Antibiotic Use Prior to COVID-19 Vaccine Is Associated with Higher Risk of COVID-19 and Adverse Outcomes: A Propensity-Scored Matched Territory-Wide Cohort
Abstract
:1. Introduction
2. Methods
2.1. Data Source
2.2. Setting and Study Population
2.3. Exposures of Interest
2.4. Outcomes of Interest
2.4.1. Statistical Analyses
2.4.2. Statements of Ethics
3. Results
3.1. Patient Characteristics
3.2. Association between Pre-Vaccination Antibiotic Use and COVID-19 Outcomes
3.3. Stratified Analysis
3.3.1. Stratified by Vaccine Platform, Age, Sex, and Charlson Comorbidity Index
3.3.2. Stratified by Nature and Class of Antibiotics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Haas, E.J.; Angulo, F.J.; McLaughlin, J.M.; Anis, E.; Singer, S.R.; Khan, F.; Brooks, N.; Smaja, M.; Mircus, G.; Pan, K.; et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: An observational study using national surveillance data. Lancet 2021, 397, 1819–1829. [Google Scholar] [CrossRef] [PubMed]
- Ng, H.Y.; Leung, W.K.; Cheung, K.S. Association between Gut Microbiota and SARS-CoV-2 Infection and Vaccine Immunogenicity. Microorganisms 2023, 11, 452. [Google Scholar] [CrossRef] [PubMed]
- Lynn, D.J.; Benson, S.C.; Lynn, M.A.; Pulendran, B. Modulation of immune responses to vaccination by the microbiota: Implications and potential mechanisms. Nat. Rev. Immunol. 2022, 22, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Hagan, T.; Cortese, M.; Rouphael, N.; Boudreau, C.; Linde, C.; Maddur, M.S.; Das, J.; Wang, H.; Guthmiller, J.; Zheng, N.Y.; et al. Antibiotics-Driven Gut Microbiome Perturbation Alters Immunity to Vaccines in Humans. Cell 2019, 178, 1313–1328.e1313. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.S.; Lam, L.K.; Zhang, R.; Ooi, P.H.; Tan, J.T.; To, W.P.; Hui, C.H.; Chan, K.H.; Seto, W.K.; Hung, I.F.N.; et al. Association between Recent Usage of Antibiotics and Immunogenicity within Six Months after COVID-19 Vaccination. Vaccines 2022, 10, 1122. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Kruger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e278. [Google Scholar] [CrossRef]
- Portincasa, P.; Bonfrate, L.; Vacca, M.; De Angelis, M.; Farella, I.; Lanza, E.; Khalil, M.; Wang, D.Q.; Sperandio, M.; Di Ciaula, A. Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. Int. J. Mol. Sci. 2022, 23, 1105. [Google Scholar] [CrossRef]
- Liu, Y.; Kuang, D.; Li, D.; Yang, J.; Yan, J.; Xia, Y.; Zhang, F.; Cao, H. Roles of the gut microbiota in severe SARS-CoV-2 infection. Cytokine Growth Factor Rev. 2022, 63, 98–107. [Google Scholar] [CrossRef]
- Ghazanfar, H.; Kandhi, S.; Shin, D.; Muthumanickam, A.; Gurjar, H.; Qureshi, Z.A.; Shaban, M.; Farag, M.; Haider, A.; Budhathoki, P.; et al. Impact of COVID-19 on the Gastrointestinal Tract: A Clinical Review. Cureus 2022, 14, e23333. [Google Scholar] [CrossRef]
- Almario, C.V.; Chey, W.D.; Spiegel, B.M.R. Increased Risk of COVID-19 Among Users of Proton Pump Inhibitors. Am. J. Gastroenterol. 2020, 115, 1707–1715. [Google Scholar] [CrossRef]
- Lee, S.W.; Ha, E.K.; Yeniova, A.; Moon, S.Y.; Kim, S.Y.; Koh, H.Y.; Yang, J.M.; Jeong, S.J.; Moon, S.J.; Cho, J.Y.; et al. Severe clinical outcomes of COVID-19 associated with proton pump inhibitors: A nationwide cohort study with propensity score matching. Gut 2021, 70, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, E3463–E3470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwok, K.O.; Wei, W.I.; Ma, B.H.M.; Ip, M.; Cheung, H.; Hui, E.; Tang, A.; McNeil, E.B.; Wong, S.Y.S.; Yeoh, E.K. Antibiotic use among COVID-19 patients in Hong Kong, January 2018 to March 2021. J. Infect. 2022, 84, e129–e132. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic. Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Soegiarto, G.; Wulandari, L.; Purnomosari, D.; Dhia Fahmita, K.; Ikhwan Gautama, H.; Tri Hadmoko, S.; Edwin Prasetyo, M.; Aulia Mahdi, B.; Arafah, N.; Prasetyaningtyas, D.; et al. Hypertension is associated with antibody response and breakthrough infection in health care workers following vaccination with inactivated SARS-CoV-2. Vaccine 2022, 40, 4046–4056. [Google Scholar] [CrossRef]
- Boroumand, A.B.; Forouhi, M.; Karimi, F.; Moghadam, A.S.; Naeini, L.G.; Kokabian, P.; Naderi, D. Immunogenicity of COVID-19 vaccines in patients with diabetes mellitus: A systematic review. Front. Immunol. 2022, 13, 940357. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Yang, L.; Peng, R.; Gao, T.; Chu, X.; Jiang, D.; Ke, D.; Ren, H. Safety and immunogenicity of inactivated COVID-19 vaccine in patients with metabolic syndrome: A cross-sectional observational study. Front. Public Health 2022, 10, 1067342. [Google Scholar] [CrossRef]
- Naruse, H.; Ito, H.; Izawa, H.; Sarai, M.; Ishii, J.; Sakaguchi, E.; Murakami, R.; Ando, T.; Fujigaki, H.; Saito, K. Immunogenicity of BNT162b2 mRNA COVID-19 Vaccine in Patients with Cardiovascular Disease. J. Clin. Med. 2021, 10, 5498. [Google Scholar] [CrossRef] [PubMed]
- Ou, X.; Jiang, J.; Lin, B.; Liu, Q.; Lin, W.; Chen, G.; Wen, J. Antibody responses to COVID-19 vaccination in people with obesity: A systematic review and meta-analysis. Influenza Other Respir. Viruses 2023, 17, e13078. [Google Scholar] [CrossRef]
- Ferrara, P.; Gianfredi, V.; Tomaselli, V.; Polosa, R. The Effect of Smoking on Humoral Response to COVID-19 Vaccines: A Systematic Review of Epidemiological Studies. Vaccines 2022, 10, 303. [Google Scholar] [CrossRef]
- Yamamoto, S.; Tanaka, A.; Ohmagari, N.; Yamaguchi, K.; Ishitsuka, K.; Morisaki, N.; Kojima, M.; Nishikimi, A.; Tokuda, H.; Inoue, M.; et al. Use of heated tobacco products, moderate alcohol drinking, and anti-SARS-CoV-2 IgG antibody titers after BNT162b2 vaccination among Japanese healthcare workers. Prev. Med. 2022, 161, 107123. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.S.; Lam, L.K.; Mao, X.; Tan, J.T.; Ooi, P.H.; Zhang, R.; Chan, K.H.; Hung, I.F.N.; Seto, W.K.; Yuen, M.F. Effect of Moderate to Severe Hepatic Steatosis on Vaccine Immunogenicity against Wild-Type and Mutant Virus and COVID-19 Infection among BNT162b2 Recipients. Vaccines 2023, 11, 497. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.S.; Lam, L.K.; Hui, R.W.H.; Mao, X.; Zhang, R.R.; Chan, K.H.; Hung, I.F.; Seto, W.K.; Yuen, M.F. Effect of moderate-to-severe hepatic steatosis on neutralising antibody response among BNT162b2 and CoronaVac recipients. Clin. Mol. Hepatol. 2022, 28, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.S.; Mok, C.H.; Mao, X.; Zhang, R.; Hung, I.F.; Seto, W.K.; Yuen, M.F. COVID-19 vaccine immunogenicity among chronic liver disease patients and liver transplant recipients: A meta-analysis. Clin. Mol. Hepatol. 2022, 28, 890–911. [Google Scholar] [CrossRef]
- Ma, B.M.; Tam, A.R.; Chan, K.W.; Ma, M.K.M.; Hung, I.F.N.; Yap, D.Y.H.; Chan, T.M. Immunogenicity and Safety of COVID-19 Vaccines in Patients Receiving Renal Replacement Therapy: A Systematic Review and Meta-Analysis. Front. Med. 2022, 9, 827859. [Google Scholar] [CrossRef]
- Cheung, K.S.; Hung, I.F.N.; Leung, W.K. Association between angiotensin blockade and COVID-19 severity in Hong Kong. Can. Med. Assoc. J. 2020, 192, E635. [Google Scholar] [CrossRef]
- Cheung, K.S.; Hung, I.F.N.; Leung, W.K. Association Between Famotidine Use and COVID-19 Severity in Hong Kong: A Territory-wide Study. Gastroenterology 2021, 160, 1898–1899. [Google Scholar] [CrossRef]
- Ramirez, J.; Guarner, F.; Bustos Fernandez, L.; Maruy, A.; Sdepanian, V.L.; Cohen, H. Antibiotics as Major Disruptors of Gut Microbiota. Front. Cell. Infect. Microbiol. 2020, 10, 572912. [Google Scholar] [CrossRef]
- Lange, K.; Buerger, M.; Stallmach, A.; Bruns, T. Effects of Antibiotics on Gut Microbiota. Dig. Dis. 2016, 34, 260–268. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Jara, A.; Undurraga, E.A.; González, C.; Paredes, F.; Fontecilla, T.; Jara, G.; Pizarro, A.; Acevedo, J.; Leo, K.; Leon, F.; et al. Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile. N. Engl. J. Med. 2021, 385, 875–884. [Google Scholar] [CrossRef] [PubMed]
- Munro, A.P.S.; Janani, L.; Cornelius, V.; Aley, P.K.; Babbage, G.; Baxter, D.; Bula, M.; Cathie, K.; Chatterjee, K.; Dodd, K.; et al. Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): A blinded, multicentre, randomised, controlled, phase 2 trial. Lancet 2021, 398, 2258–2276. [Google Scholar] [CrossRef] [PubMed]
- Nemet, I.; Kliker, L.; Lustig, Y.; Zuckerman, N.; Erster, O.; Cohen, C.; Kreiss, Y.; Alroy-Preis, S.; Regev-Yochay, G.; Mendelson, E.; et al. Third BNT162b2 Vaccination Neutralization of SARS-CoV-2 Omicron Infection. N. Engl. J. Med. 2022, 386, 492–494. [Google Scholar] [CrossRef]
- Barda, N.; Dagan, N.; Cohen, C.; Hernán, M.A.; Lipsitch, M.; Kohane, I.S.; Reis, B.Y.; Balicer, R.D. Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 vaccine for preventing severe outcomes in Israel: An observational study. Lancet 2021, 398, 2093–2100. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Ininbergs, K.; Hedman, K.; Giske, C.G.; Stralin, K.; Ozenci, V. Low prevalence of bloodstream infection and high blood culture contamination rates in patients with COVID-19. PLoS ONE 2020, 15, e0242533. [Google Scholar] [CrossRef]
- Zou, Z.; Liu, W.; Huang, C.; Sun, C.; Zhang, J. First-Year Antibiotics Exposure in Relation to Childhood Asthma, Allergies, and Airway Illnesses. Int. J. Environ. Res. Public Health 2020, 17, 5700. [Google Scholar] [CrossRef]
- Taur, Y.; Xavier, J.B.; Lipuma, L.; Ubeda, C.; Goldberg, J.; Gobourne, A.; Lee, Y.J.; Dubin, K.A.; Socci, N.D.; Viale, A.; et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin. Infect. Dis. 2012, 55, 905–914. [Google Scholar] [CrossRef]
- Palleja, A.; Mikkelsen, K.H.; Forslund, S.K.; Kashani, A.; Allin, K.H.; Nielsen, T.; Hansen, T.H.; Liang, S.; Feng, Q.; Zhang, C.; et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat. Microbiol. 2018, 3, 1255–1265. [Google Scholar] [CrossRef]
- Venzon, M.; Bernard-Raichon, L.; Klein, J.; Axelrad, J.E.; Hussey, G.A.; Sullivan, A.P.; Casanovas-Massana, A.; Noval, M.G.; Valero-Jimenez, A.M.; Gago, J.; et al. Gut microbiome dysbiosis during COVID-19 is associated with increased risk for bacteremia and microbial translocation. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Lim, W.W.; Mak, L.; Leung, G.M.; Cowling, B.J.; Peiris, M. Comparative immunogenicity of mRNA and inactivated vaccines against COVID-19. Lancet Microbe 2021, 2, e423. [Google Scholar] [CrossRef]
- Nordström, P.; Ballin, M.; Nordström, A. Risk of infection, hospitalisation, and death up to 9 months after a second dose of COVID-19 vaccine: A retrospective, total population cohort study in Sweden. Lancet 2022, 399, 814–823. [Google Scholar] [CrossRef] [PubMed]
- Divo, M.J.; Martinez, C.H.; Mannino, D.M. Ageing and the epidemiology of multimorbidity. Eur. Respir. J. 2014, 44, 1055–1068. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, M.; Carmisciano, L.; Tagliafico, L.; Muzyka, M.; Rosa, G.; Signori, A.; Bassetti, M.; Nencioni, A.; Monacelli, F.; Group, G.S. Patterns of Comorbidity and In-Hospital Mortality in Older Patients With COVID-19 Infection. Front. Med. 2021, 8, 726837. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Bajinka, O.; Jarju, P.O.; Tan, Y.; Taal, A.M.; Ozdemir, G. The varying effects of antibiotics on gut microbiota. AMB Express 2021, 11, 116. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.; El Khader, I.; Casellas, F.; Lopez Vivancos, J.; Garcia Cors, M.; Santiago, A.; Cuenca, S.; Guarner, F.; Manichanh, C. Short-term effect of antibiotics on human gut microbiota. PLoS ONE 2014, 9, e95476. [Google Scholar] [CrossRef]
- Rea, M.C.; Dobson, A.; O’Sullivan, O.; Crispie, F.; Fouhy, F.; Cotter, P.D.; Shanahan, F.; Kiely, B.; Hill, C.; Ross, R.P. Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proc. Natl. Acad. Sci. USA 2011, 108, 4639–4644. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, Y.; Zhou, Y.; Buckley, T.; Wang, H.H. Antibiotic administration routes significantly influence the levels of antibiotic resistance in gut microbiota. Antimicrob. Agents Chemother. 2013, 57, 3659–3666. [Google Scholar] [CrossRef] [Green Version]
- De Maria, L.; Sponselli, S.; Caputi, A.; Pipoli, A.; Giannelli, G.; Delvecchio, G.; Zagaria, S.; Cavone, D.; Stefanizzi, P.; Bianchi, F.P.; et al. Comparison of Three Different Waves in Healthcare Workers during the COVID-19 Pandemic: A Retrospective Observational Study in an Italian University Hospital. J. Clin. Med. 2022, 11, 3074. [Google Scholar] [CrossRef]
Pre-Vaccination Antibiotic Non-Users (n = 171,169) | Pre-Vaccination Antibiotic Users (n = 171,169) | SMD | |
---|---|---|---|
Age, years (mean (SD)) | 57.21 (18.2) | 57.60 (19.1) | 0.021 |
Sex, male (%) | 76,808 (44.9) | 77,638 (45.4) | 0.010 |
Charlson Comorbidity Index (mean (SD)) | 0.40 (0.8) | 0.41 (0.8) | 0.019 |
Vaccine platform—CoronaVac (%) | 91,576 (53.5) | 93,168 (54.4) | 0.019 |
Received 3rd dose (%) | 1.00 (0.0) | 1.00 (0.0) | <0.001 |
Comorbidities—no. (%) | |||
Hypertension | 51,436 (30.0) | 51,294 (30.0) | 0.002 |
Diabetes mellitus | 26,124 (15.3) | 26,414 (15.4) | 0.005 |
Dyslipidemia | 29,851 (17.4) | 29,351 (17.1) | 0.008 |
Cardiovascular diseases | 57,263 (33.5) | 57,375 (33.5) | 0.001 |
Respiratory diseases | 8634 (5.0) | 9169 (5.4) | 0.014 |
Obesity diagnosis | 8377 (4.9) | 8626 (5.0) | 0.007 |
Smoking | 2100 (1.2) | 2279 (1.3) | 0.009 |
Alcohol use disorders | 1047 (0.6) | 1066 (0.6) | 0.001 |
Ulcers | 3569 (2.1) | 3921 (2.3) | 0.014 |
Moderate-severe liver disease | 334 (0.2) | 372 (0.2) | 0.005 |
Chronic renal failure | 3358 (2.0) | 3459 (2.0) | 0.004 |
Medication use in past 6 months—no. (%) | |||
ACEIs | 15,317 (8.9) | 15,693 (9.2) | 0.008 |
ARBs | 18,010 (10.5) | 18,074 (10.6) | 0.001 |
Metformin | 21,302 (12.4) | 21,316 (12.5) | <0.001 |
Lipid lowering agents | 46,982 (27.4) | 46,076 (26.9) | 0.012 |
Antiplatelets | 23,053 (13.5) | 23,134 (13.5) | 0.001 |
NSAIDs | 28,861 (16.9) | 26,385 (15.4) | 0.039 |
Oral anticoagulants | 4739 (2.8) | 4897 (2.9) | 0.006 |
Steroids | 3478 (2.0) | 4104 (2.4) | 0.025 |
Antidepressants | 12,873 (7.5) | 12,939 (7.6) | 0.001 |
Antiviral drugs | 3214 (1.9) | 3231 (1.9) | 0.001 |
PPIs | 36,374 (21.3) | 36,571 (21.4) | 0.003 |
H2RAs | 41,112 (24.0) | 38,394 (22.4) | 0.038 |
Events | Person-Days | No. of Persons | Incidence Rate (per 100,000 Person-Days) | Adjusted IRR (95% CI) | |
---|---|---|---|---|---|
COVID-19 | |||||
Never users | 21,110 | 66,365,213 | 171,169 | 31.80883 | - |
Pre-vaccination antibiotics users | 24,063 | 65,191,587 | 171,169 | 36.9112 | 1.16 (1.14–1.18) |
COVID-19-related hospitalization | |||||
Never users | 1550 | 70,426,545 | 171,169 | 2.200875 | - |
Pre-vaccination antibiotics users | 2889 | 69,621,220 | 171,169 | 4.149597 | 1.75 (1.65–1.86) |
Severe COVID-19 (ICU admission/ventilatory support/death) | |||||
Never users | 78 | 70,655,136 | 171,169 | 0.110395 | - |
Pre-vaccination antibiotics users | 138 | 70,067,227 | 171,169 | 0.196954 | 1.60 (1.21–2.11) |
COVID-19-related death | |||||
Never users | 21 | 70,665,654 | 171,169 | 0.029717 | - |
Pre-vaccination antibiotics users | 66 | 70,080,467 | 171,169 | 0.094177 | 2.56 (1.56–4.20) |
Cumulative Duration (within 180 Days Pre-Vaccination) | Events | Person-Days | Persons | Incidence Rate (per 100,000 Person-Days) | Adjusted IRR (95% CI) |
---|---|---|---|---|---|
COVID-19 infection | |||||
0 days (non-users) | 21,110 | 66,365,213 | 171,169 | 31.80883 | - |
1–7 days | 16,911 | 47,596,958 | 122,112 | 35.52958 | 1.140 (1.117–1.164) |
≥8 days | 7152 | 17,594,629 | 49,057 | 40.64877 | 1.212 (1.180–1.246) |
COVID-19 hospitalisation | |||||
0 days (non-users) | 1550 | 70,426,545 | 171,169 | 2.200875 | - |
1–7 days | 1641 | 50,791,737 | 122,112 | 3.23084 | 1.572 (1.466–1.685) |
≥8 days | 1248 | 18,829,483 | 49,057 | 6.627904 | 2.070 (1.919–2.232) |
Severe COVID-19 | |||||
0 days (non-users) | 78 | 70,655,136 | 171,169 | 0.110395 | - |
1–7 days | 78 | 51,044,140 | 122,112 | 0.152809 | 1.485 (1.083–2.035) |
≥8 days | 60 | 19,023,087 | 49,057 | 0.315406 | 1.772 (1.258–2.496) |
COVID-19 mortality | |||||
0 days (non-users) | 21 | 70,665,654 | 171,169 | 0.029717 | - |
1–7 days | 40 | 51,051,180 | 122,112 | 0.078353 | 2.626 (1.543–4.469) |
≥8 days | 26 | 19,029,287 | 49,057 | 0.136631 | 2.459 (1.373–4.403) |
Pre-Vaccination Antibiotic Use | Adjusted Incidence Rate Ratio (95% CI) | |||||||
---|---|---|---|---|---|---|---|---|
BNT162b2 | CoronaVac | Age < 60 | Age ≥ 60 | Male | Female | CCI 0 | CCI ≥ 1 | |
COVID-19 | ||||||||
1.17 (1.13–1.20) | 1.15 (1.13–1.18) | 1.15 (1.12–1.18) | 1.18 (1.15–1.21) | 1.15 (1.12–1.19) | 1.17 (1.14–1.20) | 1.14 (1.12–1.16) | 1.22 (1.17–1.26) | |
COVID-19-related hospitalization | ||||||||
1.69 (1.48–1.92) | 1.76 (1.64–1.89) | 1.63 (1.40–1.89) | 1.76 (1.64–1.88) | 1.74 (1.60–1.90) | 1.76 (1.61–1.93) | 1.73 (1.57–1.90) | 1.75 (1.61–1.89) | |
Severe COVID-19 | ||||||||
1.50 (0.83–2.72) | 1.62 (1.18–2.22) | 1.80 (0.71–4.54) | 1.57 (1.17–2.11) | 1.65 (1.14–2.38) | 1.56 (1.01–2.40) | 0.98 (0.59–1.62) | 1.94 (1.38–2.74) | |
COVID-19-related mortality | ||||||||
2.02 (0.70–5.85) | 2.70 (1.54–4.73) | - | 2.53 (1.54–4.15) | 2.71 (1.41–5.22) | 2.30 (1.07–4.90) | 2.18 (0.84–5.64) | 2.66 (1.49–4.76) |
Events | Person-Days | No. of Persons | Incidence Rate (per 100,000 Person-Days) | Adjusted IRR (95% CI) | |
---|---|---|---|---|---|
COVID-19 infection | |||||
Anti-aerobic vs. anti-anaerobic | |||||
Never users | 21,110 | 66,365,213 | 171,169 | 31.80883 | - |
Anti-aerobic | 3527 | 10,273,829 | 26,363 | 34.32995 | 1.11 (1.07–1.15) |
Anti-anaerobic | 16,879 | 45,822,622 | 119,732 | 36.83552 | 1.16 (1.14–1.19) |
Both | 3657 | 9,095,136 | 25,074 | 40.2083 | 1.21 (1.16–1.25) |
Narrow- vs. broad-spectrum | |||||
Never users | 21,110 | 66,365,213 | 171,169 | 31.80883 | - |
Narrow-spectrum | 1588 | 4,630,583 | 11,613 | 34.29374 | 1.14 (1.09–1.20) |
Broad-spectrum | 20,276 | 54,929,426 | 144,534 | 36.91282 | 1.16 (1.14–1.18) |
Both | 2199 | 5,631,578 | 15,022 | 39.04767 | 1.19 (1.14–1.24) |
Intravenous vs. oral | |||||
Never users | 21,110 | 66,365,213 | 171,169 | 31.80883 | - |
Oral | 22,447 | 61,588,197 | 159,487 | 36.44692 | 1.16 (1.14–1.18) |
Intravenous | 302 | 704,960 | 2359 | 42.83931 | 1.15 (1.02–1.29) |
Both | 1314 | 2,898,430 | 9323 | 45.33489 | 1.24 (1.17–1.31) |
COVID-19-related hospitalization | |||||
Anti-aerobic vs. anti-anaerobic | |||||
Never users | 1550 | 70,426,545 | 171,169 | 2.200875 | - |
Anti-aerobic | 368 | 10,926,345 | 26,363 | 3.368006 | 1.65 (1.47–1.85) |
Anti-anaerobic | 1932 | 48,955,027 | 119,732 | 3.946479 | 1.71 (1.60–1.83) |
Both | 589 | 9,739,848 | 25,074 | 6.047322 | 1.98 (1.80–2.18) |
Narrow- vs. broad-spectrum | |||||
Never users | 1550 | 70,426,545 | 171,169 | 2.200875 | - |
Narrow-spectrum | 106 | 4,933,949 | 11,613 | 2.148381 | 1.32 (1.08–1.61) |
Broad-spectrum | 2516 | 58,654,252 | 14,4534 | 4.289544 | 1.77 (1.67–1.89) |
Both | 267 | 6,033,019 | 15,022 | 4.425645 | 1.77 (1.55–2.02) |
Intravenous vs. oral | |||||
Never users | 1550 | 70,426,545 | 171,169 | 2.200875 | - |
Oral | 2373 | 65,784,698 | 159,487 | 3.607222 | 1.66 (1.56–1.77) |
Intravenous | 86 | 749,421 | 2359 | 11.47553 | 1.90 (1.53–2.36) |
Both | 430 | 3,087,101 | 9323 | 13.92893 | 2.49 (2.23–2.78) |
Severe COVID-19 (ICU admission/ventilatory support/death) | |||||
Anti-aerobic vs. anti-anaerobic | |||||
Never users | 78 | 70,655,136 | 171,169 | 0.110395 | - |
Anti-aerobic | 17 | 10,982,965 | 26,363 | 0.154785 | 1.49 (0.88–2.53) |
Anti-anaerobic | 100 | 49,255,135 | 119,732 | 0.203025 | 1.70 (1.26–2.29) |
Both | 21 | 9,829,127 | 25,074 | 0.213651 | 1.28 (0.79–2.08) |
Narrow- vs. broad-spectrum | |||||
Never users | 78 | 70,655,136 | 171,169 | 0.110395 | - |
Narrow-spectrum | 3 | 4,950,897 | 11,613 | 0.060595 | 0.79 (0.25–2.51) |
Broad-spectrum | 125 | 59,041,017 | 144,534 | 0.211717 | 1.67 (1.26–2.22) |
Both | 10 | 6,075,313 | 15,022 | 0.164601 | 1.28 (0.66–2.47) |
Intravenous vs. oral | |||||
Never users | 78 | 70,655,136 | 171,169 | 0.110395 | - |
Oral | 112 | 66,147,965 | 159,487 | 0.169317 | 1.53 (1.14–2.04) |
Intravenous | 5 | 763,064 | 2359 | 0.655253 | 1.92 (0.77–4.76) |
Both | 21 | 3,156,198 | 9323 | 0.665357 | 2.04 (1.25–3.34) |
COVID-19-related death | |||||
Anti-aerobic vs. anti-anaerobic | |||||
Never users | 21 | 70,665,654 | 171,169 | 0.029717 | - |
Anti-aerobic | 7 | 10,984,950 | 26,363 | 0.063724 | 2.24 (0.95–5.27) |
Anti-anaerobic | 51 | 49,263,702 | 119,732 | 0.103524 | 2.89 (1.73–4.83) |
Both | 8 | 9,831,815 | 25,074 | 0.081368 | 1.59 (0.70–3.61) |
Narrow- vs. broad-spectrum | |||||
Never users | 21 | 70,665,654 | 171,169 | 0.029717 | - |
Narrow-spectrum | 2 | 4,951,046 | 11,613 | 0.040396 | 2.19 (0.51–9.39) |
Broad-spectrum | 59 | 59,053,118 | 144,534 | 0.09991 | 2.60 (1.57–4.30) |
Both | 5 | 6,076,303 | 15,022 | 0.082287 | 2.31 (0.87–6.15) |
Intravenous vs. oral | |||||
Never users | 21 | 70,665,654 | 171,169 | 0.029717 | - |
Oral | 53 | 66,158,741 | 159,487 | 0.08011 | 2.51 (1.51–4.17) |
Intravenous | 3 | 763,471 | 2359 | 0.392942 | 3.23 (0.95–10.93) |
Both | 10 | 3,158,255 | 9323 | 0.316631 | 2.72 (1.26–5.86) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheung, K.S.; Yan, V.K.C.; Lam, L.K.; Ye, X.; Hung, I.F.N.; Chan, E.W.; Leung, W.K. Antibiotic Use Prior to COVID-19 Vaccine Is Associated with Higher Risk of COVID-19 and Adverse Outcomes: A Propensity-Scored Matched Territory-Wide Cohort. Vaccines 2023, 11, 1341. https://doi.org/10.3390/vaccines11081341
Cheung KS, Yan VKC, Lam LK, Ye X, Hung IFN, Chan EW, Leung WK. Antibiotic Use Prior to COVID-19 Vaccine Is Associated with Higher Risk of COVID-19 and Adverse Outcomes: A Propensity-Scored Matched Territory-Wide Cohort. Vaccines. 2023; 11(8):1341. https://doi.org/10.3390/vaccines11081341
Chicago/Turabian StyleCheung, Ka Shing, Vincent K. C. Yan, Lok Ka Lam, Xuxiao Ye, Ivan F. N. Hung, Esther W. Chan, and Wai K. Leung. 2023. "Antibiotic Use Prior to COVID-19 Vaccine Is Associated with Higher Risk of COVID-19 and Adverse Outcomes: A Propensity-Scored Matched Territory-Wide Cohort" Vaccines 11, no. 8: 1341. https://doi.org/10.3390/vaccines11081341
APA StyleCheung, K. S., Yan, V. K. C., Lam, L. K., Ye, X., Hung, I. F. N., Chan, E. W., & Leung, W. K. (2023). Antibiotic Use Prior to COVID-19 Vaccine Is Associated with Higher Risk of COVID-19 and Adverse Outcomes: A Propensity-Scored Matched Territory-Wide Cohort. Vaccines, 11(8), 1341. https://doi.org/10.3390/vaccines11081341