. [Google Scholar] [CrossRef]
- Unal, M.; Tamer, L.; Pata, Y.S.; Kilic, S.; Degirmenci, U.; Akbaş, Y.; Görür, K.; Atik, U. Serum levels of antioxidant vitamins, copper, zinc and magnesium in children with chronic rhinosinusitis. J. Trace Elem. Med. Biol. 2004, 18, 189–192. [Google Scholar] [CrossRef]
- Bernardini, D.; Nasulewic, A.; Mazur, A.; Maier, J.A.M. Magnesium and microvascular endothelial cells: A role in inflammation and angiogenesis. Front. Biosci. 2005, 10, 1177–1182. [Google Scholar] [CrossRef] [Green Version]
- Cojocaru, I.M.; Cojocaru, M.; Tănăsescu, R.; Iacob, S.A.; Iliescu, I. Changes of magnesium serum levels in patients with acute ischemic stroke and acute infections. Rom. J. Intern. Med. 2009, 47, 169–171. [Google Scholar]
- Soliman, H.M.; Mercan, D.; Lobo, S.S.M.; Mélot, C.; Vincent, J.-L. Development of ionized hypomagnesemia is associated with higher mortality rates. Crit. Care Med. 2003, 31, 1082. [Google Scholar] [CrossRef]
- Safavi, M.; Honarmand, A. Admission hypomagnesemia—Impact on mortality or morbidity in critically ill patients. Middle East, J. Anaesthesiol. 2007, 19, 645–660. [Google Scholar]
- Velissaris, D.; Karamouzos, V.; Pierrakos, C.; Aretha, D.; Karanikolas, M. Hypomagnesemia in Critically Ill Sepsis Patients. J. Clin. Med. Res. 2015, 7, 911–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thongprayoon, C.; Cheungpasitporn, W.; Erickson, S.B. Admission hypomagnesemia linked to septic shock in patients with systemic inflammatory response syndrome. Ren. Fail. 2015, 37, 1518–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moskowitz, A.; Lee, J.; Donnino, M.W.; Mark, R.; Celi, L.A.; Danziger, J. The Association Between Admission Magnesium Concentrations and Lactic Acidosis in Critical Illness. J. Intensive Care Med. 2016, 31, 187–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacalone, M.; Martinelli, R.; Abramo, A.; Rubino, A.; Pavoni, V.; Iacconi, P.; Giunta, F.; Forfori, F. Rapid reversal of severe lactic acidosis after thiamine administration in critically ill adults: A report of 3 cases. Nutr. Clin. Pract. 2015, 30, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Woolum, J.A.; Abner, E.L.; Kelly, A.; Thompson Bastin, M.L.; Morris, P.E.; Flannery, A.H. Effect of Thiamine Administration on Lactate Clearance and Mortality in Patients with Septic Shock. Crit. Care Med. 2018, 46, 1747–1752. [Google Scholar] [CrossRef] [PubMed]
- Lajer, H.; Bundgaard, H.; Secher, N.H.; Hansen, H.H.; Kjeldsen, K.; Daugaard, G. Severe intracellular magnesium and potassium depletion in patients after treatment with cisplatin. Br. J. Cancer 2003, 89, 1633–1637. [Google Scholar] [CrossRef] [Green Version]
- Noormandi, A.; Khalili, H.; Mohammadi, M.; Abdollahi, A. Effect of magnesium supplementation on lactate clearance in critically ill patients with severe sepsis: A randomized clinical trial. Eur. J. Clin. Pharmacol. 2020, 76, 175–184. [Google Scholar] [CrossRef]
- Levi, M.; van der Poll, T. Inflammation and coagulation. Crit. Care Med. 2010, 38, S26. [Google Scholar] [CrossRef]
- Tonai, K.; Katayama, S.; Koyama, K.; Sata, N.; Tomioka, Y.; Imahase, H.; Nunomiya, S. Association between hypomagnesemia and coagulopathy in sepsis: A retrospective observational study. BMC Anesthesiol. 2022, 22, 359. [Google Scholar] [CrossRef]
- Wang, H.; Huang, J.; Jin, X.; Chen, C.; Zhang, A.; Wu, Y.; Chen, C. Hypermagnesaemia, but Not Hypomagnesaemia, Is a Predictor of Inpatient Mortality in Critically Ill Children with Sepsis. Dis. Markers 2022, 2022, 3893653. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Wahlqvist, M.L.; Kao, M.-D.; Wang, J.-L.; Lee, M.-S. Optimal Dietary and Plasma Magnesium Statuses Depend on Dietary Quality for a Reduction in the Risk of All-Cause Mortality in Older Adults. Nutrients 2015, 7, 5664–5683. [Google Scholar] [CrossRef] [Green Version]
- Lutsey, P.L.; Alonso, A.; Michos, E.D.; Loehr, L.R.; Astor, B.C.; Coresh, J.; Folsom, A.R. Serum magnesium, phosphorus, and calcium are associated with risk of incident heart failure: The Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Clin. Nutr. 2014, 100, 756–764. [Google Scholar] [CrossRef] [Green Version]
- Britton, J.; Pavord, I.; Richards, K.; Wisniewski, A.; Knox, A.; Lewis, S.; Tattersfield, A.; Weiss, S. Dietary magnesium, lung function, wheezing, and airway hyper-reactivity in a random adult population sample. Lancet 1994, 344, 357–362. [Google Scholar] [CrossRef]
- Gourgoulianis, K.I.; Chatziparasidis, G.; Chatziefthimiou, A.; Molyvdas, P.-A. Magnesium as a Relaxing Factor of Airway Smooth Muscles. J. Aerosol Med. 2001, 14, 301–307. [Google Scholar] [CrossRef]
- Spivey, W.H.; Skobeloff, E.M.; Levin, R.M. Effect of magnesium chloride on rabbit bronchial smooth muscle. Ann. Emerg. Med. 1990, 19, 1107–1112. [Google Scholar] [CrossRef]
- Okayama, H.; Aikawa, T.; Okayama, M.; Sasaki, H.; Mue, S.; Takishima, T. Bronchodilating Effect of Intravenous Magnesium Sulfate in Bronchial Asthma. JAMA 1987, 257, 1076–1078. [Google Scholar] [CrossRef]
- Kumasaka, D.; Lindeman, K.S.; Clancy, J.; Lande, B.; Croxton, T.L.; Hirshman, C.A. MgSO4 relaxes porcine airway smooth muscle by reducing Ca2+ entry. Am. J. Physiol. 1996, 270, L469–L474. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Barbagallo, M.; Di Lorenzo, G.; Drago, A.; Scola, S.; Morici, G.; Caruso, C. Bronchial reactivity and intracellular magnesium: A possible mechanism for the bronchodilating effects of magnesium in asthma. Clin. Sci. 1998, 95, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Zhang, P.; Liu, T.; Zhang, X.; Pan, X.; Cen, Y.; Liu, Y.; Zhang, H.; Chen, X. Magnesium isoglycyrrhizinate ameliorates radiation-induced pulmonary fibrosis by inhibiting fibroblast differentiation via the p38MAPK/Akt/Nox4 pathway. Biomed. Pharmacother. 2019, 115, 108955. [Google Scholar] [CrossRef]
- Courivaud, C.; Davenport, A. Magnesium and the risk of all-cause and cardiac mortality in hemodialysis patients: Agent provocateur or innocent bystander? Kidney Int. 2014, 85, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Sakaguchi, Y.; Fujii, N.; Shoji, T.; Hayashi, T.; Rakugi, H.; Isaka, Y. Hypomagnesemia is a significant predictor of cardiovascular and non-cardiovascular mortality in patients undergoing hemodialysis. Kidney Int. 2014, 85, 174–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheungpasitporn, W.; Thongprayoon, C.; Qian, Q. Dysmagnesemia in Hospitalized Patients: Prevalence and Prognostic Importance. Mayo Clin. Proc. 2015, 90, 1001–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altura, B.M.; Altura, B.T. Role of magnesium in patho-physiological processes and the clinical utility of magnesium ion selective electrodes. Scand. J. Clin. Lab. Investigation. Suppl. 1996, 224, 211–234. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghamdi, S.M.; Cameron, E.C.; Sutton, R.A. Magnesium deficiency: Pathophysiologic and clinical overview. Am. J. Kidney Dis. 1994, 24, 737–752. [Google Scholar] [CrossRef] [PubMed]
- del Castillo, J.; Engbaek, L. The nature of the neuromuscular block produced by magnesium. J. Physiol. 1954, 124, 370–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhingra, S.; Solven, F.; Wilson, A.; McCarthy, D.S. Hypomagnesemia and respiratory muscle power. Am. Rev. Respir. Dis. 1984, 129, 497–498. [Google Scholar]
- Thongprayoon, C.; Cheungpasitporn, W.; Srivali, N.; Erickson, S.B. Admission serum magnesium levels and the risk of acute respiratory failure. Int. J. Clin. Pract. 2015, 69, 1303–1308. [Google Scholar] [CrossRef]
- Nasser, R.; Naffaa, M.E.; Mashiach, T.; Azzam, Z.S.; Braun, E. The association between serum magnesium levels and community-acquired pneumonia 30-day mortality. BMC Infect. Dis. 2018, 18, 698. [Google Scholar] [CrossRef] [Green Version]
- Broman, M.; Hansson, F.; Klarin, B. Analysis of hypo- and hypermagnesemia in an intensive care unit cohort. Acta Anaesthesiol. Scand. 2018, 62, 648–657. [Google Scholar] [CrossRef]
- Cirik, M.Ö.; Kilinç, M.; Doğanay, G.E.; Ünver, M.; Yildiz, M.; Avci, S. The relationship between magnesium levels and mortality in the respiratory intensive care unit. Medicine 2020, 99, e23290. [Google Scholar] [CrossRef]
- Zeng, H.-L.; Yang, Q.; Yuan, P.; Wang, X.; Cheng, L. Associations of Blood Essential and Toxic Metal(Loid)s with Both Disease Severity and Mortality in Patients with COVID-19: A Retrospective Study. Res. Sq 2020. in review. [Google Scholar] [CrossRef]
- Iotti, S.; Wolf, F.; Mazur, A.; Maier, J.A. The COVID-19 pandemic: Is there a role for magnesium? Hypotheses and perspectives. Magnes. Res. 2020, 33, 21–27. [Google Scholar] [CrossRef]
- Tan, C.W.; Ho, L.P.; Kalimuddin, S.; Cherng, B.P.Z.; Teh, Y.E.; Thien, S.Y.; Wong, H.M.; Tern, P.J.W.; Chandran, M.; Chay, J.W.M.; et al. Cohort study to evaluate the effect of vitamin D, magnesium, and vitamin B12 in combination on progression to severe outcomes in older patients with coronavirus (COVID-19). Nutrition 2020, 79–80, 111017. [Google Scholar] [CrossRef]
- Al-Moamary, M.S.; Alhaider, S.A.; Idrees, M.M.; Al Ghobain, M.O.; Zeitouni, M.O.; Al-Harbi, A.S.; Yousef, A.A.; Al-Matar, H.; Alorainy, H.S.; Al-Hajjaj, M.S. The Saudi Initiative for Asthma—2016 update: Guidelines for the diagnosis and management of asthma in adults and children. Ann. Thorac. Med. 2016, 11, 3–42. [Google Scholar] [CrossRef]
- Rowe, B.H.; Bretzlaff, J.A.; Bourdon, C.; Bota, G.W.; Camargo, C.A. Magnesium sulfate for treating exacerbations of acute asthma in the emergency department. Cochrane Database Syst. Rev. 2000, 2000, CD001490. [Google Scholar] [CrossRef]
- Gallegos-Solórzano, M.C.; Pérez-Padilla, R.; Hernández-Zenteno, R.J. Usefulness of inhaled magnesium sulfate in the coadjuvant management of severe asthma crisis in an emergency department. Pulm. Pharmacol. Ther. 2010, 23, 432–437. [Google Scholar] [CrossRef]
- Bois, P. Effect of magnesium deficiency on mast cells and urinary histamine in rats. Br. J. Exp. Pathol. 1963, 44, 151–155. [Google Scholar]
- Cairns, C.B.; Krafi, M. Magnesium Attenuates the Neutrophil Respiratory Burst in Adult Asthmatic Patients. Acad. Emerg. Med. 1996, 3, 1093–1097. [Google Scholar] [CrossRef]
- Bokhari, S.A.; Haseeb, S.; Kaleem, M.; Baig, M.W.; Khan, H.A.B.; Jafar, R.; Munir, S.; Haseeb, S.; Bhutta, Z.I. Role of Intravenous Magnesium in the Management of Moderate to Severe Exacerbation of Asthma: A Literature Review. Cureus 2022, 14, e28892. [Google Scholar] [CrossRef]
- Hirashima, J.; Yamana, H.; Matsui, H.; Fushimi, K.; Yasunaga, H. Effect of intravenous magnesium sulfate on mortality in patients with severe acute asthma. Respirology 2016, 21, 668–673. [Google Scholar] [CrossRef]
- Goodacre, S.; Cohen, J.; Bradburn, M.; Gray, A.; Benger, J.; Coats, T. Intravenous or nebulised magnesium sulphate versus standard therapy for severe acute asthma (3Mg trial): A double-blind, randomised controlled trial. Lancet. Respir. Med. 2013, 1, 293–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dibaba, D.T.; Xun, P.; He, K. Dietary magnesium intake is inversely associated with serum C-reactive protein levels: Meta-analysis and systematic review. Eur. J. Clin. Nutr. 2014, 68, 510–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almoznino-Sarafian, D.; Berman, S.; Mor, A.; Shteinshnaider, M.; Gorelik, O.; Tzur, I.; Alon, I.; Modai, D.; Cohen, N. Magnesium and C-reactive protein in heart failure: An anti-inflammatory effect of magnesium administration? Eur. J. Nutr. 2007, 46, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Ferrè, S.; Baldoli, E.; Leidi, M.; Maier, J.A.M. Magnesium deficiency promotes a pro-atherogenic phenotype in cultured human endothelial cells via activation of NFkB. Biochim. Biophys. Acta 2010, 1802, 952–958. [Google Scholar] [CrossRef]
- Rooney, M.R.; Alonso, A.; Folsom, A.R.; Michos, E.D.; Rebholz, C.M.; Misialek, J.R.; Chen, L.Y.; Dudley, S.; Lutsey, P.L. Serum magnesium and the incidence of coronary artery disease over a median 27 years of follow-up in the Atherosclerosis Risk in Communities (ARIC) Study and a meta-analysis. Am. J. Clin. Nutr. 2020, 111, 52–60. [Google Scholar] [CrossRef]
- Sheu, J.R.; Hsiao, G.; Shen, M.Y.; Fong, T.H.; Chen, Y.W.; Lin, C.H.; Chou, D.S. Mechanisms involved in the antiplatelet activity of magnesium in human platelets. Br. J. Haematol. 2002, 119, 1033–1041. [Google Scholar] [CrossRef]
- Qu, X.; Jin, F.; Hao, Y.; Li, H.; Tang, T.; Wang, H.; Yan, W.; Dai, K. Magnesium and the Risk of Cardiovascular Events: A Meta-Analysis of Prospective Cohort Studies. PLoS ONE 2013, 8, e57720. [Google Scholar] [CrossRef] [Green Version]
- Aglio, L.S.; Stanford, G.G.; Maddi, R.; Boyd, J.L.; Nussbaum, S.; Chernow, B. Hypomagnesemia is common following cardiac surgery. J. Cardiothorac. Vasc. Anesth. 1991, 5, 201–208. [Google Scholar] [CrossRef]
- Fawcett, W.J.; Haxby, E.J.; Male, D.A. Magnesium: Physiology and pharmacology. Br. J. Anaesth. 1999, 83, 302–320. [Google Scholar] [CrossRef]
- Speziale, G.; Ruvolo, G.; Fattouch, K.; Macrina, F.; Tonelli, E.; Donnetti, M.; Marino, B. Arrhythmia prophylaxis after coronary artery bypass grafting: Regimens of magnesium sulfate administration. Thorac. Cardiovasc. Surg. 2000, 48, 22–26. [Google Scholar] [CrossRef]
- Inoue, S.; Akazawa, S.; Nakaigawa, Y.; Shimizu, R.; Seo, N. Changes in plasma total and ionized magnesium concentrations and factors affecting magnesium concentrations during cardiac surgery. J. Anesth. 2004, 18, 216–219. [Google Scholar] [CrossRef]
- Parra, L.; Fita, G.; Gomar, C.; Rovira, I.; Marín, J.L. Plasma magnesium in patients submitted to cardiac surgery and its influence on perioperative morbidity. J. Cardiovasc. Surg. 2001, 42, 37–42. [Google Scholar]
- Pasternak, K.; Dabrowski, W.; Wrońska, J.; Rzecki, Z.; Biernacka, J.; Jurko, C.; Stazka, J. Changes of blood magnesium concentration in patients undergoing surgical myocardial revascularisation. Magnes. Res. 2006, 19, 107–112. [Google Scholar]
- Booth, J.V.; Phillips-Bute, B.; McCants, C.B.; Podgoreanu, M.V.; Smith, P.K.; Mathew, J.P.; Newman, M.F. Low serum magnesium level predicts major adverse cardiac events after coronary artery bypass graft surgery. Am. Heart J. 2003, 145, 1108–1113. [Google Scholar] [CrossRef]
- England, M.R.; Gordon, G.; Salem, M.; Chernow, B. Magnesium administration and dysrhythmias after cardiac surgery. A placebo-controlled, double-blind, randomized trial. JAMA 1992, 268, 2395–2402. [Google Scholar] [CrossRef]
- Rubeiz, G.J.; Thill-Baharozian, M.; Hardie, D.; Carlson, R.W. Association of hypomagnesemia and mortality in acutely ill medical patients. Crit. Care Med. 1993, 21, 203–209. [Google Scholar] [CrossRef]
- Woods, K.L.; Fletcher, S. Long-term outcome after intravenous magnesium sulphate in suspected acute myocardial infarction: The second Leicester Intravenous Magnesium Intervention Trial (LIMIT-2). Lancet 1994, 343, 816–819. [Google Scholar] [CrossRef]
- Woods, K.L.; Fletcher, S.; Roffe, C.; Haider, Y. Intravenous magnesium sulphate in suspected acute myocardial infarction: Results of the second Leicester Intravenous Magnesium Intervention Trial (LIMIT-2). Lancet 1992, 339, 1553–1558. [Google Scholar] [CrossRef]
- ISIS-4 (Fourth International Study of Infarct Survival) Collaborative Group. ISIS-4: A randomised factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58,050 patients with suspected acute myocardial infarction. Lancet 1995, 345, 669–685. [Google Scholar] [CrossRef]
- Early Administration of Intravenous Magnesium to High-Risk Patients with Acute Myocardial Infarction in the Magnesium in Coronaries (MAGIC) Trial: A Randomised Controlled Trial—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/12401244/ (accessed on 11 May 2023).
- Parikka, H.; Toivonen, L.; Pellinen, T.; Verkkala, K.; Järvinen, A.; Nieminen, M.S. The influence of intravenous magnesium sulphate on the occurrence of atrial fibrillation after coronary artery by-pass operation. Eur. Heart J. 1993, 14, 251–258. [Google Scholar] [CrossRef]
- Bert, A.A.; Reinert, S.E.; Singh, A.K. A beta-blocker, not magnesium, is effective prophylaxis for atrial tachyarrhythmias after coronary artery bypass graft surgery. J. Cardiothorac. Vasc. Anesth. 2001, 15, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, M.; Kut, M.S.; Icer, U.A.; Demirtas, M.M. Intravenous magnesium sulfate prophylaxis for atrial fibrillation after coronary artery bypass surgery. J. Thorac. Cardiovasc. Surg. 2003, 125, 344–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fanning, W.J.; Thomas, C.S.; Roach, A.; Tomichek, R.; Alford, W.C.; Stoney, W.S. Prophylaxis of atrial fibrillation with magnesium sulfate after coronary artery bypass grafting. Ann. Thorac. Surg. 1991, 52, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Colquhoun, I.W.; Berg, G.A.; El-Fiky, M.; Hurle, A.; Fell, G.S.; Wheatley, D.J. Arrhythmia prophylaxis after coronary artery surgery. A randomised controlled trial of intravenous magnesium chloride. Eur. J. Cardio-Thorac. Surg. Off. J. Eur. Assoc. Cardio-Thorac. Surg. 1993, 7, 520–523. [Google Scholar] [CrossRef] [PubMed]
- Toraman, F.; Karabulut, E.H.; Alhan, H.C.; Dagdelen, S.; Tarcan, S. Magnesium infusion dramatically decreases the incidence of atrial fibrillation after coronary artery bypass grafting. Ann. Thorac. Surg. 2001, 72, 1256–1261; discussion 1261–1262. [Google Scholar] [CrossRef]
- Kohno, H.; Koyanagi, T.; Kasegawa, H.; Miyazaki, M. Three-day magnesium administration prevents atrial fibrillation after coronary artery bypass grafting. Ann. Thorac. Surg. 2005, 79, 117–126. [Google Scholar] [CrossRef]
- Rostron, A.; Sanni, A.; Dunning, J. Does magnesium prophylaxis reduce the incidence of atrial fibrillation following coronary bypass surgery? Interact. Cardiovasc. Thorac. Surg. 2005, 4, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Shiga, T.; Wajima, Z.; Inoue, T.; Ogawa, R. Magnesium prophylaxis for arrhythmias after cardiac surgery: A meta-analysis of randomized controlled trials. Am. J. Med. 2004, 117, 325–333. [Google Scholar] [CrossRef]
- Alghamdi, A.A.; Al-Radi, O.O.; Latter, D.A. Intravenous magnesium for prevention of atrial fibrillation after coronary artery bypass surgery: A systematic review and meta-analysis. J. Card. Surg. 2005, 20, 293–299. [Google Scholar] [CrossRef]
- Miller, S.; Crystal, E.; Garfinkle, M.; Lau, C.; Lashevsky, I.; Connolly, S.J. Effects of magnesium on atrial fibrillation after cardiac surgery: A meta-analysis. Heart 2005, 91, 618–623. [Google Scholar] [CrossRef]
- Henyan, N.N.; Gillespie, E.L.; White, C.M.; Kluger, J.; Coleman, C.I. Impact of intravenous magnesium on post-cardiothoracic surgery atrial fibrillation and length of hospital stay: A meta-analysis. Ann. Thorac. Surg. 2005, 80, 2402–2406. [Google Scholar] [CrossRef]
- Burgess, D.C.; Kilborn, M.J.; Keech, A.C. Interventions for prevention of post-operative atrial fibrillation and its complications after cardiac surgery: A meta-analysis. Eur. Heart J. 2006, 27, 2846–2857. [Google Scholar] [CrossRef]
- Cook, R.C.; Humphries, K.H.; Gin, K.; Janusz, M.T.; Slavik, R.S.; Bernstein, V.; Tholin, M.; Lee, M.K. Prophylactic intravenous magnesium sulphate in addition to oral {beta}-blockade does not prevent atrial arrhythmias after coronary artery or valvular heart surgery: A randomized, controlled trial. Circulation 2009, 120, S163–S169. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; He, M.; Xu, J. Initial Serum Magnesium Level Is Associated with Mortality Risk in Traumatic Brain Injury Patients. Nutrients 2022, 14, 4174. [Google Scholar] [CrossRef]
- Ardehali, S.H.; Dehghan, S.; Baghestani, A.R.; Velayati, A.; Vahdat Shariatpanahi, Z. Association of admission serum levels of vitamin D, calcium, Phosphate, magnesium and parathormone with clinical outcomes in neurosurgical ICU patients. Sci. Rep. 2018, 8, 2965. [Google Scholar] [CrossRef] [Green Version]
- Asai, T.; Nakatani, T.; Tamada, S.; Kuwabara, N.; Yamanaka, S.; Tashiro, K.; Nakao, T.; Komiya, T.; Okamura, M.; Kim, S.; et al. Activation of transcription factors AP-1 and NF-kappaB in chronic cyclosporine A nephrotoxicity: Role in beneficial effects of magnesium supplementation. Transplantation 2003, 75, 1040–1044. [Google Scholar] [CrossRef]
- Nadler, J.L.; Goodson, S.; Rude, R.K. Evidence that prostacyclin mediates the vascular action of magnesium in humans. Hypertension 1987, 9, 379–383. [Google Scholar] [CrossRef] [Green Version]
- Bäcklund, M.; Pere, P.; Lepäntalo, M.; Lehtola, A.; Lindgren, L. Effect of intra-aortic magnesium on renal function during and after abdominal aortic surgery: A pilot study. Acta Anaesthesiol. Scand. 2000, 44, 605–611. [Google Scholar] [CrossRef]
- Ribeiro, H.S.; Burdmann, E.A.; Vieira, E.A.; Ferreira, M.L.; Ferreira, A.P.; Inda-Filho, A.J. Association of magnesium abnormalities at intensive care unit admission with kidney outcomes and mortality: A prospective cohort study. Clin. Exp. Nephrol. 2022, 26, 997–1004. [Google Scholar] [CrossRef]
- Forni, L.G.; Darmon, M.; Ostermann, M.; Oudemans-van Straaten, H.M.; Pettilä, V.; Prowle, J.R.; Schetz, M.; Joannidis, M. Renal recovery after acute kidney injury. Intensive Care Med. 2017, 43, 855–866. [Google Scholar] [CrossRef]
- Koh, H.B.; Jung, C.Y.; Kim, H.W.; Kwon, J.Y.; Kim, N.H.; Kim, H.J.; Jhee, J.H.; Han, S.H.; Yoo, T.H.; Kang, S.W.; et al. Preoperative Ionized Magnesium Levels and Risk of Acute Kidney Injury After Cardiac Surgery. Am J Kidney Dis. 2022, 80, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Khalili, H.; Rahmani, H.; Mohammadi, M.; Salehi, M.; Mostafavi, Z. Intravenous magnesium sulfate for prevention of vancomycin plus piperacillin-tazobactam induced acute kidney injury in critically ill patients: An open-label, placebo-controlled, randomized clinical trial. DARU J. Pharm. Sci. 2021, 29, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Holzmacher, R.; Kendziorski, C.; Michael Hofman, R.; Jaffery, J.; Becker, B.; Djamali, A. Low serum magnesium is associated with decreased graft survival in patients with chronic cyclosporin nephrotoxicity. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.-Eur. Ren. Assoc. 2005, 20, 1456–1462. [Google Scholar] [CrossRef] [PubMed]
- Isakov, O.; Patibandla, B.K.; Christopher, K.B.; Chandraker, A.; Hod, T. Impact of Post-Transplantation Hypomagnesemia on Long-Term Graft and Patient Survival after Transplantation. Kidney Blood Press. Res. 2022, 47, 341–353. [Google Scholar] [CrossRef]
- Mortazavi, M.; Moeinzadeh, F.; Saadatnia, M.; Shahidi, S.; McGee, J.C.; Minagar, A. Effect of magnesium supplementation on carotid intima-media thickness and flow-mediated dilatation among hemodialysis patients: A double-blind, randomized, placebo-controlled trial. Eur. Neurol. 2013, 69, 309–316. [Google Scholar] [CrossRef]
- Morooka, H.; Tanaka, A.; Kasugai, D.; Ozaki, M.; Numaguchi, A.; Maruyama, S. Abnormal magnesium levels and their impact on death and acute kidney injury in critically ill children. Pediatr. Nephrol. 2022, 37, 1157–1165. [Google Scholar] [CrossRef]
Study (Year), Study Design | Field of Study | Population | Intervention | Findings |
---|---|---|---|---|
Tan (2020) [77], Observational prospective | Effect of combination of Mg, Vit D, and Vit B12 on progression to severe COVID-19 | 43 (17 treatment group; 26 control group) | 150 mg/d oral Mg + 100 IU/d oral Vit D3 + 500 mcg/d oral Vit B12 | No deaths in either group |
Cirik (2020) [74], Observational retrospective | Effect of admission Mg serum levels in ARF on ICU LOS, length of MV, and 28-day mortality | 329 patients | No intervention | ICU mortality significantly higher in the hypermagnesemia group than the other groups. No significant effect on length of hospital stays, ICU LOS, length of MV, and 28-day mortality |
Nasser (2018) [72], Observational retrospective | Effect of Mg serum levels in the first 48 h on 30-day mortality in hospitalized CAP | 3851 patients with CAP | No intervention | Hypomagnesemia and hypermagnesemia on admission associated with an increased rate of 30-day mortality |
Thongprayoon (2015) [71], Observational retrospective | Correlation of Mg levels in the first 24 h and in-hospital ARF requiring mechanical ventilation | 9780 patients | No intervention | Admission hypomagnesemia and hypermagnesemia associated with an increased risk of in-hospital ARF requiring mechanical ventilation |
Hirashima (2016) [84], Observational retrospective | Effect of IV Mg supplementation in severe asthma exacerbations | 599 pairs matched with propensity score | Any doses of IV MgSO4 within 2 days of admission | No significant benefit of IV MgSO4 on 7-, 14- and 28-day mortalities |
Goodacre (2013) [85], RCT | Effect of IV Mg and NEB Mg supplementation in severe asthma exacerbations | 1087 patients (396 IV Mg group; 333 NEB Mg group; 358 placebo group) | 2 g IV MgSO4 or 1.5 g NEB MgSO4 or placebo over conventional therapy | Mg did not significantly reduce hospital admission rates or improve breathlessness symptoms; not enough power to detect mortality differences |
Study (year), Study Design | Field of Study | Population | Notes | Findings |
---|---|---|---|---|
Wang (2022) [119], Observational retrospective | Effect of admission Mg serum levels on mortality in TBI | 2280 patients with TBI | Eumagnesemia defined as: 1.7–2.4 mg/dL | TBI patients with lower and higher serum Mg levels had higher mortality rates (lowest mortality in patients with Mg 1.7–2 mg/dL) |
Ardehali (2017) [120], Observational prospective | Effect of admission Mg serum levels in neurosurgical ICU | 210 patients | Eumagnesemia defined as: 1.7–2.1 mg/dL | No relation between admission serum Mg level and mortality |
Study (Year), Study Design | Field of Study | Population | Intervention | Findings |
---|---|---|---|---|
Isakov (2022) [128], Observational retrospective | Effects of hypomagnesemia on post-transplantation survival and graft loss | 726 patients | Serum levels measured from one month to one year post-transplant | Post-transplant hypomagnesemia (<1.7 mg/dL) independently associated with better patient and allograft survival |
Koh (2022) [126], Observational retrospective | Preoperative ionized Mg serum levels and risk of AKI (cardiac surgery) | 9766 patients | Mg levels measured before surgery | OR for postoperative AKI progressively larger with progressively lower serum Mg concentration. Serum Mg level < 1.09 mg/dL associated with AKI and AKI requiring dialysis |
Ribeiro (2022) [124], Observational prospective | Effect of admission Mg serum levels on kidney and mortality outcomes | 7042 patients: | Mg serum levels measured at ICU admission | Hypomagnesemia associated with 25% increased risk of AKI, 65% increased mortality, and longer hospital stay. Hypermagnesemia associated with lower kidney non recovery rates and 52% increased mortality risk |
Morooka (2021) [131], Observational retrospective | Impact of Mg serum levels on death and AKI onset | 3669 children | No intervention | Both hypo and hypermagnesemia associated with 28-day mortality (OR 2.99 and 2.80, respectively). Hypermagnesemia associated with AKI (OR 1.52). No association with AKI stage. |
Khalili (2021) [127], RCT | IV Mg for prevention of VPT-induced AKI in critically ill patients | 30 patients | No intervention | Administration of Mg with target serum level around 3 mg/dL associated with reduced incidence of AKI in critically ill patients receiving VPT |
Mortazavi (2013) [130], RCT | Effect of Mg supplementation on endothelial function | 54 hemodialysis patients | Oral Mg supplementation (440 mg 3 times per week for 6 months) | No association between Mg supplementation and endothelial function |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saglietti, F.; Girombelli, A.; Marelli, S.; Vetrone, F.; Balzanelli, M.G.; Tabaee Damavandi, P. Role of Magnesium in the Intensive Care Unit and Immunomodulation: A Literature Review. Vaccines 2023, 11, 1122. https://doi.org/10.3390/vaccines11061122
Saglietti F, Girombelli A, Marelli S, Vetrone F, Balzanelli MG, Tabaee Damavandi P. Role of Magnesium in the Intensive Care Unit and Immunomodulation: A Literature Review. Vaccines. 2023; 11(6):1122. https://doi.org/10.3390/vaccines11061122
Chicago/Turabian StyleSaglietti, Francesco, Alessandro Girombelli, Stefano Marelli, Francesco Vetrone, Mario G. Balzanelli, and Payam Tabaee Damavandi. 2023. "Role of Magnesium in the Intensive Care Unit and Immunomodulation: A Literature Review" Vaccines 11, no. 6: 1122. https://doi.org/10.3390/vaccines11061122
APA StyleSaglietti, F., Girombelli, A., Marelli, S., Vetrone, F., Balzanelli, M. G., & Tabaee Damavandi, P. (2023). Role of Magnesium in the Intensive Care Unit and Immunomodulation: A Literature Review. Vaccines, 11(6), 1122. https://doi.org/10.3390/vaccines11061122