Mycoplasma agalactiae Vaccines: Current Status, Hurdles, and Opportunities Due to Advances in Pathogenicity Studies
Abstract
:1. Introduction
2. Mycoplasma Agalactiae Vaccines
2.1. Commercial Vaccines
2.1.1. Attenuated Commercial Vaccines
2.1.2. Inactivated Commercial Vaccines
2.1.3. Autogenous Vaccines
2.2. Experimental Vaccines
2.2.1. Inactivated Vaccines
Strain/Antigen | Vaccine Type | Vector/Adjuvant | Host | Route Number of Doses Dosage | Duration of Immunity | Animals Challenged | Reference |
---|---|---|---|---|---|---|---|
M. agalactiae NU-658 | Phenol-inactivated | Aluminum hydroxide | Sheep | s.c. 3 doses 109 CCU/mL | 11 months | Yes | [41] |
Formalin-inactivated | - | ||||||
Heat-inactivated | Aluminum hydroxide | ||||||
Sodium hypochlorite-inactivated | Aluminum hydroxide | ||||||
Saponin-inactivated | - | ||||||
M. agalactiae L9, IN3, 9B + M. mycoides subsp. capri AG1, 153/93, LCIN3 | Formalin-inactivated | Aluminum hydroxide Aluminum hydroxide + Quil A® (Superfos A/S, Vedbaek, Denmark)) | Goats | s.c. 2–3 doses >5 × 1010 CFU/mL (each strain) | 1 year | Yes | [42] |
- | |||||||
M. agalactiae Ag6 | Formalin-inactivated | Freund’s complete adjuvant | Mice | i.p. 1 dose 109 cells | 12 days | - § | [43] |
Freund’s incomplete adjuvant | |||||||
Lipopolysaccharide | |||||||
Quil A® | |||||||
* poly I:C | |||||||
** poly A:U | |||||||
LiCl | |||||||
Calcium phosphate gel | |||||||
M. agalactiae P20BrPB03 | Formalin-inactivated | Aluminum hydroxide | Goats + sheep | s.c. 2 doses 5 mg of protein per dose | Yes | [44] | |
Montanide IMS 2215 VG | 171 days | ||||||
Montanide Gel 01 | |||||||
M. agalactiae Ba/2 | Beta-propiolactone-inactivated | Montanide ISA 563 | Sheep | i.t. 2 doses 2 × 109 DNA copies/mL | Yes | [45] | |
Montanide ISA 563, Marcol 52, Montane 80 (50:45:5 ratio) | 8 weeks | ||||||
Montanide ISA 563, Marcol 52, Montane 80 (30:63:7 ratio) | |||||||
M. agalactiae Ba/2 | Beta-propiolactone-inactivated | Montanide ISA 563, Marcol 52, Montane 80 (30:63:7 ratio) | Sheep | i.t. 2 doses 2 × 109 DNA copies/mL | 11 months | Yes | [46] |
M. agalactiae | Phenol-inactivated (autogenous) | Aluminum hydroxide | Sheep | s.c. 2 doses 109 CFU/mL | 16 weeks | No | [38] |
M. agalactiae + Staphylococcus aureus | |||||||
M. agalactiae L9, AGIN3, 9B + M. mycoides subsp. capri AG1, 153/93, IN3 | Formalin-inactivated | Aluminum hydroxide + Quil A® | Goats | s.c. 2 doses >5 × 1010 CFU/mL (each strain) | 7 months | No | [40] |
Phenol-inactivated | Aluminum hydroxide + Quil A® | ||||||
M. agalactiae | Inactivated | Aluminum hydroxide Mineral oil | Goats | 3 doses | 6 months | No | [47] |
P48 | DNA | pVAX1/P48 | Mice | i.m. 3 doses 50 µg (1 µg/µL) | 8 weeks | - § | [48] |
M. agalactiae | Formalin-inactivated (therapeutic) | Quil A® | Sheep | s.c. 2 doses | - | No | [49] |
† MAG_1560 MAG_6130 P40 | Recombinant subunit | Freund’s adjuvant | Rabbits | i.m. 3 doses 500 µg | 42 days | - § | [50] |
2.2.2. Nucleic Acid-Based Vaccines
2.2.3. Subunit Vaccine Candidates
3. Hurdles, Challenges, and Opportunities in Developing Next-Generation M. agalactiae Vaccines
3.1. Challenge Model
3.2. Comprehending Highly Dynamic Antigenic Surface and Complex Pathogenicity Traits of M. agalactiae
3.3. Understanding Immune Responses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Migliore, S.; Puleio, R.; Nicholas, R.A.J.; Loria, G.R. Mycoplasma agalactiae: The Sole Cause of Classical Contagious Agalactia? Animals 2021, 11, 1782. [Google Scholar] [CrossRef]
- Kumar, A.; Rahal, A.; Chakraborty, S.; Verma, A.K.; Dhama, K. Mycoplasma agalactiae, an Etiological Agent of Contagious Agalactia in Small Ruminants: A Review. Vet. Med. Int. 2014, 2014, 286752. [Google Scholar] [CrossRef]
- De Azevedo, E.O.; De Alcântara, M.D.B.; Do Nascimento, E.R.; Tabosa, I.M.; Barreto, M.L.; De Almeida, J.F.; Araújo, M.D.O.; Rodrigues, A.R.O.; Riet-Correa, F.; De Castro, R.S. Contagious Agalactia by Mycoplasma agalactiae in Small Ruminants in Brazil: First Report. Braz. J. Microbiol. 2006, 37, 576–581. [Google Scholar] [CrossRef]
- Bergonier, D.; Berthelot, X.; Poumarat, F. Contagious Agalactia of Small Ruminants: Current Knowledge Concerning Epidemiology, Diagnosis and Control. Rev. Sci. Tech. Off. Int. Epiz. 1997, 16, 848–873. [Google Scholar] [CrossRef]
- OIE. Contagious Agalactia. In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (Terrestrial Manual), 8th ed.; Chapter 3.7.3; OIE: Paris, France, 2018; Volume 1, pp. 1430–1440. [Google Scholar]
- Loria, G.R.; Puleio, R.; Filioussis, G.; Rosales, R.S.; Nicholas, R.A.J. Contagious Agalactia: Costs and Control Revisited. Rev. Sci. Tech. 2019, 38, 695–702. [Google Scholar] [CrossRef]
- Amores, J.; Gómez-Martín, A.; Corrales, J.C.; Sánchez, A.; Contreras, A.; De la Fe, C. Presence of Contagious Agalactia Causing Mycoplasmas in Spanish Goat Artificial Insemination Centres. Theriogenology 2011, 75, 1265–1270. [Google Scholar] [CrossRef]
- Gómez-Martín, Á.; Amores, J.; Paterna, A.; De la Fe, C. Contagious Agalactia Due to Mycoplasma spp. in Small Dairy Ruminants: Epidemiology and Prospects for Diagnosis and Control. Vet. J. 2013, 198, 48–56. [Google Scholar] [CrossRef]
- De la Fe, C.; Assunção, P.; Antunes, T.; Rosales, R.S.; Poveda, J.B. Microbiological Survey for Mycoplasma spp. in a Contagious Agalactia Endemic Area. Vet. J. 2005, 170, 257–259. [Google Scholar] [CrossRef] [PubMed]
- Chazel, M.; Tardy, F.; Le Grand, D.; Calavas, D.; Poumarat, F. Mycoplasmoses of Ruminants in France: Recent Data from the National Surveillance Network. BMC Vet. Res. 2010, 6, 32. [Google Scholar] [CrossRef] [PubMed]
- González-Candela, M.; Cubero-Pablo, M.J.; Martín-Atance, P.; León-Vizcaíno, L. Potential Pathogens Carried by Spanish Ibex (Capra pyrenaica hispanica) in Southern Spain. J. Wildl. Dis. 2006, 42, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Verbisck-Bucker, G.; González-Candela, M.; Galián, J.; Cubero-Pablo, M.J.; Martín-Atance, P.; León-Vizcaíno, L. Epidemiology of Mycoplasma agalactiae Infection in Free-Ranging Spanish Ibex (Capra pyrenaica) in Andalusia, Southern Spain. J. Wildl. Dis. 2008, 44, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Verbisck, G.; Gonzalez-Candela, M.; Cubero, M.J.; Leon, L.; Serrano, E.; Perales, A. Mycoplasma agalactiae in Iberian Ibex (Capra pyrenaica) in Spain. Vet. Rec. 2010, 167, 425–426. [Google Scholar] [CrossRef] [PubMed]
- Alves, B.H.L.S.; Silva, J.G.; Mota, A.R.; Campos, A.C.; Júnior, J.W.P.; Santos, B.; Mota, R.A. Mycoplasma agalactiae in Semen and Milk of Goat From. Pesq. Vet. Bras. 2013, 33, 1309–1312. [Google Scholar] [CrossRef]
- Silva, N.S.; Azevedo, E.O.; Campos, A.C.; Cordeiro, A.A.; Mamede, A.G.; Silva, R.B.S.; Castro, R.S.; Nascimento, E.R.; Marinho, M.L. Infecção Congênita Em Cabritos Por Mycoplasma agalactiae. Arq. Bras. Med. Veterinária Zootec. 2014, 66, 631–634. [Google Scholar] [CrossRef]
- Hossein Abadi, E.; Saadati, D.; Najimi, M.; Hassanpour, M. A Study on Mycoplasma agalactiae and Chlamydophila abortus in Aborted Ovine Fetuses in Sistan and Baluchestan Region, Iran. Arch. Razi Inst. 2019, 74, 295–301. [Google Scholar]
- Hegde, S.; Hegde, S.; Spergser, J.; Brunthaler, R.; Rosengarten, R.; Chopra-Dewasthaly, R. In Vitro and in Vivo Cell Invasion and Systemic Spreading of Mycoplasma agalactiae in the Sheep Infection Model. Int. J. Med. Microbiol. 2014, 304, 1024–1031. [Google Scholar] [CrossRef] [PubMed]
- Rosales, R.S.; Puleio, R.; Loria, G.R.; Catania, S.; Nicholas, R.A.J. Mycoplasmas: Brain Invaders? Res. Vet. Sci. 2017, 113, 56–61. [Google Scholar] [CrossRef]
- Sanchis, R.; Abadie, G.; Lambert, M.; Cabasse, E.; Dufour, P.; Guibert, J.M.; Pépin, M. Inoculation of Lactating Ewes by the Intramammary Route with Mycoplasma agalactiae: Comparative Pathogenicity of Six Field Strains. Vet. Res. 2000, 31, 329–337. [Google Scholar] [CrossRef]
- Prats-van der Ham, M.; Tatay-Dualde, J.; de la Fe, C.; Paterna, A.; Sánchez, A.; Corrales, J.C.; Contreras, A.; Gómez-Martín, Á. Detecting Asymptomatic Rams Infected with Mycoplasma agalactiae in Ovine Artificial Insemination Centers. Theriogenology 2017, 89, 324–328.e1. [Google Scholar] [CrossRef]
- Prats-van der Ham, M.; Tatay-Dualde, J.; de la Fe, C.; Paterna, A.; Sánchez, A.; Corrales, J.C.; Contreras, A.; Gómez-Martín, Á. Molecular Resistance Mechanisms of Mycoplasma agalactiae to Macrolides and Lincomycin. Vet. Microbiol. 2017, 211, 135–140. [Google Scholar] [CrossRef]
- Gautier-Bouchardon, A.V. Antimicrobial Resistance in Mycoplasma spp. Microbiol. Spectr. 2018, 6, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Loria, G.R.; Sammartino, C.; Nicholas, R.A.J.; Ayling, R.D. In Vitro Susceptibilities of Field Isolates of Mycoplasma agalactiae to Oxytetracycline, Tylosin, Enrofloxacin, Spiramycin and Lincomycin–Spectinomycin. Res. Vet. Sci. 2003, 75, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Paterna, A.; Sánchez, A.; Gómez-Martín, A.; Corrales, J.C.; De la Fe, C.; Contreras, A.; Amores, J. Short Communication: In Vitro Antimicrobial Susceptibility of Mycoplasma agalactiae Strains Isolated from Dairy Goats. J. Dairy Sci. 2013, 96, 7073–7076. [Google Scholar] [CrossRef] [PubMed]
- de Garnica, M.L.; Rosales, R.S.; Gonzalo, C.; Santos, J.A.; Nicholas, R.A.J. Isolation, Molecular Characterization and Antimicrobial Susceptibilities of Isolates of Mycoplasma agalactiae from Bulk Tank Milk in an Endemic Area of Spain. J. Appl. Microbiol. 2013, 114, 1575–1581. [Google Scholar] [CrossRef] [PubMed]
- Antunes, N.T.; Tavío, M.M.; Assunção, P.; Rosales, R.S.; Poveda, C.; de la Fé, C.; Gil, M.C.; Poveda, J.B. In Vitro Susceptibilities of Field Isolates of Mycoplasma agalactiae. Vet. J. 2008, 177, 436–438. [Google Scholar] [CrossRef] [PubMed]
- Filioussis, G.; Petridou, E.; Giadinis, N.D.; Kritas, S.K. In Vitro Susceptibilities of Caprine Mycoplasma agalactiae Field Isolates to Six Antimicrobial Agents Using the E Test Methodology. Vet. J. 2014, 202, 654–656. [Google Scholar] [CrossRef] [PubMed]
- Poumarat, F.; Gautier-Bouchardon, A.; Bergonier, D.; Gay, E.; Tardy, F. Diversity and Variation in Antimicrobial Susceptibility Patterns over Time in Mycoplasma agalactiae Isolates Collected from Sheep and Goats in France. J. Appl. Microbiol. 2016, 120, 1208–1218. [Google Scholar] [CrossRef]
- Toquet, M.; Bataller, E.; Gomis, J.; Sánchez, A.; Toledo-Perona, R.; De la Fe, C.; Corrales, J.C.; Gómez-Martín, Á. Antibacterial Potential of Commercial and Wild Lactic Acid Bacteria Strains Isolated from Ovine and Caprine Raw Milk against Mycoplasma agalactiae. Front. Vet. Sci. 2023, 10, 1197701. [Google Scholar] [CrossRef]
- Dudek, K.; Sevimli, U.; Migliore, S.; Jafarizadeh, A.; Loria, G.R.; Nicholas, R.A.J. Vaccines for Mycoplasma Diseases of Small Ruminants: A Neglected Area of Research. Pathogens 2022, 11, 75. [Google Scholar] [CrossRef]
- Foggie, A.; Etheridge, J.R.; Erdag, O.; Arisoy, F. Contagious Agalactia of Sheep and Goats Studies on Live and Dead Vaccines in Lactating Sheep. J. Comp. Path. 1971, 81, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Agnone, A.; La Manna, M.; Sireci, G.; Puleio, R.; Usticano, A.; Ozdemir, U.; Nicholas, R.A.J.; Chiaracane, V.; Dieli, F.; Di Marco, V.; et al. A Comparison of the Efficacy of Commercial and Experimental Vaccines for Contagious Agalactia in Sheep. Small Rumin. Res. 2013, 112, 230–234. [Google Scholar] [CrossRef]
- Nicholas, R.A.J.; Ayling, R.D.; Mcauliffe, L. Vaccines for Mycoplasma Diseases in Animals and Man. J. Comp. Pathol. 2009, 140, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, U.; Ali, T.M.; Nicholas, R.A.J. A Live Vaccine for Contagious Agalactia Is Protective but Does Not Provoke an ELISA Response. Anim. Husb. Dairy Vet. Sci. 2019, 3, 1–3. [Google Scholar] [CrossRef]
- Mogoş, G.; Daneş, M.; Daneş, D. Potency Evaluation Of Two Commercial Vaccines Against Contagious Agalactia Of Small Ruminants. Vet. Med. 2021, 67, 103–107. [Google Scholar]
- Caramelli, M.; Ru, G.; Casalone, C.; Bozzetta, E.; Acutis, P.L.; Calella, A.; Forloni, G. Evidence for the Transmission of Scrapie to Sheep and Goats from a Vaccine against Mycoplasma agalactiae. Vet. Rec. 2001, 148, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Bertolini, S.; Maurella, C.; Bona, C.; Ingravalle, F.; Desiato, R.; Baioni, E.; Chiavacci, L.; Caramelli, M.; Ru, G. A Relevant Long-Term Impact of the Circulation of a Potentially Contaminated Vaccine on the Distribution of Scrapie in Italy. Results from a Retrospective Cohort Study. Vet. Res. 2012, 43, 63. [Google Scholar] [CrossRef]
- Hussein, H.A.; Tolone, M.; Condorelli, L.; Galluzzo, P.; Puleio, R.; Vazzana, I.; Scatassa, M.L.; Marogna, G.; Barreca, S.; Loria, G.R.; et al. Preliminary Study on the Host Response to Bivalent and Monovalent Autogenous Vaccines against Mycoplasma agalactiae in Dairy Sheep. Vet. Sci. 2022, 9, 651. [Google Scholar] [CrossRef]
- Agnone, A.; La Manna, M.P.; Loria, G.R.; Puleio, R.; Villari, S.; Nicholas, R.A.J.; Guggino, G.; Sireci, G. Timing of Activation of CD4 + Memory Cells as a Possible Marker to Establish the Efficacy of Vaccines against Contagious Agalactia in Sheep. Vet. Immunol. Immunopathol. 2013, 152, 252–259. [Google Scholar] [CrossRef]
- de la Fe, C.; Assunção, P.; Saavedra, P.; Ramírez, A.; Poveda, J.B. Field Trial of a Combined Vaccine against Caprine Contagious Agalactia: Humoral Immune Response in Lactating Goats. Vet. J. 2007, 174, 610–615. [Google Scholar] [CrossRef]
- Tola, S.; Manunta, D.; Rocca, S.; Rocchigiani, A.M.; Idini, G.; Angioi, P.P.; Leori, G. Experimental Vaccination against Mycoplasma agalactiae Using Different Inactivated Vaccines. Vaccine 1999, 17, 2764–2768. [Google Scholar] [CrossRef] [PubMed]
- de la Fe, C.; Assunção, P.; Saavedra, P.; Tola, S.; Poveda, C.; Poveda, J.B. Field Trial of Two Dual Vaccines against Mycoplasma agalactiae and Mycoplasma mycoides subsp. mycoides (Large Colony Type) in Goats. Vaccine 2007, 25, 2340–2345. [Google Scholar] [CrossRef] [PubMed]
- Avramidis, N.; Victoratos, P.; Yiangou, M.; Hadjipetrou-Kourounakis, L. Adjuvant Regulation of Cytokine Profile and Antibody Isotype of Immune Responses to Mycoplasma agalactiae in Mice. Vet. Microbiol. 2002, 88, 325–338. [Google Scholar] [CrossRef]
- Campos, A.C.; Azevedo, E.O.; Alcântara, M.D.B.; Silva, R.B.S.; Cordeiro, A.A.; Mamede, A.G.; Melo, M.A.; Nascimento, E.R.; Castro, R.S. Efficiency of Inactive Vaccines against Contagious Agalactia in Brazil. Arq. Bras. Med. Vet. Zootec. 2013, 65, 1394–1402. [Google Scholar] [CrossRef]
- Buonavoglia, D.; Greco, G.; Quaranta, V.; Corrente, M.; Martella, V.; Decaro, N. An Oil-Emulsion Vaccine Induces Full-Protection against Mycoplasma agalactiae Infection in Sheep. New Microbiol. 2008, 31, 117–123. [Google Scholar]
- Buonavoglia, D.; Greco, G.; Corrente, M.; Greco, M.F.; D’Abramo, M.; Latronico, F.; Fasanella, A.; Decaro, N. Long-Term Immunogenicity and Protection against Mycoplasma agalactiae Induced by an Oil Adjuvant Vaccine in Sheep. Res. Vet. Sci. 2010, 88, 16–19. [Google Scholar] [CrossRef]
- Alcântara, M.D.B.; Campos, A.C.; Melo, M.A.; Filho, J.M.P.; Nascimento, E.R.; Farias, A.A.; Sousa, D.R.M. Resposta Imunológica Em Caprinos Vacinados Contra Agalaxia Contagiosa. Pesq. Vet. Bras. 2013, 33, 561–564. [Google Scholar] [CrossRef]
- Chessa, B.; Pittau, M.; Puricelli, M.; Zobba, R.; Coradduzza, E.; Dall, P.; Rosati, S.; Poli, G.; Alberti, A. Genetic Immunization with the Immunodominant Antigen P48 of Mycoplasma agalactiae Stimulates a Mixed Adaptive Immune Response in BALBc Mice. Res. Vet. Sci. 2009, 86, 414–420. [Google Scholar] [CrossRef]
- Loria, G.R.; Puleio, R.; Agnello, S.; Marogna, G.; Nicholas, R.A.J. Can Vaccines for Contagious Agalactia Reduce Disease Progression in Infected Animals: A Preliminary Study? Vet. Rec. Case Rep. 2018, 6, 8–10. [Google Scholar] [CrossRef]
- Barbosa, M.S.; dos Santos Alves, R.P.; de Souza Rezende, I.; Pereira, S.S.; Campos, G.B.; Freitas, L.M.; Chopra-Dewasthaly, R.; de Souza Ferreira, L.C.; de Sá Guimarães, A.M.; Marques, L.M.; et al. Novel Antigenic Proteins of Mycoplasma agalactiae as Potential Vaccine and Serodiagnostic Candidates. Vet. Microbiol. 2020, 251, 108866. [Google Scholar] [CrossRef]
- Kyriakis, C.S. Tomorrow’s Vector Vaccines for Small Ruminants. Vet. Microbiol. 2015, 181, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.W.; Yan, R.F.; Muleke, C.I.; Sun, Y.M.; Xu, L.X.; Li, X.R. Vaccination of Goats with DNA Vaccines Encoding H11 and IL-2 Induces Partial Protection against Haemonchus contortus Infection. Vet. J. 2012, 191, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Hiszczyńska-Sawicka, E.; Oledzka, G.; Holec-Gasior, L.; Li, H.; Xu, J.B.; Sedcole, R.; Kur, J.; Bickerstaffe, R.; Stankiewicz, M. Evaluation of Immune Responses in Sheep Induced by DNA Immunization with Genes Encoding GRA1, GRA4, GRA6 and GRA7 Antigens of Toxoplasma gondii. Vet. Parasitol. 2011, 177, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Fleury, B.; Bergonier, D.; Berthelot, X.; Peterhans, E.; Frey, J.; Vilei, E.M. Characterization of P40, a Cytadhesin of Mycoplasma agalactiae. Infect. Immun. 2002, 70, 5612–5621. [Google Scholar] [CrossRef] [PubMed]
- Fleury, B.; Bergonier, D.; Berthelot, X.; Schlatter, Y.; Frey, J.; Vilei, E.M. Characterization and Analysis of a Stable Serotype-Associated Membrane Protein (P30) of Mycoplasma agalactiae. J. Clin. Microbiol. 2001, 39, 2814–2822. [Google Scholar] [CrossRef] [PubMed]
- Rosati, S.; Robino, P.; Fadda, M.; Pozzi, S.; Mannelli, A.; Pittau, M. Expression and Antigenic Characterization of Recombinant Mycoplasma agalactiae P48 Major Surface Protein. Vet. Microbiol. 2000, 71, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Rosati, S.; Pozzi, S.; Robino, P.; Montinaro, B.; Conti, A.; Fadda, M.; Pittau, M. P48 Major Surface Antigen of Mycoplasma agalactiae Is Homologous to a Malp Product of Mycoplasma aermentans and Belongs to a Selected Family of Bacterial Lipoproteins. Infect. Immun. 1999, 67, 6213–6216. [Google Scholar] [CrossRef]
- Tola, S.; Crobeddu, S.; Chessa, G.; Uzzau, S.; Idini, G.; Ibba, B.; Rocca, S. Sequence, Cloning, Expression and Characterisation of the 81-KDa Surface Membrane Protein (P80) of Mycoplasma agalactiae. FEMS Microbiol. Lett. 2001, 202, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Cacciotto, C.; Addis, M.F.; Pagnozzi, D.; Coradduzza, E.; Pittau, M.; Alberti, A. Identification of Conserved Mycoplasma agalactiae Surface Antigens by Immunoproteomics. Vet. Immunol. Immunopathol. 2021, 236, 110239. [Google Scholar] [CrossRef]
- Cacciotto, C.; Addis, M.F.; Coradduzza, E.; Carcangiu, L.; Nuvoli, A.M.; Tore, G.; Dore, G.M.; Pagnozzi, D.; Uzzau, S.; Chessa, B.; et al. Mycoplasma agalactiae MAG_5040 Is a Mg2+-Dependent, Sugar-Nonspecific SNase Recognised by the Host Humoral Response during Natural Infection. PLoS ONE 2013, 8, e57775. [Google Scholar] [CrossRef]
- Glew, M.D.; Papazisi, L.; Poumarat, F.; Bergonier, D.; Rosengarten, R.; Citti, C. Characterization of a Multigene Family Undergoing High-Frequency DNA Rearrangements and Coding for Abundant Variable Surface Proteins in Mycoplasma agalactiae. Infect. Immun. 2000, 68, 4539–4548. [Google Scholar] [CrossRef]
- Chopra-Dewasthaly, R.; Spergser, J.; Zimmermann, M.; Citti, C.; Jechlinger, W.; Rosengarten, R.; Lewinsohn, D.M. Vpma Phase Variation Is Important for Survival and Persistence of Mycoplasma agalactiae in the Immunocompetent Host. PLoS Pathog. 2017, 13, e1006656. [Google Scholar] [CrossRef]
- Barbosa, M.S.; Marques, L.M.; Timenetsky, J.; Rosengarten, R.; Spergser, J.; Chopra-Dewasthaly, R. Host Cell Interactions of Novel Antigenic Membrane Proteins of Mycoplasma agalactiae. BMC Microbiol. 2022, 22, 93. [Google Scholar] [CrossRef]
- Sanchis, R.; Abadie, G.; Lambert, M.; Cabasse, E.; Guibert, J.M.; Calamel, M.; Dufour, P.; Vitu, C.; Vignoni, M.; Pépin, M. Experimental Conjunctival-Route Infection with Mycoplasma agalactiae in Lambs. Small Rumin. Res. 1998, 27, 31–39. [Google Scholar] [CrossRef]
- Chopra-Dewasthaly, R.; Baumgartner, M.; Gamper, E.; Innerebner, C.; Zimmermann, M.; Schilcher, F.; Tichy, A.; Winter, P.; Jechlinger, W.; Rosengarten, R.; et al. Role of Vpma Phase Variation in Mycoplasma agalactiae Pathogenesis. FEMS Immunol. Med. Microbiol. 2012, 66, 307–322. [Google Scholar] [CrossRef]
- Hegde, S.; Gabriel, C.; Kragl, M.; Chopra-Dewasthaly, R. Sheep Primary Cells as in Vitro Models to Investigate Mycoplasma agalactiae Host Cell Interactions. Pathog. Dis. 2015, 73, ftv048. [Google Scholar] [CrossRef] [PubMed]
- Bergonier, D.; De Simone, F.; Russo, P.; Solsona, M.; Lambert, M.; Poumarat, F. Variable Expression and Geographic Distribution of Mycoplasma agalactiae Surface Epitopes Demonstrated with Monoclonal Antibodies. FEMS Microbiol. Lett. 1996, 143, 159–165. [Google Scholar] [CrossRef]
- Solsona, M.; Lambert, M.; Poumarat, F. Genomic, Protein Homogeneity and Antigenic Variability of Mycoplasma agalactiae. Vet. Microbiol. 1996, 50, 45–58. [Google Scholar] [CrossRef]
- Cacciotto, C.; Addis, M.F.; Pagnozzi, D.; Chessa, B.; Coradduzza, E.; Carcangiu, L.; Uzzau, S.; Alberti, A.; Pittau, M. The Liposoluble Proteome of Mycoplasma agalactiae: An Insight into the Minimal Protein Complement of a Bacterial Membrane. BMC Microbiol. 2010, 10, 225. [Google Scholar] [CrossRef] [PubMed]
- Flitman-Tene, R.; Levisohn, S.; Lysnyansky, I.; Rapoport, E.; Yogev, D. A Chromosomal Region of Mycoplasma agalactiae Containing Vsp-Related Genes Undergoes in Vivo Rearrangement in Naturally Infected Animals. FEMS Microbiol. Lett. 2000, 191, 205–212. [Google Scholar] [CrossRef]
- Santona, A.; Carta, F.; Fraghí, P.; Turrini, F. Mapping Antigenic Sites of an Immunodominant Surface Lipoprotein of Mycoplasma agalactiae, AvgC, with the Use of Synthetic Peptides. Infect. Immun. 2002, 70, 171–176. [Google Scholar] [CrossRef]
- Nouvel, L.X.; Marenda, M.; Sirand-Pugnet, P.; Sagne, E.; Glew, M.; Mangenot, S.; Barbe, V.; Barre, A.; Claverol, S.; Citti, C. Occurrence, Plasticity, and Evolution of the Vpma Gene Family, a Genetic System Devoted to High-Frequency Surface Variation in Mycoplasma agalactiae. J. Bacteriol. 2009, 191, 4111–4121. [Google Scholar] [CrossRef]
- Glew, M.D.; Marenda, M.; Rosengarten, R.; Citti, C. Surface Diversity in Mycoplasma agalactiae Is Driven by Site-Specific DNA Inversions within the Vpma Multigene Locus. J. Bacteriol. 2002, 184, 5987–5998. [Google Scholar] [CrossRef]
- Filioussis, G.; Bramis, G.; Petridou, E.; Giadinis, N.D.; Nouvel, L.X.; Citti, C.; Frey, J. Mycoplasma agalactiae ST35: A New Sequence Type with a Minimal Accessory Genome Primarily Affecting Goats. BMC Vet. Res. 2022, 18, 29. [Google Scholar] [CrossRef]
- Barbosa, M.S.; Spergser, J.; Marques, L.M.; Timenetsky, J.; Rosengarten, R.; Chopra-Dewasthaly, R. Predominant Single Stable VpmaV Expression in Strain GM139 and Major Differences with Mycoplasma agalactiae Type Strain PG2. Animals 2022, 12, 265. [Google Scholar] [CrossRef]
- Telford, J.L. Bacterial Genome Variability and Its Impact on Vaccine Design. Cell Host Microbe 2008, 3, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Czurda, S.; Hegde, S.M.; Rosengarten, R.; Chopra-Dewasthaly, R. Xer1-Independent Mechanisms of Vpma Phase Variation in Mycoplasma agalactiae Are Triggered by Vpma-Specific Antibodies. Int. J. Med. Microbiol. 2017, 307, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Chopra-Dewasthaly, R.; Dagn, A.; Lohinger, C.; Brunthaler, R.; Flöck, M.; Kargl, M.; Hegde, S.; Spergser, J.; Rosengarten, R. Sheep Infection Trials with ‘Phase-Locked’ Vpma Expression Variants of Mycoplasma agalactiae—Towards Elucidating the Role of a Multigene Family Encoding Variable Surface Lipoproteins in Infection and Disease. Microorganisms 2022, 10, 815. [Google Scholar] [CrossRef] [PubMed]
- Chopra-Dewasthaly, R.; Citti, C.; Glew, M.D.; Zimmermann, M.; Rosengarten, R.; Jechlinger, W. Phase-Locked Mutants of Mycoplasma agalactiae: Defining the Molecular Switch of High-Frequency Vpma Antigenic Variation. Mol. Microbiol. 2008, 67, 1196–1210. [Google Scholar] [CrossRef] [PubMed]
- Hegde, S.; Zimmermann, M.; Rosengarten, R.; Chopra-Dewasthaly, R. Novel Role of Vpmas as Major Adhesins of Mycoplasma agalactiae Mediating Differential Cell Adhesion and Invasion of Vpma Expression Variants. Int. J. Med. Microbiol. 2018, 308, 263–270. [Google Scholar] [CrossRef]
- Sommer, K.; Kowald, S.; Chopra-Dewasthaly, R. Serum Resistance of Mycoplasma agalactiae Strains and Mutants Bearing Different Lipoprotein Profiles. Pathogens 2022, 11, 1036. [Google Scholar] [CrossRef]
- Hegde, S.; Hegde, S.; Zimmermann, M.; Flöck, M.; Spergser, J.; Rosengarten, R.; Chopra-Dewasthaly, R. Simultaneous Identification of Potential Pathogenicity Factors of Mycoplasma agalactiae in the Natural Ovine Host by Negative Selection. Infect. Immun. 2015, 83, 2751–2761. [Google Scholar] [CrossRef] [PubMed]
- Hegde, S.; Zimmermann, M.; Flöck, M.; Brunthaler, R.; Spergser, J.; Rosengarten, R.; Chopra-Dewasthaly, R. Genetic Loci of Mycoplasma agalactiae Involved in Systemic Spreading during Experimental Intramammary Infection of Sheep. Vet. Res. 2016, 47, 106. [Google Scholar] [CrossRef] [PubMed]
- Gaurivaud, P.; Baranowski, E.; Pau-Roblot, C.; Sagné, E.; Citti, C.; Tardy, F. Mycoplasma agalactiae Secretion of β-(1→6)-Glucan, a Rare Polysaccharide in Prokaryotes, Is Governed by High-Frequency Phase Variation. Appl. Environ. Microbiol. 2016, 82, 3370–3383. [Google Scholar] [CrossRef] [PubMed]
- Jores, J.; Schieck, E.; Liljander, A.; Sacchini, F.; Posthaus, H.; Lartigue, C.; Blanchard, A.; Labroussaa, F.; Vashee, S. In Vivo Role of Capsular Polysaccharide in Mycoplasma mycoides. J. Infect. Dis. 2019, 219, 1559–1563. [Google Scholar] [CrossRef] [PubMed]
- Mwirigi, M.; Nkando, I.; Olum, M.; Attah-Poku, S.; Ochanda, H.; Berberov, E.; Potter, A.; Gerdts, V.; Perez-Casal, J.; Wesonga, H.; et al. Capsular Polysaccharide from Mycoplasma mycoides subsp. mycoides Shows Potential for Protection against Contagious Bovine Pleuropneumonia. Vet. Immunol. Immunopathol. 2016, 178, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Waite, E.R.; March, J.B. Capsular Polysaccharide Conjugate Vaccines against Contagious Bovine Pleuropneumonia: Immune Responses and Protection in Mice. J. Comp. Pathol. 2002, 126, 171–182. [Google Scholar] [CrossRef]
- Cheema, P.S.; Singh, S.; Kathiresan, S.; Kumar, R.; Bhanot, V.; Singh, V.P. Synthesis of Recombinant P48 of Mycoplasma agalactiae by Site Directed Mutagenesis and Its Immunological Characterization. Anim. Biotechnol. 2017, 28, 11–17. [Google Scholar] [CrossRef]
- Cacciotto, C.; Cubeddu, T.; Addis, M.F.; Anfossi, A.G.; Tedde, V.; Tore, G.; Carta, T.; Rocca, S.; Chessa, B.; Pittau, M.; et al. Mycoplasma Lipoproteins Are Major Determinants of Neutrophil Extracellular Trap Formation. Cell. Microbiol. 2016, 18, 1751–1762. [Google Scholar] [CrossRef]
- Vengadesan, K.; Narayana, S.V.L. Structural Biology of Gram-Positive Bacterial Adhesins. Protein Sci. 2011, 20, 759–772. [Google Scholar] [CrossRef]
- Cozens, D.; Read, R.C. Anti-Adhesion Methods as Novel Therapeutics for Bacterial Infections. Expert Rev. Anti. Infect. Ther. 2012, 10, 1457–1468. [Google Scholar] [CrossRef]
- Raynes, J.M.; Young, P.G.; Proft, T.; Williamson, D.A.; Baker, E.N.; Moreland, N.J. Protein Adhesins as Vaccine Antigens for Group A Streptococcus. Pathog. Dis. 2018, 76, 16. [Google Scholar] [CrossRef] [PubMed]
- Pecoraro, C.; Carbone, D.; Parrino, B.; Cascioferro, S.; Diana, P. Recent Developments in the Inhibition of Bacterial Adhesion as Promising Anti-Virulence Strategy. Int. J. Mol. Sci. 2023, 24, 4872. [Google Scholar] [CrossRef]
- Liu, Y.; Shahabudin, S.; Farid, S.; Lee, L.H.; Mcveigh, A.L.; Maciel, M.; Poole, S.T.; Broadman, M.; Prouty, M.G.; Savarino, S.J. Cross-Reactivity, Epitope Mapping, and Potency of Monoclonal Antibodies to Class 5 Fimbrial Tip Adhesins of Enterotoxigenic Escherichia coli. Infect. Immun. 2020, 88, 1–13. [Google Scholar] [CrossRef]
- Sincock, S.A.; Hall, E.R.; Woods, C.M.; O’Dowd, A.; Poole, S.T.; McVeigh, A.L.; Nunez, G.; Espinoza, N.; Miller, M.; Savarino, S.J. Immunogenicity of a Prototype Enterotoxigenic Escherichia Coli Adhesin Vaccine in Mice and Nonhuman Primates. Vaccine 2016, 34, 284–291. [Google Scholar] [CrossRef]
- Xu, Q.Y.; Pan, Q.; Wu, Q.; Xin, J.Q. Mycoplasma bovis Adhesins and Their Target Proteins. Front. Immunol. 2022, 13, 1016641. [Google Scholar] [CrossRef]
- Rollenhagen, J.E.; Woods, C.M.; O’Dowd, A.; Poole, S.T.; Tian, J.H.; Guebre-Xabier, M.; Ellingsworth, L.; Prouty, M.G.; Glenn, G.; Savarino, S.J. Evaluation of Transcutaneous Immunization as a Delivery Route for an Enterotoxigenic E. coli Adhesin-Based Vaccine with CfaE, the Colonization Factor Antigen 1 (CFA/I) Tip Adhesin. Vaccine 2019, 37, 6134–6138. [Google Scholar] [CrossRef]
- Lu, T.; Moxley, R.A.; Zhang, W. Mapping the Neutralizing Epitopes of Enterotoxigenic Escherichia coli K88 (F4) Fimbrial Adhesin and Major Subunit FaeG. Appl. Environ. Microbiol. 2019, 85, e00329-19. [Google Scholar] [CrossRef]
- Nandre, R.; Ruan, X.; Lu, T.; Duan, Q.; Sack, D.; Zhang, W. Enterotoxigenic Escherichia coli Adhesin-Toxoid Multiepitope Fusion Antigen CFA/I/II/IV-3xSTaN12S-MnLTG192G/L211Aderived Antibodies Inhibit Adherence of Seven Adhesins, Neutralize Enterotoxicity of LT and STa Toxins, and Protect Piglets against Dia. Infect. Immun. 2018, 86, 10–1128. [Google Scholar] [CrossRef]
- Nandre, R.M.; Ruan, X.; Duan, Q.; Sack, D.A.; Zhang, W. Antibodies Derived from an Enterotoxigenic Escherichia coli (ETEC) Adhesin Tip MEFA (Multiepitope Fusion Antigen) against Adherence of Nine ETEC Adhesins: CFA/I, CS1, CS2, CS3, CS4, CS5, CS6, CS21 and EtpA. Vaccine 2016, 34, 3620–3625. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Xiong, C.; Wang, G.; Wang, S.; Jin, G.; Gu, G. Exploration of Recombinant Fusion Proteins YAPO and YAPL as Carrier Proteins for Glycoconjugate Vaccine Design against Streptococcus pneumoniae Infection. ACS Infect. Dis. 2020, 6, 2181–2191. [Google Scholar] [CrossRef] [PubMed]
- Pillot, A.; Defontaine, A.; Fateh, A.; Lambert, A.; Prasanna, M.; Fanuel, M.; Pipelier, M.; Csaba, N.; Violo, T.; Camberlein, E.; et al. Site-Specific Conjugation for Fully Controlled Glycoconjugate Vaccine Preparation. Front. Chem. 2019, 7, 726. [Google Scholar] [CrossRef]
- Prasanna, M.; Soulard, D.; Camberlein, E.; Ruffier, N.; Lambert, A.; Trottein, F.; Csaba, N.; Grandjean, C. Semisynthetic Glycoconjugate Based on Dual Role Protein/PsaA as a Pneumococcal Vaccine. Eur. J. Pharm. Sci. 2019, 129, 31–41. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, S.; Zhu, C.; Zhou, R.; Leung, P.H.M. Mycoplasma pneumoniae Infections: Pathogenesis and Vaccine Development. Pathogens 2021, 10, 119. [Google Scholar] [CrossRef]
- Hegde, S.; Rosengarten, R.; Chopra-Dewasthaly, R. Disruption of the PdhB Pyruvate Dehydrogenase Gene Affects Colony Morphology, In Vitro Growth and Cell Invasiveness of Mycoplasma agalactiae. PLoS ONE 2015, 10, e0119706. [Google Scholar] [CrossRef] [PubMed]
- Akbarzadeh-Niaki, M.; Derakhshandeh, A.; Kazemipour, N.; Eraghi, V.; Hemmatzadeh, F. A Novel Chimeric Recombinant Protein PDHB-P80 of Mycoplasma agalactiae as a Potential Diagnostic Tool. Mol. Biol. Res. Commun. 2020, 9, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wu, Y.; Qin, L.; Zhu, C.; You, X. Infection Strategies of Mycoplasmas: Unraveling the Panoply of Virulence Factors. Virulence 2021, 12, 788–817. [Google Scholar] [CrossRef]
- Solanki, V.; Tiwari, M.; Tiwari, V. Host-Bacteria Interaction and Adhesin Study for Development of Therapeutics. Int. J. Biol. Macromol. 2018, 112, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Castro-Alonso, A.; Rodríguez, F.; De la Fé, C.; Espinosa de los Monteros, A.; Poveda, J.B.; Andrada, M.; Herráez, P. Correlating the Immune Response with the Clinical–Pathological Course of Persistent Mastitis Experimentally Induced by Mycoplasma agalactiae in Dairy Goats. Res. Vet. Sci. 2009, 86, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Castro-Alonso, A.; De la Fe, C.; Espinosa de los Monteros, A.; Rodríguez, F.; Andrada, M.; Poveda, J.B.; Herráez, P. Chronological and Immunohistochemical Characterization of the Mammary Immunoinflammatory Response in Experimental Caprine Contagious Agalactia. Vet. Immunol. Immunopathol. 2010, 136, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Kutzler, M.A.; Weiner, D.B. DNA Vaccines: Ready for Prime Time? Nat. Rev. Genet. 2008, 9, 776–788. [Google Scholar] [CrossRef]
- Dobrovolskaia, M.A.; Bathe, M. Opportunities and Challenges for the Clinical Translation of Structured DNA Assemblies as Gene Therapeutic Delivery and Vaccine Vectors. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021, 13, e1657. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Chen, M.; Bian, Y.; Zheng, X.; Tong, R.; Sun, X. Advanced Subunit Vaccine Delivery Technologies: From Vaccine Cascade Obstacles to Design Strategies. Acta Pharm. Sin. B 2023, 13, 3321–3338. [Google Scholar] [CrossRef] [PubMed]
- Holz, E.; Darwish, M.; Tesar, D.B.; Shatz-Binder, W. A Review of Protein- and Peptide-Based Chemical Conjugates: Past, Present, and Future. Pharmaceutics 2023, 15, 600. [Google Scholar] [CrossRef] [PubMed]
- de Pinho Favaro, M.T.; Atienza-Garriga, J.; Martínez-Torró, C.; Parladé, E.; Vázquez, E.; Corchero, J.L.; Ferrer-Miralles, N.; Villaverde, A. Recombinant Vaccines in 2022: A Perspective from the Cell Factory. Microb. Cell Fact. 2022, 21, 203. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa, M.S.; Sampaio, B.A.; Spergser, J.; Rosengarten, R.; Marques, L.M.; Chopra-Dewasthaly, R. Mycoplasma agalactiae Vaccines: Current Status, Hurdles, and Opportunities Due to Advances in Pathogenicity Studies. Vaccines 2024, 12, 156. https://doi.org/10.3390/vaccines12020156
Barbosa MS, Sampaio BA, Spergser J, Rosengarten R, Marques LM, Chopra-Dewasthaly R. Mycoplasma agalactiae Vaccines: Current Status, Hurdles, and Opportunities Due to Advances in Pathogenicity Studies. Vaccines. 2024; 12(2):156. https://doi.org/10.3390/vaccines12020156
Chicago/Turabian StyleBarbosa, Maysa Santos, Beatriz Almeida Sampaio, Joachim Spergser, Renate Rosengarten, Lucas Miranda Marques, and Rohini Chopra-Dewasthaly. 2024. "Mycoplasma agalactiae Vaccines: Current Status, Hurdles, and Opportunities Due to Advances in Pathogenicity Studies" Vaccines 12, no. 2: 156. https://doi.org/10.3390/vaccines12020156
APA StyleBarbosa, M. S., Sampaio, B. A., Spergser, J., Rosengarten, R., Marques, L. M., & Chopra-Dewasthaly, R. (2024). Mycoplasma agalactiae Vaccines: Current Status, Hurdles, and Opportunities Due to Advances in Pathogenicity Studies. Vaccines, 12(2), 156. https://doi.org/10.3390/vaccines12020156