Influenza Vaccine Effectiveness in Preventing Laboratory-Confirmed Influenza Cases and Hospitalizations in Navarre, Spain, 2022–2023
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Sources of Information
2.2. Study Design
2.3. Statistical Analysis
3. Results
3.1. Characteristics of Cases and Controls
3.2. Genetic Characterization
3.3. Influenza Vaccine Effectiveness Estimates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Instituto de Salud Carlos III. Vigilancia Centinela de Infección Respiratoria Aguda en Atención Primaria (IRAs) y en Hospitales (IRAG). Gripe, COVID-19 y Otros Virus Respiratorios. N° 134. 8 de Junio de 2023. Available online: https://www.isciii.es/QueHacemos/Servicios/VigilanciaSaludPublicaRENAVE/EnfermedadesTransmisibles/Documents/GRIPE/Informes%20semanales/Temporada_2022-23/Informe%20semanal_SiVIRA_222023.pdf (accessed on 11 August 2023).
- European Centre for Disease Prevention and Control (ECDC). Influenza Virus Characterization. Summary Report, Europe, February 2023. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Influenza-characterisation-February-2023.pdf (accessed on 11 August 2023).
- World Health Organization (WHO). Recommended Composition of Influenza Virus Vaccines for Use in the 2022–2023 Northern Hemisphere Influenza Season. February 2022. Available online: https://www.who.int/publications/m/item/recommended-composition-of-influenza-virus-vaccines-for-use-in-the-2022-2023-northern-hemisphere-influenza-season (accessed on 11 August 2023).
- Kissling, E.; Maurel, M.; Emborg, H.D.; Whitaker, H.; McMenamin, J.; Howard, J.; Trebbien, R.; Watson, C.; Findlay, B.; Pozo, F.; et al. Interim 2022/23 influenza vaccine effectiveness: Six European studies, October 2022 to January 2023. Eurosurveillance 2023, 28, 2300116. [Google Scholar] [CrossRef]
- Skowronski, D.M.; Chuang, E.S.; Sabaiduc, S.; Kaweski, S.E.; Kim, S.; Dickinson, J.A.; Olsha, R.; Gubbay, J.B.; Zelyas, N.; Charest, H.; et al. Vaccine effectiveness estimates from an early-season influenza A(H3N2) epidemic, including unique genetic diversity with reassortment, Canada, 2022/23. Eurosurveillance 2023, 28, 2300043. [Google Scholar] [CrossRef] [PubMed]
- McLean, H.Q.; Petrie, J.G.; Hanson, K.E.; Meece, J.K.; Rolfes, M.A.; Sylvester, G.C.; Neumann, G.; Kawaoka, Y.; Belongia, E.A. Interim Estimates of 2022-23 Seasonal Influenza Vaccine Effectiveness—Wisconsin, October 2022-February 2023. MMWR Morb. Mortal Wkly. Rep. 2023, 72, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Leung, V.K.; Cowling, B.J.; Feng, S.; Sullivan, S.G. Concordance of interim and final estimates of influenza vaccine effectiveness: A systematic review. Eurosurveillance 2016, 21, 30202. [Google Scholar] [CrossRef]
- Petrie, J.G.; Ohmit, S.E.; Johnson, E.; Truscon, R.; Monto, A.S. Persistence of Antibodies to Influenza Hemagglutinin and Neuraminidase Following One or Two Years of Influenza Vaccination. J. Infect. Dis. 2015, 212, 1914–1922. [Google Scholar] [CrossRef]
- Martínez-Baz, I.; Navascués, A.; Casado, I.; Aguinaga, A.; Ezpeleta, C.; Castilla, J. Remaining Effect of Influenza Vaccines Received in Prior Seasons. J. Infect. Dis. 2019, 220, 1136–1140. [Google Scholar] [CrossRef]
- Ramsay, L.C.; Buchan, S.A.; Stirling, R.G.; Cowling, B.J.; Feng, S.; Kwong, J.C.; Warshawsky, B.F. The impact of repeated vaccination on influenza vaccine effectiveness: A systematic review and meta-analysis. BMC Med. 2019, 17, 9. [Google Scholar] [CrossRef] [PubMed]
- Belongia, E.A.; Skowronski, D.M.; McLean, H.Q.; Chambers, C.; Sundaram, M.E.; De Serres, G. Repeated annual influenza vaccination and vaccine effectiveness: Review of evidence. Expert Rev. Vaccines 2017, 16, 1–14, Erratum in: Expert Rev. Vaccines. 2017, 16, 865–866. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Baz, I.; Navascués, A.; Casado, I.; Aguinaga, A.; Ezpeleta, C.; Castilla, J. Simple models to include influenza vaccination history when evaluating the effect of influenza vaccination. Eurosurveillance 2021, 26, 2001099. [Google Scholar] [CrossRef]
- Belongia, E.A.; Simpson, M.D.; King, J.P.; Sundaram, M.E.; Kelley, N.S.; Osterholm, M.T.; McLean, H.Q. Variable influenza vaccine effectiveness by subtype: A systematic review and meta-analysis of test-negative design studies. Lancet Infect. Dis. 2016, 16, 942–951. [Google Scholar] [CrossRef]
- Okoli, G.N.; Racovitan, F.; Abdulwahid, T.; Righolt, C.H.; Mahmud, S.M. Variable seasonal influenza vaccine effectiveness across geographical regions, age groups and levels of vaccine antigenic similarity with circulating virus strains: A systematic review and meta-analysis of the evidence from test-negative design studies after the 2009/10 influenza pandemic. Vaccine 2021, 39, 1225–1240. [Google Scholar] [PubMed]
- Feng, S.; Cowling, B.J.; Sullivan, S.G. Influenza vaccine effectiveness by test-negative design—Comparison of inpatient and outpatient settings. Vaccine 2016, 34, 1672–1679. [Google Scholar] [CrossRef]
- Castilla, J.; Martínez-Baz, I.; Navascués, A.; Casado, I.; Aguinaga, A.; Díaz-González, J.; Delfrade, J.; Guevara, M.; Ezpeleta, C. Comparison of influenza vaccine effectiveness in preventing outpatient and inpatient influenza cases in older adults, northern Spain, 2010/11 to 2015/16. Eurosurveillance 2018, 23, 16.00780. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing the Decision (EU) 2018/945 of 22 June 2018 on the Communicable Disease and Related Special Health Issues to Be Covered by Epidemiological Surveillance as Well as Relevant Case Definitions. Luxembourg: Official Journal of the European Union. 6.7.2018:L 170/1. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2018.170.01.0001.01.ENG (accessed on 11 August 2023).
- World Organization of National Colleges Academies. International Classification of Primary Care, 2nd ed.; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Aguilar, I.; Reyes, M.; Martinez-Baz, I.; Guevara, M.; Albeniz, E.; Belza, M.; Castilla, J. Use of the vaccination register to evaluate influenza vaccine coverage in seniors in the 2010/11 influenza season, Navarre, Spain. Eurosurveillance 2012, 17, 20154. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Evaluation of Influenza Vaccine Effectiveness: A Guide to the Design and Interpretation of Observational Studies; WHO: Geneva, Switzerland, 2017. Available online: https://apps.who.int/iris/bitstream/handle/10665/255203/9789241512121-eng.pdf?sequence=1 (accessed on 11 August 2023).
- Doll, M.K.; Pettigrew, S.M.; Ma, J.; Verma, A. Effects of confounding bias in coronavirus disease 2019 (COVID-19) and influenza vaccine effectiveness test-negative designs due to correlated influenza and COVID-19 vaccination behaviors. Clin. Infect. Dis. 2022, 75, e564–e571. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Recommended Composition of Influenza Virus Vaccines for Use in the 2023–2024 Northern Hemisphere Influenza Season. February 2023. Available online: https://www.who.int/publications/m/item/recommended-composition-of-influenza-virus-vaccines-for-use-in-the-2023-2024-northern-hemisphere-influenza-season (accessed on 11 August 2023).
- Domnich, A.; Orsi, A.; Ogliastro, M.; Trombetta, C.S.; Scarpaleggia, M.; Stefanelli, F.; Panatto, D.; Bruzzone, B.; Icardi, G. Influenza vaccine effectiveness in preventing hospital encounters for laboratory-confirmed infection among Italian adults, 2022/23 season. Vaccine 2023, 41, 4861–4866. [Google Scholar] [CrossRef]
- Sullivan, S.G.; Feng, S.; Cowling, B.J. Potential of the test-negative design for measuring influenza vaccine effectiveness: A systematic review. Expert Rev. Vaccines 2014, 13, 1571–1591. [Google Scholar] [CrossRef]
- Jackson, M.L.; Nelson, J.C. The test-negative design for estimating influenza vaccine effectiveness. Vaccine 2013, 31, 2165–2168. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Cowling, B.J.; Kelly, H.; Sullivan, S.G. Estimating Influenza Vaccine Effectiveness with the Test-Negative Design Using Alternative Control Groups: A Systematic Review and Meta-Analysis. Am. J. Epidemiol. 2018, 187, 389–397. [Google Scholar] [CrossRef]
- Foppa, I.M.; Ferdinands, J.M.; Chaves, S.S.; Haber, M.J.; Reynolds, S.B.; Flannery, B.; Fry, A.M. The case test-negative design for studies of the effectiveness of influenza vaccine in inpatient settings. Int. J. Epidemiol. 2016, 45, 2052–2059. [Google Scholar] [CrossRef] [PubMed]
- Ainslie, K.E.C.; Haber, M.; Orenstein, W.A. Challenges in estimating influenza vaccine effectiveness. Expert Rev. Vaccines 2019, 18, 615–628. [Google Scholar] [CrossRef] [PubMed]
- Groenwold, R.H.; Hoes, A.W.; Nichol, K.L.; Hak, E. Quantifying the potential role of unmeasured confounders: The example of influenza vaccination. Int. J. Epidemiol. 2008, 37, 1422–1429. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Negative Controls n (%) n = 2750 | All Confirmed Influenza Cases, n (%) n = 571 | p-Value | Influenza A(H1N1) n (%) n = 85 | Influenza A(H3N2) n (%) n = 348 | Influenza B n (%) n = 95 | p-Value |
---|---|---|---|---|---|---|---|
Age group in years | <0.001 | <0.001 | |||||
9–24 | 90 (3) | 58 (10) | 2 (2) | 35 (10) | 18 (19) | ||
25–44 | 191 (7) | 114 (20) | 11 (13) | 54 (16) | 48 (51) | ||
45–64 | 501 (18) | 119 (21) | 21 (25) | 71 (20) | 13 (14) | ||
65–84 | 1238 (45) | 201 (35) | 41 (48) | 130 (37) | 7 (7) | ||
≥85 | 730 (27) | 79 (14) | 10 (12) | 58 (17) | 9 (9) | ||
Sex | 0.614 | 0.002 | |||||
Male | 1390 (50) | 282 (49) | 42 (49) | 179 (51) | 39 (41) | ||
Female | 1360 (50) | 289 (51) | 43 (51) | 169 (49) | 56 (59) | ||
Presence of major chronic conditions | <0.001 | <0.001 | |||||
No | 473 (17) | 206 (36) | 20 (23) | 116 (33) | 58 (61) | ||
Yes | 2277 (83) | 365 (64) | 65 (77) | 232 (67) | 37 (39) | ||
Vaccination in the current season | <0.001 | <0.001 | |||||
No | 1197 (43) | 366 (64) | 34 (40) | 222 (64) | 85 (89) | ||
Yes | 1553 (57) | 205 (36) | 51 (60) | 126 (36) | 10 (11) | ||
Vaccination in the current and three prior seasons | <0.001 | <0.001 | |||||
Never vaccinated | 678 (25) | 252 (44) | 27 (32) | 131 (38) | 77 (81) | ||
Vaccination in prior seasons only | 519 (19) | 114 (20) | 7 (8) | 91 (26) | 8 (8) | ||
Current season vaccination | 153 (56) | 205 (36) | 51 (60) | 126 (36) | 10 (11) | ||
Healthcare setting | <0.001 | <0.001 | |||||
Primary healthcare center | 336 (12) | 222 (39) | 24 (28) | 123 (35) | 68 (72) | ||
Hospital | 2414 (88) | 349 (61) | 61 (72) | 225 (65) | 27 (28) | ||
Month of sample collection | <0.001 | <0.001 | |||||
October 2022 | 315 (12) | 47 (8) | 3 (4) | 42 (12) | 0 (0) | ||
November 2022 | 335 (12) | 104 (18) | 3 (4) | 95 (27) | 0 (0) | ||
December 2022 | 591 (22) | 164 (29) | 9 (11) | 148 (43) | 2 (2) | ||
January 2023 | 541 (20) | 86 (15) | 26 (31) | 50 (14) | 18 (19) | ||
February 2023 | 294 (11) | 63 (11) | 36 (42) | 12 (3) | 21 (22) | ||
March 2023 | 321 (12) | 91 (16) | 8 (9) | 1 (0.3) | 47 (50) | ||
April 2023 | 249 (9) | 15 (3) | 0 (0) | 0 (0) | 6 (6) | ||
May 2023 | 104 (4) | 1 (0.2) | 0 (0) | 0 (0) | 1 (1) |
Genetic Virus Characterization | Clade | n (%) |
---|---|---|
Influenza A(H1N1)pdm09 (n = 68) | ||
A/Sydney/5/2021 (n = 58) | 5a.2a | 58 (85) |
A/Norway/25089/2022 (n = 10) | 5a.2a.1 | 10 (15) |
Influenza A(H3N2) (n = 100) | ||
A/Bangladesh/4005/2020 (n = 56) | 2a.3 2b | 3 (5) 53 (95) |
A/Slovenia/8720/2022 (n = 44) | 2a.1b 2a.1 | 34 (77) 10 (23) |
Influenza B/Victoria (n = 62) | ||
B/Austria/1359417/2021 | V1A.3a.2 | 62 (100) |
Cases/Controls | Crude Vaccine Effectiveness, % (95% CI) | Adjusted Vaccine Effectiveness, % (95% CI) a | p-Value | |
---|---|---|---|---|
All outpatients | ||||
Unvaccinated | 196/238 | 1 | 1 | |
Vaccinated | 26/98 | 68 (48 to 80) | 48 (8 to 70) | 0.026 |
Aged 9 to 64 years | ||||
Unvaccinated | 189/216 | 1 | 1 | |
Vaccinated | 15/39 | 56 (18 to 76) | 45 (−7 to 72) | 0.077 |
Aged ≥65 years | ||||
Unvaccinated | 7/22 | 1 | 1 | |
Vaccinated | 11/59 | 41 (−70 to 80) | 48 (−83 to 85) | 0.312 |
Target population | ||||
Unvaccinated | 58/93 | 1 | 1 | |
Vaccinated | 22/86 | 59 (27 to 77) | 47 (−8 to 73) | 0.080 |
A/H3N2 subtype b | ||||
Unvaccinated | 107/183 | 1 | 1 | |
Vaccinated | 15/77 | 67 (39 to 82) | 50 (−4 to 76) | 0.063 |
A/H1N1 subtype c | ||||
Unvaccinated | 17/164 | 1 | 1 | |
Vaccinated | 6/80 | 28 (−91 to 72) | 7 (−233 to 74) | 0.908 |
B type d | ||||
Unvaccinated | 66/116 | 1 | 1 | |
Vaccinated | 1/53 | 97 (75 to 99) | 88 (3 to 98) | 0.046 |
Cases/Controls | Crude Vaccine Effectiveness, % (95% CI) | Adjusted Vaccine Effectiveness, % (95% CI) a | p-Value | |
---|---|---|---|---|
All inpatients | ||||
Unvaccinated | 170/959 | 1 | 1 | |
Vaccinated | 179/1455 | 31 (13 to 45) | 24 (−1 to 42) | 0.055 |
Aged 9 to 64 years | ||||
Unvaccinated | 67/380 | 1 | 1 | |
Vaccinated | 20/147 | 23 (−32 to 55) | 12 (−57 to 50) | 0.671 |
Aged ≥65 years | ||||
Unvaccinated | 103/579 | 1 | 1 | |
Vaccinated | 159/1308 | 32 (11 to 48) | 25 (−2 to 46) | 0.067 |
Target population | ||||
Unvaccinated | 145/822 | 1 | 1 | |
Vaccinated | 173/1442 | 32 (14 to 46) | 31 (9 to 48) | 0.009 |
A/H3N2 subtype b | ||||
Unvaccinated | 115/780 | 1 | 1 | |
Vaccinated | 110/998 | 25 (1 to 43) | 16 (−17 to 40) | 0.301 |
A/H1N1 subtype c | ||||
Unvaccinated | 12/443 | 1 | 1 | |
Vaccinated | 39/1060 | −35 (−162 to 29) | −53 (−233 to 30) | 0.284 |
B type d | ||||
Unvaccinated | 17/367 | 1 | 1 | |
Vaccinated | 9/973 | 80 (55 to 91) | 82 (49 to 93) | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Baz, I.; Fernández-Huerta, M.; Navascués, A.; Pozo, F.; Trobajo-Sanmartín, C.; Casado, I.; Echeverria, A.; Ezpeleta, C.; Castilla, J. Influenza Vaccine Effectiveness in Preventing Laboratory-Confirmed Influenza Cases and Hospitalizations in Navarre, Spain, 2022–2023. Vaccines 2023, 11, 1478. https://doi.org/10.3390/vaccines11091478
Martínez-Baz I, Fernández-Huerta M, Navascués A, Pozo F, Trobajo-Sanmartín C, Casado I, Echeverria A, Ezpeleta C, Castilla J. Influenza Vaccine Effectiveness in Preventing Laboratory-Confirmed Influenza Cases and Hospitalizations in Navarre, Spain, 2022–2023. Vaccines. 2023; 11(9):1478. https://doi.org/10.3390/vaccines11091478
Chicago/Turabian StyleMartínez-Baz, Iván, Miguel Fernández-Huerta, Ana Navascués, Francisco Pozo, Camino Trobajo-Sanmartín, Itziar Casado, Aitziber Echeverria, Carmen Ezpeleta, and Jesús Castilla. 2023. "Influenza Vaccine Effectiveness in Preventing Laboratory-Confirmed Influenza Cases and Hospitalizations in Navarre, Spain, 2022–2023" Vaccines 11, no. 9: 1478. https://doi.org/10.3390/vaccines11091478
APA StyleMartínez-Baz, I., Fernández-Huerta, M., Navascués, A., Pozo, F., Trobajo-Sanmartín, C., Casado, I., Echeverria, A., Ezpeleta, C., & Castilla, J. (2023). Influenza Vaccine Effectiveness in Preventing Laboratory-Confirmed Influenza Cases and Hospitalizations in Navarre, Spain, 2022–2023. Vaccines, 11(9), 1478. https://doi.org/10.3390/vaccines11091478