A Comprehensive Review of Neurodegenerative Manifestations of SARS-CoV-2
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy and Keywords
- “SARS-CoV-2” OR “COVID-19” OR “coronavirus” OR “severe acute respiratory syndrome coronavirus 2”
- “neurological manifestations” OR “neurological complications” OR “neurological disorders” OR “central nervous system” OR “peripheral nervous system”
- “neurodegenerative diseases” OR “neuropsychiatric disorders” OR “stroke” OR “encephalitis” OR “encephalopathy” OR “Parkinson’s disease” OR “Alzheimer’s disease”
- “meta-analysis” OR “systematic review” OR “clinical characteristics” OR “long-term effects” OR “outcomes” OR “case series” OR “cohort studies”
2.2. Study Selection Criteria
- They were published in peer-reviewed journals;
- They investigated the neurological manifestations or complications associated with SARS-CoV-2 or COVID-19;
- They consisted of original research, systematic reviews, meta-analyses, or case series with a clear focus on neurological aspects.
2.3. Data Extraction
- Author(s) and publication year;
- Study design and methodology;
- Population characteristics (e.g., age, comorbidities);
- Neurological manifestations reported;
- Timing of reported manifestations (e.g., acute phase, post-acute phase, or long-term follow-up);
- Key findings related to the impact of SARS-CoV-2 on neurodegenerative diseases, neuropsychiatric disorders, and other neurological conditions.
2.4. Quality Assessment
2.5. Data Synthesis
2.6. Limitations
2.6.1. The Entry Pathway of SARS-CoV-2 into the Human Body
2.6.2. Elevated Cytokines and Their Impact on Neurodegeneration in COVID-19 Patients
2.6.3. NLRP3 Inflammasome Activation and its Implications for Respiratory Complications in COVID-19
2.6.4. Neurological Complications and SARS-CoV-2
2.6.5. COVID-19 and its Effects on the Central Nervous System
2.6.6. Comparing SARS-CoV-1 and SARS-CoV-2: Similarities in Spike Proteins
2.6.7. Anosmia and Ageusia: Exploring the Involvement of the Central Nervous System in COVID-19
2.6.8. Exploring the Neurological Manifestations of SARS-CoV-2 Infection
2.6.9. Post-Infection Neurological Symptoms in COVID-19 Survivors
2.6.10. The Impact of SARS-CoV-2 on Pre-Existing Neurodegenerative Diseases
2.6.11. The effect of COVID-19 Vaccines on Neurodegenerative Diseases
3. Discussion
- -
- Alzheimer’s disease (AD): Individuals with AD appear to face an elevated risk of severe COVID-19 outcomes, potentially due to immune-response dysregulation and the impact of COVID-19-related distress on cognitive function. Systemic inflammation induced by COVID-19 may contribute to cognitive decline and neurodegeneration.
- -
- Parkinson’s disease (PD): PD patients have a higher case fatality rate during COVID-19 infections, but the underlying mechanisms remain unclear. Potential shared risk factors and pathophysiological pathways between the diseases necessitate further research. The emergence of akinetic–rigid parkinsonism following severe COVID-19 cases raises questions about the virus’s impact on dopamine pathways.
- -
- Amyotrophic lateral sclerosis (ALS): ALS patients face challenges due to respiratory muscle involvement and increased susceptibility to respiratory complications during the pandemic. Specific genetic mutations linked to familial ALS, such as C9orf72 repeat expansions, may influence disease severity in COVID-19 cases.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Serrano-Castro, P.J.; Estivill-Torrús, G.; Cabezudo-García, P.; Reyes-Bueno, J.A.; Ciano Petersen, N.; Aguilar-Castillo, M.J.; Suárez-Pérez, J.; Jiménez-Hernández, M.D.; Moya-Molina, M.Á.; Oliver-Martos, B.; et al. Influencia de la infección SARS-CoV-2 sobre enfermedades neurodegenerativas y neuropsiquiátricas: ¿una pandemia demorada? Neurología 2020, 35, 245–251. [Google Scholar] [CrossRef]
- Pattanaik, A.; Bhandarkar B, S.; Lodha, L.; Marate, S. SARS-CoV-2 and the Nervous System: Current Perspectives. Arch. Virol. 2023, 168, 171. [Google Scholar] [CrossRef]
- Yassin, A.; Nawaiseh, M.; Shaban, A.; Alsherbini, K.; El-Salem, K.; Soudah, O.; Abu-Rub, M. Neurological Manifestations and Complications of Coronavirus Disease 2019 (COVID-19): A Systematic Review and Meta-Analysis. BMC Neurol. 2021, 21, 138. [Google Scholar] [CrossRef] [PubMed]
- Jarrahi, A.; Ahluwalia, M.; Khodadadi, H.; Da Silva Lopes Salles, E.; Kolhe, R.; Hess, D.C.; Vale, F.; Kumar, M.; Baban, B.; Vaibhav, K.; et al. Neurological Consequences of COVID-19: What Have We Learned and Where Do We Go from Here? J. Neuroinflammation 2020, 17, 286. [Google Scholar] [CrossRef] [PubMed]
- Harrison, P.J.; Taquet, M. Neuropsychiatric Disorders Following SARS-CoV-2 Infection. Brain 2023, 146, 2241–2247. [Google Scholar] [CrossRef] [PubMed]
- Smadi, M.; Kaburis, M.; Schnapper, Y.; Reina, G.; Molero, P.; Molendijk, M.L. SARS-CoV-2 Susceptibility and COVID-19 Illness Course and Outcome in People with Pre-Existing Neurodegenerative Disorders: Systematic Review with Frequentist and Bayesian Meta-Analyses. Br. J. Psychiatry 2023, 223, 348–361. [Google Scholar] [CrossRef] [PubMed]
- Trypsteen, W.; Van Cleemput, J.; Snippenberg, W.V.; Gerlo, S.; Vandekerckhove, L. On the Whereabouts of SARS-CoV-2 in the Human Body: A Systematic Review. PLoS Pathog. 2020, 16, e1009037. [Google Scholar] [CrossRef] [PubMed]
- Marshall, M. COVID and the Brain: Researchers Zero in on How Damage Occurs. Nature 2021, 595, 484–485. [Google Scholar] [CrossRef]
- Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020, 77, 683. [Google Scholar] [CrossRef]
- Vatsalya, V.; Li, F.; Frimodig, J.; Gala, K.S.; Srivastava, S.; Kong, M.; Ramchandani, V.A.; Feng, W.; Zhang, X.; McClain, C.J. Repurposing Treatment of Wernicke–Korsakoff Syndrome for Th-17 Cell Immune Storm Syndrome and Neurological Symptoms in COVID-19: Thiamine Efficacy and Safety, In-Vitro Evidence and Pharmacokinetic Profile. Front. Pharmacol. 2021, 11, 598128. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Widmann, C.N.; Heneka, M.T. Long-Term Cerebral Consequences of Sepsis. Lancet Neurol. 2014, 13, 630–636. [Google Scholar] [CrossRef]
- Jones, H.D.; Crother, T.R.; Gonzalez-Villalobos, R.A.; Jupelli, M.; Chen, S.; Dagvadorj, J.; Arditi, M.; Shimada, K. The NLRP3 Inflammasome Is Required for the Development of Hypoxemia in LPS/Mechanical Ventilation Acute Lung Injury. Am. J. Respir. Cell Mol. Biol. 2014, 50, 270–280. [Google Scholar] [CrossRef]
- Ding, H.-G.; Deng, Y.-Y.; Yang, R.; Wang, Q.-S.; Jiang, W.-Q.; Han, Y.-L.; Huang, L.-Q.; Wen, M.-Y.; Zhong, W.-H.; Li, X.-S.; et al. Hypercapnia Induces IL-1β Overproduction via Activation of NLRP3 Inflammasome: Implication in Cognitive Impairment in Hypoxemic Adult Rats. J. Neuroinflammation 2018, 15, 4. [Google Scholar] [CrossRef] [PubMed]
- Heneka, M.T.; Golenbock, D.; Latz, E.; Morgan, D.; Brown, R. Immediate and Long-Term Consequences of COVID-19 Infections for the Development of Neurological Disease. Alzheimers Res. Ther. 2020, 12, 69. [Google Scholar] [CrossRef] [PubMed]
- Rifino, N.; Censori, B.; Agazzi, E.; Alimonti, D.; Bonito, V.; Camera, G.; Conti, M.Z.; Foresti, C.; Frigeni, B.; Gerevini, S.; et al. Neurologic Manifestations in 1760 COVID-19 Patients Admitted to Papa Giovanni XXIII Hospital, Bergamo, Italy. J. Neurol. 2021, 268, 2331–2338. [Google Scholar] [CrossRef] [PubMed]
- Garg, M.; Maralakunte, M.; Garg, S.; Dhooria, S.; Sehgal, I.; Bhalla, A.S.; Vijayvergiya, R.; Grover, S.; Bhatia, V.; Jagia, P.; et al. The Conundrum of ‘Long-COVID-19ʹ: A Narrative Review. Int. J. Gen. Med. 2021, 14, 2491–2506. [Google Scholar] [CrossRef] [PubMed]
- Ellul, M.A.; Benjamin, L.; Singh, B.; Lant, S.; Michael, B.D.; Easton, A.; Kneen, R.; Defres, S.; Sejvar, J.; Solomon, T. Neurological Associations of COVID-19. Lancet Neurol. 2020, 19, 767–783. [Google Scholar] [CrossRef] [PubMed]
- Almeria, M.; Cejudo, J.C.; Sotoca, J.; Deus, J.; Krupinski, J. Cognitive Profile Following COVID-19 Infection: Clinical Predictors Leading to Neuropsychological Impairment. Brain Behav. Immun. Health 2020, 9, 100163. [Google Scholar] [CrossRef] [PubMed]
- Nannoni, S.; De Groot, R.; Bell, S.; Markus, H.S. Stroke in COVID-19: A Systematic Review and Meta-Analysis. Int. J. Stroke 2021, 16, 137–149. [Google Scholar] [CrossRef]
- Meinhardt, J.; Radke, J.; Dittmayer, C.; Franz, J.; Thomas, C.; Mothes, R.; Laue, M.; Schneider, J.; Brünink, S.; Greuel, S.; et al. Olfactory Transmucosal SARS-CoV-2 Invasion as a Port of Central Nervous System Entry in Individuals with COVID-19. Nat. Neurosci. 2021, 24, 168–175. [Google Scholar] [CrossRef]
- Rogers, J.P.; Chesney, E.; Oliver, D.; Pollak, T.A.; McGuire, P.; Fusar-Poli, P.; Zandi, M.S.; Lewis, G.; David, A.S. Psychiatric and Neuropsychiatric Presentations Associated with Severe Coronavirus Infections: A Systematic Review and Meta-Analysis with Comparison to the COVID-19 Pandemic. Lancet Psychiatry 2020, 7, 611–627. [Google Scholar] [CrossRef] [PubMed]
- Taquet, M.; Luciano, S.; Geddes, J.R.; Harrison, P.J. Bidirectional Associations between COVID-19 and Psychiatric Disorder: Retrospective Cohort Studies of 62 354 COVID-19 Cases in the USA. Lancet Psychiatry 2021, 8, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Zheng, Y.; Shi, J.; Wang, J.; Li, G.; Li, C.; Fromson, J.A.; Xu, Y.; Liu, X.; Xu, H.; et al. Immediate Psychological Distress in Quarantined Patients with COVID-19 and Its Association with Peripheral Inflammation: A Mixed-Method Study. Brain. Behav. Immun. 2020, 88, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Siegler, J.E.; Cardona, P.; Arenillas, J.F.; Talavera, B.; Guillen, A.N.; Chavarría-Miranda, A.; De Lera, M.; Khandelwal, P.; Bach, I.; Patel, P.; et al. Cerebrovascular Events and Outcomes in Hospitalized Patients with COVID-19: The SVIN COVID-19 Multinational Registry. Int. J. Stroke 2021, 16, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Sun, T.; Feng, J. Complications and Pathophysiology of COVID-19 in the Nervous System. Front. Neurol. 2020, 11, 573421. [Google Scholar] [CrossRef] [PubMed]
- Araújo, N.; Silva, I.; Campos, P.; Correia, R.; Calejo, M.; Freitas, P.; Seco, M.; Ribeiro, L.; Costa, A.R.; Morais, S.; et al. Long-Term Neurological Complications in COVID-19 Survivors: Study Protocol of a Prospective Cohort Study (NeurodegCoV-19). BMJ Open 2023, 13, e072981. [Google Scholar] [CrossRef] [PubMed]
- Pilotto, A.; Cristillo, V.; Cotti Piccinelli, S.; Zoppi, N.; Bonzi, G.; Sattin, D.; Schiavolin, S.; Raggi, A.; Canale, A.; Gipponi, S.; et al. Long-Term Neurological Manifestations of COVID-19: Prevalence and Predictive Factors. Neurol. Sci. 2021, 42, 4903–4907. [Google Scholar] [CrossRef]
- Beretta, S.; Cristillo, V.; Camera, G.; Morotti Colleoni, C.; Pellitteri, G.; Viti, B.; Bianchi, E.; Gipponi, S.; Grimoldi, M.; Valente, M.; et al. Incidence and Long-Term Functional Outcome of Neurologic Disorders in Hospitalized Patients with COVID-19 Infected with Pre-Omicron Variants. Neurology 2023, 101, e892–e903. [Google Scholar] [CrossRef]
- Lindan, C.E.; Mankad, K.; Ram, D.; Kociolek, L.K.; Silvera, V.M.; Boddaert, N.; Stivaros, S.M.; Palasis, S.; Akhtar, S.; Alden, D.; et al. Neuroimaging Manifestations in Children with SARS-CoV-2 Infection: A Multinational, Multicentre Collaborative Study. Lancet Child Adolesc. Health 2021, 5, 167–177. [Google Scholar] [CrossRef]
- LaRovere, K.L.; Riggs, B.J.; Poussaint, T.Y.; Young, C.C.; Newhams, M.M.; Maamari, M.; Walker, T.C.; Singh, A.R.; Dapul, H.; Hobbs, C.V.; et al. Neurologic Involvement in Children and Adolescents Hospitalized in the United States for COVID-19 or Multisystem Inflammatory Syndrome. JAMA Neurol. 2021, 78, 536. [Google Scholar] [CrossRef]
- Edlow, A.G.; Castro, V.M.; Shook, L.L.; Kaimal, A.J.; Perlis, R.H. Neurodevelopmental Outcomes at 1 Year in Infants of Mothers Who Tested Positive for SARS-CoV-2 during Pregnancy. JAMA Netw. Open 2022, 5, e2215787. [Google Scholar] [CrossRef] [PubMed]
- Riva, A.; Piccolo, G.; Balletti, F.; Binelli, M.; Brolatti, N.; Verrotti, A.; Amadori, E.; Spalice, A.; Giacomini, T.; Mancardi, M.M.; et al. Acute Neurological Presentation in Children with SARS-CoV-2 Infection. Front. Pediatr. 2022, 10, 909849. [Google Scholar] [CrossRef] [PubMed]
- Kalra, R.S.; Dhanjal, J.K.; Meena, A.S.; Kalel, V.C.; Dahiya, S.; Singh, B.; Dewanjee, S.; Kandimalla, R. COVID-19, Neuropathology, and Aging: SARS-CoV-2 Neurological Infection, Mechanism, and Associated Complications. Front. Aging Neurosci. 2021, 13, 662786. [Google Scholar] [CrossRef]
- Boldrini, M.; Canoll, P.D.; Klein, R.S. How COVID-19 Affects the Brain. JAMA Psychiatry 2021, 78, 682. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Hossinger, A.; Heumüller, S.-E.; Hornberger, A.; Buravlova, O.; Konstantoulea, K.; Müller, S.A.; Paulsen, L.; Rousseau, F.; Schymkowitz, J.; et al. Highly Efficient Intercellular Spreading of Protein Misfolding Mediated by Viral Ligand-Receptor Interactions. Nat. Commun. 2021, 12, 5739. [Google Scholar] [CrossRef]
- Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.-L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation. Science 2020, 367, 1260–1263. [Google Scholar] [CrossRef]
- Lingor, P.; Demleitner, A.F.; Wolff, A.W.; Feneberg, E. SARS-CoV-2 and Neurodegenerative Diseases: What We Know and What We Don’t. J. Neural Transm. 2022, 129, 1155–1167. [Google Scholar] [CrossRef]
- Ramani, A.; Müller, L.; Ostermann, P.N.; Gabriel, E.; Abida-Islam, P.; Müller-Schiffmann, A.; Mariappan, A.; Goureau, O.; Gruell, H.; Walker, A.; et al. SARS -CoV-2 Targets Neurons of 3D Human Brain Organoids. EMBO J. 2020, 39, e106230. [Google Scholar] [CrossRef]
- Idrees, D.; Kumar, V. SARS-CoV-2 Spike Protein Interactions with Amyloidogenic Proteins: Potential Clues to Neurodegeneration. Biochem. Biophys. Res. Commun. 2021, 554, 94–98. [Google Scholar] [CrossRef]
- Wu, J.; Deng, W.; Li, S.; Yang, X. Advances in Research on ACE2 as a Receptor for 2019-nCoV. Cell. Mol. Life Sci. 2021, 78, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Netland, J.; Meyerholz, D.K.; Moore, S.; Cassell, M.; Perlman, S. Severe Acute Respiratory Syndrome Coronavirus Infection Causes Neuronal Death in the Absence of Encephalitis in Mice Transgenic for Human ACE2. J. Virol. 2008, 82, 7264–7275. [Google Scholar] [CrossRef]
- Hirschbühl, K.; Dintner, S.; Beer, M.; Wylezich, C.; Schlegel, J.; Delbridge, C.; Borcherding, L.; Lippert, J.; Schiele, S.; Müller, G.; et al. Viral Mapping in COVID-19 Deceased in the Augsburg Autopsy Series of the First Wave: A Multiorgan and Multimethodological Approach. PLoS ONE 2021, 16, e0254872. [Google Scholar] [CrossRef]
- Destras, G.; Bal, A.; Escuret, V.; Morfin, F.; Lina, B.; Josset, L. Systematic SARS-CoV-2 Screening in Cerebrospinal Fluid during the COVID-19 Pandemic. Lancet Microbe 2020, 1, e149. [Google Scholar] [CrossRef]
- Romero-Sánchez, C.M.; Díaz-Maroto, I.; Fernández-Díaz, E.; Sánchez-Larsen, Á.; Layos-Romero, A.; García-García, J.; González, E.; Redondo-Peñas, I.; Perona-Moratalla, A.B.; Del Valle-Pérez, J.A.; et al. Neurologic Manifestations in Hospitalized Patients with COVID-19: The ALBACOVID Registry. Neurology 2020, 95, e1060–e1070. [Google Scholar] [CrossRef]
- Mahammedi, A.; Saba, L.; Vagal, A.; Leali, M.; Rossi, A.; Gaskill, M.; Sengupta, S.; Zhang, B.; Carriero, A.; Bachir, S.; et al. Imaging of Neurologic Disease in Hospitalized Patients with COVID-19: An Italian Multicenter Retrospective Observational Study. Radiology 2020, 297, E270–E273. [Google Scholar] [CrossRef]
- Radmanesh, A.; Derman, A.; Lui, Y.W.; Raz, E.; Loh, J.P.; Hagiwara, M.; Borja, M.J.; Zan, E.; Fatterpekar, G.M. COVID-19–Associated Diffuse Leukoencephalopathy and Microhemorrhages. Radiology 2020, 297, E223–E227. [Google Scholar] [CrossRef]
- Oaklander, A.L.; Mills, A.J.; Kelley, M.; Toran, L.S.; Smith, B.; Dalakas, M.C.; Nath, A. Peripheral Neuropathy Evaluations of Patients with Prolonged Long COVID. Neurol. Neuroimmunol. Neuroinflammation 2022, 9, e1146. [Google Scholar] [CrossRef]
- Misra, S.; Kolappa, K.; Prasad, M.; Radhakrishnan, D.; Thakur, K.T.; Solomon, T.; Michael, B.D.; Winkler, A.S.; Beghi, E.; Guekht, A.; et al. Frequency of Neurologic Manifestations in COVID-19: A Systematic Review and Meta-Analysis. Neurology 2021, 97, e2269–e2281. [Google Scholar] [CrossRef]
- Benussi, A.; Pilotto, A.; Premi, E.; Libri, I.; Giunta, M.; Agosti, C.; Alberici, A.; Baldelli, E.; Benini, M.; Bonacina, S.; et al. Clinical Characteristics and Outcomes of Inpatients with Neurologic Disease and COVID-19 in Brescia, Lombardy, Italy. Neurology 2020, 95, e910–e920. [Google Scholar] [CrossRef]
- Lodigiani, C.; Iapichino, G.; Carenzo, L.; Cecconi, M.; Ferrazzi, P.; Sebastian, T.; Kucher, N.; Studt, J.-D.; Sacco, C.; Bertuzzi, A.; et al. Venous and Arterial Thromboembolic Complications in COVID-19 Patients Admitted to an Academic Hospital in Milan, Italy. Thromb. Res. 2020, 191, 9–14. [Google Scholar] [CrossRef]
- Varatharaj, A.; Thomas, N.; Ellul, M.A.; Davies, N.W.S.; Pollak, T.A.; Tenorio, E.L.; Sultan, M.; Easton, A.; Breen, G.; Zandi, M.; et al. Neurological and Neuropsychiatric Complications of COVID-19 in 153 Patients: A UK-Wide Surveillance Study. Lancet Psychiatry 2020, 7, 875–882. [Google Scholar] [CrossRef]
- Ross Russell, A.L.; Hardwick, M.; Jeyanantham, A.; White, L.M.; Deb, S.; Burnside, G.; Joy, H.M.; Smith, C.J.; Pollak, T.A.; Nicholson, T.R.; et al. Spectrum, Risk Factors and Outcomes of Neurological and Psychiatric Complications of COVID-19: A UK-Wide Cross-Sectional Surveillance Study. Brain Commun. 2021, 3, fcab168. [Google Scholar] [CrossRef]
- Hull, J.H.; Wootten, M.; Moghal, M.; Heron, N.; Martin, R.; Walsted, E.S.; Biswas, A.; Loosemore, M.; Elliott, N.; Ranson, C. Clinical Patterns, Recovery Time and Prolonged Impact of COVID-19 Illness in International Athletes: The UK Experience. Br. J. Sports Med. 2022, 56, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Salari, N.; Hosseinian-Far, A.; Jalali, R.; Vaisi-Raygani, A.; Rasoulpoor, S.; Mohammadi, M.; Rasoulpoor, S.; Khaledi-Paveh, B. Prevalence of Stress, Anxiety, Depression among the General Population during the COVID-19 Pandemic: A Systematic Review and Meta-Analysis. Glob. Health 2020, 16, 57. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Gong, E.; Zhang, B.; Zheng, J.; Gao, Z.; Zhong, Y.; Zou, W.; Zhan, J.; Wang, S.; Xie, Z.; et al. Multiple Organ Infection and the Pathogenesis of SARS. J. Exp. Med. 2005, 202, 415–424. [Google Scholar] [CrossRef]
- Khalil, M.; Teunissen, C.E.; Otto, M.; Piehl, F.; Sormani, M.P.; Gattringer, T.; Barro, C.; Kappos, L.; Comabella, M.; Fazekas, F.; et al. Neurofilaments as Biomarkers in Neurological Disorders. Nat. Rev. Neurol. 2018, 14, 577–589. [Google Scholar] [CrossRef]
- Douaud, G.; Lee, S.; Alfaro-Almagro, F.; Arthofer, C.; Wang, C.; McCarthy, P.; Lange, F.; Andersson, J.L.R.; Griffanti, L.; Duff, E.; et al. SARS-CoV-2 Is Associated with Changes in Brain Structure in UK Biobank. Nature 2022, 604, 697–707. [Google Scholar] [CrossRef]
- Faber, I.; Brandão, P.R.P.; Menegatti, F.; Carvalho Bispo, D.D.; Maluf, F.B.; Cardoso, F. Coronavirus Disease 2019 and Parkinsonism: A Non-post-encephalitic Case. Mov. Disord. 2020, 35, 1721–1722. [Google Scholar] [CrossRef] [PubMed]
- Tahira, A.C.; Verjovski-Almeida, S.; Ferreira, S.T. Dementia Is an Age-independent Risk Factor for Severity and Death in COVID-19 Inpatients. Alzheimers Dement. 2021, 17, 1818–1831. [Google Scholar] [CrossRef]
- Zhang, Q.; Schultz, J.L.; Aldridge, G.M.; Simmering, J.E.; Kim, Y.; Ogilvie, A.C.; Narayanan, N.S. COVID-19 Case Fatality and Alzheimer’s Disease. J. Alzheimers Dis. 2021, 84, 1447–1452. [Google Scholar] [CrossRef] [PubMed]
- Scherbaum, R.; Kwon, E.H.; Richter, D.; Bartig, D.; Gold, R.; Krogias, C.; Tönges, L. Clinical Profiles and Mortality of COVID-19 Inpatients with Parkinson’s Disease in Germany. Mov. Disord. 2021, 36, 1049–1057. [Google Scholar] [CrossRef]
- Huber, M.K.; Raichle, C.; Lingor, P.; Synofzik, M.; Borgmann, S.; Erber, J.; Tometten, L.; Rimili, W.; Dolff, S.; Wille, K.; et al. Outcomes of SARS-CoV-2 Infections in Patients with Neurodegenerative Diseases in the LEOSS Cohort. Mov. Disord. 2021, 36, 791–793. [Google Scholar] [CrossRef] [PubMed]
- Galea, M.D.; Galea, V.P.; Eberhart, A.C.; Patwa, H.S.; Howard, I.; Fournier, C.N.; Bedlack, R.S. Infection Rate, Mortality and Characteristics of Veterans with Amyotrophic Lateral Sclerosis with COVID-19. Muscle Nerve 2021, 64, E18. [Google Scholar] [CrossRef]
- Zanella, I.; Zacchi, E.; Piva, S.; Filosto, M.; Beligni, G.; Alaverdian, D.; Amitrano, S.; Fava, F.; Baldassarri, M.; Frullanti, E.; et al. C9orf72 Intermediate Repeats Confer Genetic Risk for Severe COVID-19 Pneumonia Independently of Age. Int. J. Mol. Sci. 2021, 22, 6991. [Google Scholar] [CrossRef] [PubMed]
- Nasserie, T.; Hittle, M.; Goodman, S.N. Assessment of the Frequency and Variety of Persistent Symptoms among Patients with COVID-19: A Systematic Review. JAMA Netw. Open 2021, 4, e2111417. [Google Scholar] [CrossRef] [PubMed]
- Wolff, A.W.; Haller, B.; Demleitner, A.F.; Westenberg, E.; Lingor, P. Impact of the COVID-19 Pandemic on Patients with Parkinson’s Disease from the Perspective of Treating Physicians—A Nationwide Cross-Sectional Study. Brain Sci. 2022, 12, 353. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Diehl-Schmid, J.; Matias-Guiu, J.A.; Pijnenburg, Y.; Landin-Romero, R.; Bogaardt, H.; Piguet, O.; Kumfor, F. The Effects of the COVID-19 Pandemic on Neuropsychiatric Symptoms in Dementia and Carer Mental Health: An International Multicentre Study. Sci. Rep. 2022, 12, 2418. [Google Scholar] [CrossRef]
- Doubrovinskaia, S.; Mooshage, C.M.; Seliger, C.; Lorenz, H.; Nagel, S.; Lehnert, P.; Purrucker, J.; Wildemann, B.; Bendszus, M.; Wick, W.; et al. Neurological Autoimmune Diseases Following Vaccinations against Severe Acute Respiratory Syndrome Coronavirus 2 ( SARS-CoV -2): A Follow-up Study. Eur. J. Neurol. 2023, 30, 463–473. [Google Scholar] [CrossRef]
- Francis, A.G.; Elhadd, K.; Camera, V.; Ferreira Dos Santos, M.; Rocchi, C.; Adib-Samii, P.; Athwal, B.; Attfield, K.; Barritt, A.; Craner, M.; et al. Acute Inflammatory Diseases of the Central Nervous System After SARS-CoV-2 Vaccination. Neurol. Neuroimmunol. Neuroinflammation 2023, 10, e200063. [Google Scholar] [CrossRef]
Evidence Level | Number of Patients | Neurologic Symptoms | Neurological Disease | Mechanism of Entry | Cerebrovascular Disease | Study |
---|---|---|---|---|---|---|
Review of available literature | Specific number (not mentioned) | Headache, dizziness, altered mental status, anosmia (loss of smell), ageusia (loss of taste), muscle weakness, seizures | Encephalitis, encephalopathy, stroke, Guillain-Barré syndrome, acute disseminated encephalomyelitis (ADEM), peripheral neuropathy | SARS-CoV-2 can enter the CNS through the olfactory bulb, direct invasion, retrograde axonal transport, or infection of endothelial cells in brain blood vessels | Increased risk of cerebrovascular events, such as ischemic stroke and intracerebral hemorrhage | Ellul et al., 2020 [18] |
Observational study (moderate level) | 214 hospitalized patients | Dizziness, headache, impaired consciousness, taste impairment, smell impairment, vision impairment, ataxia, seizure, nerve pain | Impaired consciousness, acute cerebrovascular disease, ataxia, seizure, taste impairment, smell impairment, vision impairment, nerve pain | Expression and distribution of ACE2 receptor suggest direct or indirect mechanisms | Acute cerebrovascular disease, including ischemic stroke and cerebral hemorrhage | Mao et al., 2020 [9] |
Total of 35 patients | Specific number (not mentioned) | Headache, myalgias, loss of smell and taste, cognitive impairment | Not specifically mentioned | Hematogenous or retrograde neuronal route | Not specifically mentioned | Almeria et al., 2020 [19] |
Meta-analysis of 145 papers | Exact number not specified | Altered mental status, headache, dizziness and balance problems, seizures | Stroke, encephalopathy, Guillain-Barré syndrome (GBS), meningitis and encephalitis, neuropathy | Direct invasion through ACE2 receptors, indirect pathway through systemic inflammation and immune responses, neuronal transmission through olfactory nerve, hematogenous spread through crossing of the blood–brain barrier | Ischemic stroke, hemorrhagic stroke, large-vessel occlusion, multi-territory infarcts, cryptogenic stroke | Nannoni et al., 2020 [20] |
Autopsies of 33 COVID-19 patients | Total of 33 patients | Impaired consciousness (5 patients), intraventricular hemorrhage (2 patients), headache (2 patients), behavioral changes (2 patients) | Acute infarcts in 6 patients, acute cerebral ischemia in 2 patients | Crossing the neural–mucosal interface in the olfactory mucosa, following neuroanatomical structures in the medulla oblongata | Acute cerebrovascular disease reported in some patients | Meinhardt et al., 2021 [21] |
Review of 72 studies | Specific number (not mentioned) | Altered consciousness, encephalopathy, confusion, disturbance of consciousness | Neuroimaging abnormalities, cerebrospinal fluid abnormalities, EEG changes | Via the angiotensin-converting enzyme 2 (ACE2) receptor | Acute cerebrovascular events, such as strokes; possibly multifactorial mechanisms involving direct viral invasion, procoagulant state, hypoxia, and immune response | Rogers et al., 2020 [22] |
Retrospective study | Retrospective cohort studies in the USA | Delirium, anxiety, depression, poor memory, insomnia, manic symptoms | Stroke | Believed to enter the brain through direct invasion, hematogenous spread, or neuronal transmission | Ischemic stroke and other cerebrovascular events | Taquet et al., 2021 [23] |
Review of available literature | Specific number (not mentioned) | Headache, epilepsy, altered consciousness, encephalitis | Meningitis/encephalitis | Possibly invades the brain through the olfactory tract in the early stages of infection | Not specifically mentioned | Guo et al., 2020 [24] |
Retrospective observational registry | Specific number (not mentioned) | Altered mental status, headache, seizure | Acute ischemic stroke, intracranial hemorrhage, cerebral venous sinus thrombosis | SARS-CoV-2 enters host cells through ACE2 receptor, expressed in various human tissues including CNS | Incidence rate of cerebrovascular events in COVID-19 patients higher than that in non-COVID-19 patients | Siegler et al., 2020 [25] |
Age Group | Common Neurological Risks | Neurological Complications | Study |
---|---|---|---|
Children | Shared abnormalities in the brain and spine, common CNS manifestations |
| Lindan et al., 2020 [30] |
| LaRovere et al., 2021 [31] | ||
| Edlow et al., 2022 [32] | ||
| Riva et al., 2021 [33] | ||
Adults | Neurological symptoms likely a result of the body’s immune response |
| Kalra et al., 2021 [34] |
| Boldrini et al., 2021 [35] | ||
Elderly | Increased risk of neurological manifestations due to aging |
| Kalra et al., 2021 [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bedran, D.; Bedran, G.; Kote, S. A Comprehensive Review of Neurodegenerative Manifestations of SARS-CoV-2. Vaccines 2024, 12, 222. https://doi.org/10.3390/vaccines12030222
Bedran D, Bedran G, Kote S. A Comprehensive Review of Neurodegenerative Manifestations of SARS-CoV-2. Vaccines. 2024; 12(3):222. https://doi.org/10.3390/vaccines12030222
Chicago/Turabian StyleBedran, Dominika, Georges Bedran, and Sachin Kote. 2024. "A Comprehensive Review of Neurodegenerative Manifestations of SARS-CoV-2" Vaccines 12, no. 3: 222. https://doi.org/10.3390/vaccines12030222
APA StyleBedran, D., Bedran, G., & Kote, S. (2024). A Comprehensive Review of Neurodegenerative Manifestations of SARS-CoV-2. Vaccines, 12(3), 222. https://doi.org/10.3390/vaccines12030222