Efficiency of NHEJ-CRISPR/Cas9 and Cre-LoxP Engineered Recombinant Turkey Herpesvirus Expressing Pasteurella multocida OmpH Protein for Fowl Cholera Prevention in Ducks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus Strain and Cell Culture
2.2. CRISPR/Cas9-Mediated HVT-OmpH Cloning
2.3. The Removal of the GFP Cassette from HVT-GFP-OmpH-V5 Was Achieved Using the Cre-Lox System
2.4. Analysis of the Properties of HVT-OmpH-V5 Recombinant Viruses
2.5. Western Blot Analysis
2.6. Indirect Immunofluorescence Analysis (IFA)
2.7. Assessment of Gene Insert Stability in Recombinant Viruses
2.8. In Vitro Growth Kinetics
2.9. Immunogenicity and Protection of rHVT-OmpH-V5 in Ducks
2.10. Statistical Analysis
3. Results
3.1. Rapid Generation of Recombinant HVT-OmpH-V5 Virus Based on CRISPR/Cas9 Mediated Gene Editing
3.2. Expression of the OmpH-V5 in CEF Cells Infected with the Recombinant HVT-OmpH Viruses
3.3. Stability of Recombinant HVT-OmpH
3.4. Induction of Antibody Response in Recombinant HVT-OmpH Vaccinated Ducks
3.5. Evaluation of Protection Post-Challenge with P. multocida Strain X-73
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilkie, I.W.; Harper, M.; Boyce, J.D.; Adler, B. Pasteurella multocida: Diseases and pathogenesis. Pasteurella Multocida 2012, 361, 1–22. [Google Scholar]
- Eldin, W.F.S.; Reda, L.M. Epidemiological prevalence of Pasteurella multocida in ducks. Jpn. J. Vet. Res. 2016, 64 (Suppl. S2), S251–S255. [Google Scholar]
- Harper, M.; Boyce, J.D.; Adler, B. Pasteurella multocida pathogenesis: 125 years after Pasteur. FEMS Microbiol. Lett. 2006, 265, 1–10. [Google Scholar] [CrossRef]
- Oslan, S.N.H.; Tan, J.S.; Yusoff, A.H.; Sulaiman, A.Z.; Awang, M.A.; Lazim, A.M.; Lim, S.J.; Oslan, S.N.; Saad, M.Z.; Ariff, A.B. Pasteurellosis Vaccine Commercialization: Physiochemical Factors for Optimum Production. Processes 2022, 10, 1248. [Google Scholar] [CrossRef]
- Mostaan, S.; Ghasemzadeh, A.; Sardari, S.; Shokrgozar, M.A.; Nikbakht Brujeni, G.; Abolhassani, M.; Ehsani, P.; Asadi Karam, M.R. Pasteurella multocida Vaccine Candidates: A Systematic Review. Avicenna J. Med. Biotechnol. 2020, 12, 140–147. [Google Scholar] [PubMed]
- Poolperm, P.; Apinda, N.; Kataoka, Y.; Suriyasathaporn, W.; Tragoolpua, K.; Sawada, T.; Sthitmatee, N. Protection against Pasteurella multocida conferred by an intranasal fowl cholera vaccine in Khaki Campbell ducks. JPN. J. Vet. Res. 2018, 66, 239–250. [Google Scholar]
- Apinda, N.; Nambooppha, B.; Rittipornlertrak, A.; Tankaew, P.; Punyapornwithaya, V.; Nair, V.; Sawada, T.; Sthitmatee, N. Protection against fowl cholera in ducks immunized with a combination vaccine containing live attenuated duck enteritis virus and recombinant outer membrane protein H of Pasteurella multocida. Avian Pathol. 2020, 49, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Sthitmatee, N.; Numee, S.; Kawamoto, E.; Sasaki, H.; Yamashita, K.; Takahashi, N.; Kataoka, Y.; Sawada, T. Protection of chickens from fowl cholera by vaccination with recombinant adhesive protein of Pasteurella Multocida. Vaccine 2008, 26, 2398–2407. [Google Scholar] [CrossRef]
- Apinda, N.; Muenthaisong, A.; Chomjit, P.; Sangkakam, K.; Nambooppha, B.; Rittipornlertrak, A.; Koonyosying, P.; Yao, Y.; Nair, V.; Sthitmatee, N. Simultaneous Protective Immune Responses of Ducks against Duck Plague and Fowl Cholera by Recombinant Duck Enteritis Virus Vector Expressing Pasteurella multocida OmpH Gene. Vaccines 2022, 10, 1358. [Google Scholar] [CrossRef]
- Lu, Y.; Lai, W.C.; Pakes, S.P.; Nie, L. A monoclonal antibody against a Pasteurella multocida outer membrane protein protects rabbits and mice against pasteurellosis. Infect. Immun. 1991, 59, 172–180. [Google Scholar] [CrossRef]
- Davies, R.L.; MacCorquodale, R.; Caffrey, B. Diversity of avian Pasteurella multocida strains based on capsular PCR typing and variation of the OmpA and OmpH outer membrane proteins. Vet. Microbiol. 2003, 91, 169–182. [Google Scholar] [CrossRef]
- Vilela, J.; Rohaim, M.A.; Munir, M. Application of CRISPR/Cas9 in Understanding Avian Viruses and Developing Poultry Vaccines. Front. Cell. Infect. Microbiol. 2020, 10, 581504. [Google Scholar] [CrossRef] [PubMed]
- Aida, V.; Pliasas, V.C.; Neasham, P.J.; North, J.F.; McWhorter, K.L.; Glover, S.R.; Kyriakis, C.S. Novel vaccine technologies in veterinary medicine: A herald to human medicine vaccines. Front. Vet. Sci. 2021, 8, 654289. [Google Scholar] [CrossRef] [PubMed]
- Ura, T.; Okuda, K.; Shimada, M. Developments in viral vector- based vaccines. Vaccines 2014, 2, 624–641. [Google Scholar] [CrossRef] [PubMed]
- Entrican, G.; Francis, M.J. Applications of platform technologies in veterinary vaccinology and the benefits for one health. Vaccine 2022, 40, 2833–2840. [Google Scholar] [CrossRef]
- Darteil, R.; Bublot, M.; Laplace, E.; Bouquet, J.-F.; Audonnet, J.-C.; Rivière, M. Herpesvirus of turkey recombinant viruses expressing infectious bursal disease virus (IBDV) VP2 immunogen induce protection against an IBDV virulent challenge in chickens. Virology 1995, 211, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.U.; Wang, Z.; Zheng, Y.; Guo, R.; Chen, S.; Xu, M.; Zhang, C.; Liu, Y.; Wang, J. Construction of a Novel Infectious Clone of Recombinant Herpesvirus of Turkey Fc-126 Expressing VP2 of IBDV. Vaccines 2022, 10, 1391. [Google Scholar] [CrossRef] [PubMed]
- Bublot, M.; Merial, F. Recent developments in Marek’s disease vaccination. Int. Hatch. Pr. 2014, 28, 24–25. [Google Scholar]
- van Hulten, M.C.; Cruz-Coy, J.; Gergen, L.; Pouwels, H.; Ten Dam, G.B.; Verstegen, I.; de Groof, A.; Morsey, M.; Tarpey, I. Efficacy of a turkey herpesvirus double construct vaccine (HVT-ND-IBD) against challenge with different strains of Newcastle disease, infectious bursal disease and Marek’s disease viruses. Avian Pathol. 2021, 50, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.; Zhang, Y.; Pedrera, M.; Chang, P.; Baigent, S.; Moffat, K.; Shen, Z.; Nair, V.; Yao, Y. A simple and rapid approach to develop recombinant avian herpesvirus vectored vaccines using CRISPR/Cas9 system. Vaccine 2018, 36, 716–722. [Google Scholar] [CrossRef]
- Apinda, N.; Yao, Y.; Zhang, Y.; Reddy, V.R.A.P.; Chang, P.; Nair, V.; Sthitmatee, N. CRISPR/Cas9 Editing of Duck Enteritis Virus Genome for the Construction of a Recombinant Vaccine Vector Expressing ompH Gene of Pasteurella multocida in Two Novel Insertion Sites. Vaccines 2022, 10, 686. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.; Ameen, F.; Sealy, J.E.; Sadeyen, J.-R.; Bhat, S.; Li, Y.; Iqbal, M. Application of HDR-CRISPR/Cas9 and Erythrocyte Binding for Rapid Generation of Recombinant Turkey Herpesvirus-Vectored Avian Influenza Virus Vaccines. Vaccines 2019, 7, 192. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, M.; Ghorashi, S.; Kargar Moakhar, R.; Morshedi, D.; Salehi Tabar, R.; Ghaemmaghami, S. Polymerase chain reaction for the detection and differentiation of Marek’s disease virus strains MDV-1 and HVT. Iran. J. Vet. Res. 2006, 7, 17–21. [Google Scholar]
- Ravikumar, R.; Chan, J.; Prabakaran, M. Vaccines against Major Poultry Viral Diseases: Strategies to Improve the Breadth and Protective Efficacy. Viruses 2022, 14, 1195. [Google Scholar] [CrossRef] [PubMed]
- Wilson-Welder, J.H.; Torres, M.P.; Kipper, M.J.; Mallapragada, S.K.; Wannemuehler, M.J.; Narasimhan, B. Vaccine adjuvants: Current challenges and future approaches. J. Pharm. Sci. 2009, 98, 1278–1316. [Google Scholar] [CrossRef]
- Verma, S.K.; Mahajan, P.; Singh, N.K.; Gupta, A.; Aggarwal, R.; Rappuoli, R.; Johri, A.K. New-age vaccine adjuvants, their development, and future perspective. Front. Immunol. 2023, 14, 1043109. [Google Scholar] [CrossRef]
- Tumpey, T.M.; Alvarez, R.; Swayne, D.E.; Suarez, D.L. Diagnostic approach for differentiating infected from vaccinated poultry on the basis of antibodies to NS1, the nonstructural protein of influenza A virus. J. Clin. Microbiol. 2005, 43, 676–683. [Google Scholar] [CrossRef]
- Esaki, M.; Noland, L.; Eddins, T.; Godoy, A.; Saeki, S.; Saitoh, S.; Yasuda, A.; Dorsey, K.M. Safety and efficacy of a turkey herpesvirus vector laryngotracheitis vaccine for chickens. Avian Dis. 2013, 57, 192–198. [Google Scholar] [CrossRef]
- Baron, M.D.; Iqbal, M.; Nair, V. Recent advances in viral vectors in veterinary vaccinology. Curr. Opin. Virol. 2018, 29, 1–7. [Google Scholar] [CrossRef]
- Hein, R.; Koopman, R.; García, M.; Armour, N.; Dunn, J.R.; Barbosa, T.; Martinez, A. Review of poultry recombinant vector vaccines. Avian Dis. 2021, 65, 438–452. [Google Scholar] [CrossRef]
- Kumar, S.; Nayak, B.; Collins, P.L.; Samal, S.K. Evaluation of the Newcastle disease virus F and HN proteins in protective immunity by using a recombinant avian paramyxovirus type 3 vector in chickens. J. Virol. 2011, 85, 6521–6534. [Google Scholar] [CrossRef] [PubMed]
- Pantin-Jackwood, M.J.; Kapczynski, D.R.; DeJesus, E.; Costa-Hurtado, M.; Dauphin, G.; Tripodi, A.; Dunn, J.R.; Swayne, D.E. Efficacy of a Recombinant Turkey Herpesvirus H5 Vaccine Against Challenge with H5N1 Clades 1.1.2 and 2.3.2.1 Highly Pathogenic Avian Influenza Viruses in Domestic Ducks (Anas platyrhynchos domesticus). Avian Dis. 2016, 60, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Palya, V.; Kovács, E.W.; Tatár-Kis, T.; Felföldi, B.; Homonnay, Z.G.; Mató, T.; Sato, T.; Gardin, Y. Recombinant Turkey Herpesvirus-AI Vaccine Virus Replication in Different Species of Waterfowl. Avian Dis. 2016, 60 (Suppl. S1), 210–217. [Google Scholar] [CrossRef] [PubMed]
- Kilany, W.H.; Safwat, M.; Mohammed, S.M.; Salim, A.; Fasina, F.O.; Fasanmi, O.G.; Shalaby, A.G.; Dauphin, G.; Hassan, M.K.; Lubroth, J. Protective efficacy of recombinant turkey herpes virus (rHVT-H5) and inactivated H5N1 vaccines in commercial mulard ducks against the highly pathogenic avian influenza (HPAI) H5N1 clade 2.2. 1 virus. PLoS ONE 2016, 11, e0156747. [Google Scholar] [CrossRef] [PubMed]
- Kilany, W.H.; Hassan, M.K.; Safwat, M.; Mohammed, S.; Selim, A.; VonDobschuetz, S.; Dauphin, G.; Lubroth, J.; Jobre, Y. Comparison of the effectiveness of rHVT-H5, inactivated H5 and rHVT-H5 with inactivated H5 prime/boost vaccination regimes in commercial broiler chickens carrying MDAs against HPAI H5N1 clade 2.2. 1 virus. Avian Pathol. 2015, 44, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Andoh, K.; Yamazaki, K.; Honda, Y.; Honda, T. Turkey herpesvirus with an insertion in the UL3-4 region displays an appropriate balance between growth activity and antibody-eliciting capacity and is suitable for the establishment of a recombinant vaccine. Arch. Virol. 2017, 162, 931–941. [Google Scholar] [CrossRef]
- Rauw, F.; Gardin, Y.; Palya, V.; van den Berg, T.; Lambrecht, B. The combination of attenuated Newcastle disease (ND) vaccine with rHVT-ND vaccine at 1 day old is more protective against ND virus challenge than when combined with inactivated ND vaccine. Avian Pathol. 2014, 43, 26–36. [Google Scholar] [CrossRef]
Primer | Sequences |
---|---|
sgRNA-UL45_46-F | CACCGAAAACACAGTAACCGTTAG |
sgRNA-UL45_46-R | AAACCTAACGGTTACTGTGTTTTC |
sg-A-gRNA-F | CACCGAGATCGAGTGCCGCATCAC |
sg-A-gRNA-R | AAACGTGATGCGGCACTCGATCTC |
UL45-F | GATGCCCGCGTGTATCTTCA |
UL46-R | ACGTAGGCTGAAAGTGTCCAG |
OmpH-3F | ACGTGCTCTTGAAGTGGGTT |
OmpH-5R | GCGAAACCCGCATAAAGACG |
Group | Vaccination Formulation | Challenge Exposure (IM) Duck/Group |
---|---|---|
P. multocida X-73 (3.5 × 103 CFU/mL) | ||
A | rHVT-Omp of 3000 pfu/mL a | 10 |
B | HVT vaccine b | 10 |
C | rOmpH 100 µg/ml | 10 |
D | Phosphate-buffered saline (PBS) | 10 |
Total | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apinda, N.; Yao, Y.; Zhang, Y.; Muenthaisong, A.; Sangkakam, K.; Nambooppha, B.; Rittipornlertrak, A.; Koonyosying, P.; Nair, V.; Sthitmatee, N. Efficiency of NHEJ-CRISPR/Cas9 and Cre-LoxP Engineered Recombinant Turkey Herpesvirus Expressing Pasteurella multocida OmpH Protein for Fowl Cholera Prevention in Ducks. Vaccines 2023, 11, 1498. https://doi.org/10.3390/vaccines11091498
Apinda N, Yao Y, Zhang Y, Muenthaisong A, Sangkakam K, Nambooppha B, Rittipornlertrak A, Koonyosying P, Nair V, Sthitmatee N. Efficiency of NHEJ-CRISPR/Cas9 and Cre-LoxP Engineered Recombinant Turkey Herpesvirus Expressing Pasteurella multocida OmpH Protein for Fowl Cholera Prevention in Ducks. Vaccines. 2023; 11(9):1498. https://doi.org/10.3390/vaccines11091498
Chicago/Turabian StyleApinda, Nisachon, Yongxiu Yao, Yaoyao Zhang, Anucha Muenthaisong, Kanokwan Sangkakam, Boondarika Nambooppha, Amarin Rittipornlertrak, Pongpisid Koonyosying, Venugopal Nair, and Nattawooti Sthitmatee. 2023. "Efficiency of NHEJ-CRISPR/Cas9 and Cre-LoxP Engineered Recombinant Turkey Herpesvirus Expressing Pasteurella multocida OmpH Protein for Fowl Cholera Prevention in Ducks" Vaccines 11, no. 9: 1498. https://doi.org/10.3390/vaccines11091498