COVID-19 Antibody Levels among Various Vaccination Groups, One-Year Antibody Follow-Up in Two University Hospitals from Western and Central Turkey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Antibody Assays
2.2. Statistical Analysis
2.3. Ethics Statement
3. Results
3.1. Features and Immunization Status of the Groups
3.2. Relationship between Vaccination Patterns and Antibody Levels
3.3. Effect of Time Elapse after Vaccination
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COVID-19 | Coronavirus Disease 2019 |
S | Spike protein of SARS-CoV-2 |
NC | Nucleocapsid protein of SARS-CoV-2 |
RBD | Receptor binding domain |
BAU | Binding antibody units |
COI | Cut-off index |
HCWs | Healthcare workers. |
PCR | Polymerase chain reaction |
SPSS | Statistical package for social sciences |
MD | Mean difference |
References
- Gobbi, F.; Buonfrate, D.; Moro, L.; Rodari, P.; Piubelli, C.; Caldrer, S.; Riccetti, S.; Sinigaglia, A.; Barzon, L. Antibody Response to the BNT162b2 mRNA COVID-19 Vaccine in Subjects with Prior SARS-CoV-2 Infection. Viruses 2021, 13, 422. [Google Scholar] [CrossRef] [PubMed]
- Nyberg, T.; Ferguson, N.M.; Nash, S.; Webster, H.; Flaxman, S.; Andrews, N.; Hinsley, W.; Bernal, J.L.; Kall, M.; Bhatt, S.; et al. Comparative Analysis of the Risks of Hospitalisation and Death Associated with SARS-CoV-2 Omicron (B.1.1.529) and Delta (B.1.617.2) Variants in England: A Cohort Study. Lancet 2022, 399, 1303–1312. [Google Scholar] [CrossRef] [PubMed]
- Pinato, D.J.; Aguilar-Company, J.; Ferrante, D.; Hanbury, G.; Bower, M.; Salazar, R.; Mirallas, O.; Sureda, A.; Plaja, A.; Cucurull, M.; et al. Outcomes of the SARS-CoV-2 Omicron (B.1.1.529) Variant Outbreak among Vaccinated and Unvaccinated Patients with Cancer in Europe: Results from the Retrospective, Multicentre, OnCovid Registry Study. Lancet Oncol. 2022, 23, 865–875. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Pouwels, K.B.; Stoesser, N.; Matthews, P.C.; Diamond, I.; Studley, R.; Rourke, E.; Cook, D.; Bell, J.I.; Newton, J.; et al. Antibody Responses and Correlates of Protection in the General Population after Two Doses of the ChAdOx1 or BNT162b2 Vaccines. Nat. Med. 2022, 28, 1072–1082. [Google Scholar] [CrossRef] [PubMed]
- Richards, N.E.; Keshavarz, B.; Workman, L.J.; Nelson, M.R.; Platts-Mills, T.A.E.; Wilson, J.M. Comparison of SARS-CoV-2 Antibody Response by Age Among Recipients of the BNT162b2 vs the mRNA-1273 Vaccine. JAMA Netw. Open 2021, 4, e2124331. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Yuan, Q.; Wang, H.; Liu, W.; Liao, X.; Su, Y.; Wang, X.; Yuan, J.; Li, T.; Li, J.; et al. Antibody Responses to SARS-COV-2 in Patients with Novel Coronavirus Disease 2019. Clin. Infect. Dis. 2020, 71, 2027–2034. [Google Scholar] [CrossRef] [PubMed]
- Premkumar, L.; Segovia-Chumbez, B.; Jadi, R.; Martinez, D.R.; Raut, R.; Markmann, A.J.; Cornaby, C.; Bartelt, L.A.; Weiss, S.R.; Park, Y.; et al. The Receptor-Binding Domain of the Viral Spike Protein Is an Immunodominant and Highly Specific Target of Antibodies in SARS-CoV-2 Patients. Sci. Immunol. 2020, 5. [Google Scholar] [CrossRef]
- Burbelo, P.D.; Riedo, F.X.; Morishima, C.; Rawlings, S.A.; Smith, D.M.; Das, S.; Strich, J.R.; Chertow, D.S.; Davey, R.T.; Cohen, J.I. Sensitivity in Detection of Antibodies to Nucleocapsid and Spike Proteins of Severe Acute Respiratory Syndrome Coronavirus 2 in Patients with Coronavirus Disease 2019. J. Infect. Dis. 2020, 222, 206–213. [Google Scholar] [CrossRef]
- Aijaz, J.; Kanani, F.; Naseer, F. Utility of Roche Elecsys Anti-SARS-CoV-2 S in Ascertaining Post-Vaccine Neutralizing Antibodies. J. Clin. Virol. Plus 2023, 3, 100137. [Google Scholar] [CrossRef]
- Salazar, E.; Kapur, V.; Christensen, P.; Eagar, T.N.; Xin, Y.; Zhao, P.; Jin, Z.; Long, S.W.; Olsen, R.J.; Chen, J.; et al. Convalescent Plasma Anti–SARS-CoV-2 Spike Protein Ectodomain and Receptor-Binding Domain IgG Correlate with Virus Neutralization. J. Clin. Investig. 2020, 130, 6728–6738. [Google Scholar] [CrossRef]
- Chiu, N.C.; Chi, H.; Tu, Y.K.; Huang, Y.N.; Tai, Y.L.; Weng, S.L.; Chang, L.; Huang, D.T.; Huang, F.Y.; Lin, C.Y. To mix or not to mix? A rapid systematic review of heterologous prime-boost covid-19 vaccination. Expert Rev. Vaccines 2021, 20, 1211–1220. [Google Scholar] [CrossRef]
- Choe, P.G.; Perera, R.A.P.M.; Park, S.-W.; Song, K.H.; Bang, J.H.; Kim, E.S.; Kim, H.B.; Ko, L.W.R.; Park, S.W.; Kim, N.J.; et al. MERS-CoV Antibody Responses 1 Year after Symptom Onset, South Korea, 2015. Emerg. Infect. Dis. 2017, 23, 1079–1084. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Liu, W.; Zhang, P.-H.; Zhang, F.; Richardus, J.H. Disappearance of Antibodies to SARS-Associated Coronavirus after Recovery. New Engl. J. Med. 2007, 357, 1162–1163. [Google Scholar] [CrossRef] [PubMed]
- Edridge, A.W.D.; Kaczorowska, J.; Hoste, A.C.R.; Bakker, M.; Klein, M.; Loens, K.; Jebbink, M.F.; Matser, A.; Kinsella, C.M.; Rueda, P.; et al. Seasonal Coronavirus Protective Immunity Is Short-Lasting. Nat. Med. 2020, 26, 1691–1693. [Google Scholar] [CrossRef] [PubMed]
- El-Ghitany, E.M.; Hashish, M.H.; Farghaly, A.G.; Omran, E.A.; Osman, N.A.; Fekry, M.M. Asymptomatic versus symptomatic SARS-CoV-2 infection: A cross-sectional seroprevalence study. Trop. Med. Health 2022, 50, 98. [Google Scholar] [CrossRef] [PubMed]
- Franco-Luiz, A.P.M.; Fernandes, N.M.G.S.; Silva, T.B.S.; Bernardes, W.P.O.S.; Westin, M.R.; Santos, T.G.; Fernandes, G.D.R.; Simões, T.C.; Silva, E.F.E.; Gava, S.G.; et al. Longitudinal study of humoral immunity against SARS-CoV-2 of health professionals in Brazil: The impact of booster dose and reinfection on antibody dynamics. Front. Immunol. 2023, 14, 1220600. [Google Scholar] [CrossRef]
- Long, Q.; Tang, X.; Shi, Q.L.; Li, Q.; Deng, H.; Yuan, J.; Hu, J.; Xü, W.; Zhang, Y.; Lv, F.J.; et al. Clinical and Immunological Assessment of Asymptomatic SARS-CoV-2 Infections. Nat. Med. 2020, 26, 1200–1204. [Google Scholar] [CrossRef]
- Al-Jighefee, H.T.; Yassine, H.M.; Al-Nesf, M.A.; Hssain, A.A.; Taleb, S.; Mohamed, A.S.; Maatoug, H.; Mohamedali, M.; Nasrallah, G.K. Evaluation of Antibody Response in Symptomatic and Asymptomatic COVID-19 Patients and Diagnostic Assessment of New IgM/IgG ELISA Kits. Pathogens 2021, 10, 161. [Google Scholar] [CrossRef]
- Grifoni, A.; Weiskopf, D.; Ramirez, S.I.; Mateus, J.; Dan, J.M.; Moderbacher, C.R.; Rawlings, S.A.; Sutherland, A.; Premkumar, L.; Jadi, R.; et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell 2020, 181, 1489–1501. [Google Scholar] [CrossRef]
- Alahdal, M.; Elkord, E. Exhaustion and Over-Activation of Immune Cells in COVID-19: Challenges and Therapeutic Opportunities. Clin. Immunol. 2022, 245, 109177. [Google Scholar] [CrossRef]
- Mazzoni, A.; Salvati, L.; Maggi, L.; Annunziato, F.; Cosmi, L. Hallmarks of Immune Response in COVID-19: Exploring Dysregulation and Exhaustion. Semin. Immunol. 2021, 55, 101508. [Google Scholar] [CrossRef] [PubMed]
- Desmecht, S.; Tashkeev, A.; El Moussaoui, M.; Marechal, N.; Perée, H.; Tokunaga, Y.; Fombellida-Lopez, C.; Polese, B.; Legrand, C.; Wéry, M.; et al. Kinetics and Persistence of the Cellular and Humoral Immune Responses to BNT162b2 mRNA Vaccine in SARS-CoV-2-Naive and -Experienced Subjects: Impact of Booster Dose and Breakthrough Infections. Front. Immunol. 2022, 13, 863554. [Google Scholar] [CrossRef] [PubMed]
- Mazzoni, A.; Di Lauria, N.; Maggi, L.; Salvati, L.; Vanni, A.; Capone, M.; Lamacchia, G.; Mantengoli, E.; Spinicci, M.; Zammarchi, L.; et al. First-Dose mRNA Vaccination Is Sufficient to Reactivate Immunological Memory to SARS-CoV-2 in Subjects Who Have Recovered from COVID-19. J. Clin. Investig. 2021, 131. [Google Scholar] [CrossRef] [PubMed]
- Goel, R.R.; Apostolidis, S.A.; Painter, M.M.; Mathew, D.; Pattekar, A.; Kuthuru, O.; Gouma, S.; Hicks, P.; Meng, W.; Rosenfeld, A.M.; et al. Distinct Antibody and Memory B Cell Responses in SARS-CoV-2 Naïve and Recovered Individuals after mRNA Vaccination. Sci. Immunol. 2021, 6. [Google Scholar] [CrossRef] [PubMed]
- Levi, R.; Azzolini, E.; Pozzi, C.; Ubaldi, L.; Lagioia, M.; Mantovani, A.; Rescigno, M. One Dose of SARS-CoV-2 Vaccine Exponentially Increases Antibodies in Individuals Who Have Recovered from Symptomatic COVID-19. J. Clin. Investig. 2021, 131. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Ichinose, N.; Okada, Y. False-Negative Rate of SARS-CoV-2 RT-PCR Tests and Its Relationship to Test Timing and Illness Severity: A Case Series. IDCases 2022, 28, e01496. [Google Scholar] [CrossRef]
- Kayalı, G.A.; Durmaz, S.; Şahin, İ.N.; Akkul, B.; Durusoy, R.; Akarca, F.K.; Ulukaya, S.; Çiçek, C. COVID-19 Infection, Vaccination, and Antibody Levels: Investigating Correlations through a Cohort Study. Vaccines 2023, 11, 1258. [Google Scholar] [CrossRef]
- Çiçek, K.; Özkaya, Y.; Eser, E.; Buran, Z.C.; Arıkan, Z.Ö.Ö.; Akçalı, S.; Dündar, P.E.; Özyurt, B.C.; Akar, Ş.Ş.; Özer, D.; et al. Efficacy of Homologous and Heterologous Vaccine Applications on SARS-COV-2 Omicron Variant: Cohort of Manisa Celal Bayar University Healthcare Workers. Mikrobiyoloji Bul. 2023, 57, 238–251. [Google Scholar] [CrossRef]
- Sönmezer, M.Ç.; Erul, E.; Şahin, T.K.; A, I.R.; Coşgun, Y.; Korukluoğlu, G.; Zengin, H.; Dizman, G.T.; İnkaya, A.Ç.; Ünal, S. Seroprevalence of SARS-CoV-2 Antibodies and Associated Factors in Healthcare Workers before the Era of Vaccination at a Tertiary Care Hospital in Turkey. Vaccines 2022, 10, 258. [Google Scholar] [CrossRef]
- Chao, Y.X.; Rötzschke, O.; Tan, E.K. The role of IgA in COVID-19. Brain Behav. Immun. 2020, 87, 182–183. [Google Scholar] [CrossRef]
Group A (n: 100) | Group B1 (n: 88) | Group B2 (n: 102) | |
---|---|---|---|
Gender (F/M) | 56/44 | 61/27 | 71/31 |
Age (mean value) | 36.2 | 41.6 | 39.5 |
Vaccine subtypes | |||
1 dose BioNTech | 0 | 2 | 0 |
1 dose CoronaVac | 5 | 0 | 2 |
2 doses BioNTech | 8 | 2 | 3 |
2d. CoronaVac | 8 | 5 | 7 |
3d. BioNTech | 3 | 1 | 2 |
3d. CoronaVac | 10 | 13 | 8 |
4d. CoronaVac | 2 | 3 | 3 |
1d. CoronaVac + 2d. BioNTech | 0 | 1 | 0 |
2d. CoronaVac + 1d. BioNTech | 19 | 15 | 17 |
2d. CoronaVac + 2d. BioNTech | 35 | 44 | 39 |
2d. CoronaVac + 3d. BioNTech | 4 | 2 | 9 |
3d. CoronaVac + 1d. BioNTech | 2 | 0 | 1 |
Non-vaccinated | 4 | 0 | 11 |
Comparison of Group A: Mixed Vaccine vs. CoronaVac Only | ||||||||
---|---|---|---|---|---|---|---|---|
Spike Antibodies | Nucleocapside Antibodies | |||||||
Time Intervals | Day 0 | 1st m. | 4th m. | 6–8th m. | Day 0 | 1st m. | 4th m. | 6–8th m. |
p Values | 0.007 | 0.076 | 0.381 | 0.347 | 0.001 | 0.732 | 0.339 | 0.944 |
Comparison of Group B1: Mixed Vaccine vs. CoronaVac Only | ||||||||
Spike Antibodies | Nucleocapside Antibodies | |||||||
Time Intervals | 0–4th m. | 5–8th m. | 9–12th m. | 13–17th m. | 0–4 th m. | 5–8 th m. | 9–12 th m. | 13–17 th m. |
p Values | 0.067 | 0.003 | 0.010 | 0.010 | 0.001 | 0.017 | 0.198 | 0.618 |
Group A Compared to Non-Vaccinated Individuals | ||||||||
---|---|---|---|---|---|---|---|---|
Spike Antibodies | Nucleocapside Antibodies | |||||||
Time Intervals | Day 0 | 1st m. | 4th m. | 6–8th m. | Day 0 | 1st m. | 4th m. | 6–8th m. |
p Values | 0.001 | 0.001 | 0.001 | 0.001 | 0.687 | 0.003 | 0.001 | 0.001 |
Group B1 Compared to Non-Vaccinated Individuals | ||||||||
Spike Antibodies | Nucleocapside Antibodies | |||||||
Time Intervals | 0–4th m. | 5–8th m. | 9–12th m. | 13–17th m. | 0–4 th m. | 5–8 th m. | 9–12 th m. | 13–17 th m. |
p Values | 0.001 | 0.001 | 0.001 | 0.002 | 0.785 | 0.452 | 0.356 | 0.148 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soylu, M.; Sağıroğlu, P.; Özarslan, M.A.; Acet, O.; Yüce, Z.T.; İzci Çetinkaya, F.; Durmaz, S.; Parkan, Ö.M.; Akyol, D.; Zeytinoğlu, A.; et al. COVID-19 Antibody Levels among Various Vaccination Groups, One-Year Antibody Follow-Up in Two University Hospitals from Western and Central Turkey. Vaccines 2024, 12, 59. https://doi.org/10.3390/vaccines12010059
Soylu M, Sağıroğlu P, Özarslan MA, Acet O, Yüce ZT, İzci Çetinkaya F, Durmaz S, Parkan ÖM, Akyol D, Zeytinoğlu A, et al. COVID-19 Antibody Levels among Various Vaccination Groups, One-Year Antibody Follow-Up in Two University Hospitals from Western and Central Turkey. Vaccines. 2024; 12(1):59. https://doi.org/10.3390/vaccines12010059
Chicago/Turabian StyleSoylu, Mehmet, Pınar Sağıroğlu, Muhammed Alper Özarslan, Oğuzhan Acet, Zeynep Türe Yüce, Feyza İzci Çetinkaya, Seyfi Durmaz, Ömür Mustafa Parkan, Deniz Akyol, Ayşin Zeytinoğlu, and et al. 2024. "COVID-19 Antibody Levels among Various Vaccination Groups, One-Year Antibody Follow-Up in Two University Hospitals from Western and Central Turkey" Vaccines 12, no. 1: 59. https://doi.org/10.3390/vaccines12010059
APA StyleSoylu, M., Sağıroğlu, P., Özarslan, M. A., Acet, O., Yüce, Z. T., İzci Çetinkaya, F., Durmaz, S., Parkan, Ö. M., Akyol, D., Zeytinoğlu, A., Kalın Ünüvar, G., Taşbakan, M., Gökahmetoğlu, S., Atalay, M. A., Durusoy, İ. R., Çiçek, C., Pullukçu, H., Yıldız, O., Sertöz, Ş. R., & Erensoy, M. S. (2024). COVID-19 Antibody Levels among Various Vaccination Groups, One-Year Antibody Follow-Up in Two University Hospitals from Western and Central Turkey. Vaccines, 12(1), 59. https://doi.org/10.3390/vaccines12010059