Simultaneous Detection of Antigen and Antibodies of African Swine Fever in a Novel Combo Lateral Flow Assay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blood and Serum Samples
2.2. Recombinant Proteins Production
2.3. Lateral Flow Assays
2.3.1. Capture Reagents
2.3.2. Detector Reagents
2.3.3. Assembling of LFA Strips
2.3.4. Test Procedure
2.4. Statistical Analysis
3. Results
3.1. Antigen Detection Assay: INgezim® ASFV CROM Ag 2.0
3.2. Antibody Detection Test: INgezim® ASFV CROM Ab 2.0
3.3. Combined Antigen and Antibody Detection, INgezim® ASFV Combo CROM Ag/Ab
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ata, E.B.; Li, Z.-J.; Shi, C.-W.; Yang, G.-L.; Yang, W.-T.; Wang, C.-F. African Swine Fever Virus: A Raised Global Upsurge and a Continuous Threaten to Pig Husbandry. Microb. Pathog. 2022, 167, 105561. [Google Scholar] [CrossRef] [PubMed]
- Blome, S.; Franzke, K.; Beer, M. African Swine Fever—A Review of Current Knowledge. Virus Res. 2020, 287, 198099. [Google Scholar] [CrossRef] [PubMed]
- Sauter-Louis, C.; Conraths, F.J.; Probst, C.; Blohm, U.; Schulz, K.; Sehl, J.; Fischer, M.; Forth, J.H.; Zani, L.; Depner, K.; et al. African Swine Fever in Wild Boar in Europe—A Review. Viruses 2021, 13, 1717. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Cordón, P.J.; Montoya, M.; Reis, A.L.; Dixon, L.K. African Swine Fever: A Re-Emerging Viral Disease Threatening the Global Pig Industry. Vet. J. 2018, 233, 41–48. [Google Scholar] [CrossRef] [PubMed]
- World Organisation for Animal Health, WOAH. World Animal Health Information System, WAHIS; World Organisation for Animal Health: Paris, France, 2023. [Google Scholar]
- Tran, X.H.; Phuong, L.T.; Huy, N.Q.; Thuy, D.T.; Nguyen, V.D.; Quang, P.H.; Ngôn, Q.V.; Rai, A.; Gay, C.G.; Gladue, D.P.; et al. Evaluation of the Safety Profile of the ASFV Vaccine Candidate ASFV-G-ΔI177L. Viruses 2022, 14, 896. [Google Scholar] [CrossRef]
- Ta, H.L. Quality Control of a Live Attenuated African Swine Fever Vaccine in Viet Nam; WOAH Regional Representation for Asia and the Pacific: Tokyo, Japan, 2022. [Google Scholar]
- World Organisation for Animal Health. Chapter 3.9.1. African Swine Fever. In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals; World Organisation for Animal Health: Paris, France, 2021. [Google Scholar]
- Sánchez-Vizcaíno, J.M.; Mur, L.; Gomez-Villamandos, J.C.; Carrasco, L. An Update on the Epidemiology and Pathology of African Swine Fever. J. Comp. Pathol. 2015, 152, 9–21. [Google Scholar] [CrossRef]
- Muñoz, A.L.; Tabarés, E. Characteristics of the Major Structural Proteins of African Swine Fever Virus: Role as Antigens in the Induction of Neutralizing Antibodies. A Review. Virology 2022, 571, 46–51. [Google Scholar] [CrossRef]
- Dixon, L.K.; Chapman, D.A.G.; Netherton, C.L.; Upton, C. African Swine Fever Virus Replication and Genomics. Virus Res. 2013, 173, 3–14. [Google Scholar] [CrossRef]
- Alejo, A.; Matamoros, T.; Guerra, M.; Andrés, G. A Proteomic Atlas of the African Swine Fever Virus Particle. J. Virol. 2018, 92, e01293-18. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Ge, S.; Zhang, Y.; Wu, X.; Wang, Z. A Systematic Review of Genotypes and Serogroups of African Swine Fever Virus. Virus Genes 2022, 58, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Gaudreault, N.N.; Madden, D.W.; Wilson, W.C.; Trujillo, J.D.; Richt, J.A. African Swine Fever Virus: An Emerging DNA Arbovirus. Front. Vet. Sci. 2020, 7, 215. [Google Scholar] [CrossRef] [PubMed]
- Spinard, E.; Dinhobl, M.; Tesler, N.; Birtley, H.; Signore, A.V.; Ambagala, A.; Masembe, C.; Borca, M.V.; Gladue, D.P. A Re-Evaluation of African Swine Fever Genotypes Based on P72 Sequences Reveals the Existence of Only Six Distinct P72 Groups. Viruses 2023, 15, 2246. [Google Scholar] [CrossRef] [PubMed]
- Koczula, K.M.; Gallotta, A. Lateral Flow Assays. Essays Biochem. 2016, 60, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Inui, K.; Gallardo, C.; Portugal, R.; Dixon, L.K.; Baton, C.; Williams, D. The OIE ASF Reference Laboratory Network’s Overview of African Swine Fever Diagnostic Tests for Field Application; World Organisation for Animal Health: Paris, France, 2022. [Google Scholar]
- Danzetta, M.L.; Marenzoni, M.L.; Iannetti, S.; Tizzani, P.; Calistri, P.; Feliziani, F. African Swine Fever: Lessons to Learn From Past Eradication Experiences. A Systematic Review. Front. Vet. Sci. 2020, 7, 296. [Google Scholar] [CrossRef] [PubMed]
- Balamurugan, V.; Sen, A.; Saravanan, P.; Singh, R.K. Biotechnology in the Production of Recombinant Vaccine or Antigen for Animal Health. J. Anim. Vet. Adv. 2006, 5, 487–495. [Google Scholar]
- Spencer, K.-A.; Osorio, F.A.; Hiscox, J.A. Recombinant Viral Proteins for Use in Diagnostic ELISAs to Detect Virus Infection. Vaccine 2007, 25, 5653–5659. [Google Scholar] [CrossRef]
- Bradbury, A.R.M.; Trinklein, N.D.; Thie, H.; Wilkinson, I.C.; Tandon, A.K.; Anderson, S.; Bladen, C.L.; Jones, B.; Aldred, S.F.; Bestagno, M.; et al. When Monoclonal Antibodies Are Not Monospecific: Hybridomas Frequently Express Additional Functional Variable Regions. mAbs 2018, 10, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Lua, W.-H.; Ling, W.-L.; Yeo, J.Y.; Poh, J.-J.; Lane, D.P.; Gan, S.K.-E. The Effects of Antibody Engineering CH and CL in Trastuzumab and Pertuzumab Recombinant Models: Impact on Antibody Production and Antigen-Binding. Sci. Rep. 2018, 8, 718. [Google Scholar] [CrossRef]
- Aira, C.; Monedero, A.; Hernández-Antón, S.; Martínez-Cano, J.; Camuñas, A.; Casado, N.; Nieto, R.; Gallardo, C.; García-Durán, M.; Rueda, P.; et al. Improving African Swine Fever Surveillance Using Fluorescent Rapid Tests. Pathogens 2023, 12, 811. [Google Scholar] [CrossRef]
- Hermanson, G.T. Chapter 14—Microparticles and Nanoparticles. In Bioconjugate Techniques, 2nd ed.; Hermanson, G.T., Ed.; Academic Press: New York, NY, USA, 2008; pp. 582–626. ISBN 978-0-12-370501-3. [Google Scholar]
- Dean, A.G.; Sullivan, K.M.; Soe, M.M. OpenEpi: Open Source Epidemiologic Statistics for Public Health. Version 3.01. Available online: www.openepi.com (accessed on 6 April 2013).
- Zhang, H.; Zhao, S.; Zhang, H.; Qin, Z.; Shan, H.; Cai, X. Vaccines for African Swine Fever: An Update. Front. Microbiol. 2023, 14, 1139494. [Google Scholar] [CrossRef]
- Dixon, L.K.; Stahl, K.; Jori, F.; Vial, L.; Pfeiffer, D.U. African Swine Fever Epidemiology and Control. Annu. Rev. Anim. Biosci. 2020, 8, 221–246. [Google Scholar] [CrossRef] [PubMed]
- Beltrán-Alcrudo, D.; Arias, M.; Gallardo, C.; Kramer, S.; Penrith, M.L. African Swine Fever: Detection and Diagnosis—A Manual for Veterinarians. In FAO Animal Production and Health Manual No. 19; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2017; 88p. [Google Scholar]
Collection | Type of Sample | Number of Samples | ASFV Status (Technique Used) | Origin | Collection Details |
---|---|---|---|---|---|
Panel 1 | Blood | 125 | Antigen positive (WOAH real-time PCR) | Experimental (CISA-INIA) | Domestic pigs experimentally inoculated with different ASFV strains, including genotypes I (n = 11), II, (n = 42), I–II (n = 1), IX (n = 1), and XXIII (n = 1), in biosafety level 3 (BSL3) facilities. |
Panel 2 | Blood | 165 | Negative | Field | Field pig samples collected from Spanish farms (ASFV-free region). |
Panel 3 | Blood | 150 | Negative | Field | Negative samples collected from endemic areas from healthy pigs, characterized as negative by PCR and ELISA. |
Panel 4 | Serum | 34 | Antibody positive (IPT) | Experimental (CISA, INIA-CSIC) | Domestic pig samples collected from experimental infections carried out in BSL3 facilities and classified as positive by IPT with low antibody titres. |
Panel 5 | Serum | 92 | Antibody positive and negative (ELISA) | Experimental (IZSUM) | Samples collected from 9 different domestic pigs experimentally infected with the attenuated ASFV strain NH/P68 in BSL3 facilities. |
Panel 6 | Serum | 208 | Negative | Field | Domestic pig samples collected from Spanish farms (ASFV-free region). |
Panel 7 | Serum | 47 | Negative | Field | Field wild boar sera characterized as positive to tuberculosis (TB) collected in Spain. |
Panel 8 | Serum | 26 | Negative | Field | Pig sera positive to Porcine Respiratory and Reproductive Virus specific antibodies (PRRSV) collected in Spanish farms. |
Panel 9 | Serum | 15 | Negative | Experimental (FLI) | Pig sera positive to Classical Swine Fever Virus (CSFV), Border Disease Virus (BDV), or Bovine Viral Diarrhoea Virus (BVDV) specific antibodies. |
Panel 10 | Blood | 332 | Antigen positive (PCR) and/or antibody positive (ELISA or IPT) | Field | Field samples collected during outbreak investigations in Latvia, Lithuania, Czech Republic, and Republic of Serbia: 126 domestic pig and 206 wild boar samples. |
Panel 11 | Blood | 193 | Negative (PCR and/or IPT and/or ELISA) | Field | Field samples collected during outbreak investigations in Latvia, Lithuania, Czech Republic, and Republic of Serbia: 100 domestic pig and 93 wild boar samples. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aira, C.; González-García, G.; Martínez-Cano, J.; de la Roja, N.; Giammarioli, M.; Feliziani, F.; Šteingolde, Ž.; Buitkuviene, J.; Václavek, P.; Glišić, D.; et al. Simultaneous Detection of Antigen and Antibodies of African Swine Fever in a Novel Combo Lateral Flow Assay. Vaccines 2024, 12, 307. https://doi.org/10.3390/vaccines12030307
Aira C, González-García G, Martínez-Cano J, de la Roja N, Giammarioli M, Feliziani F, Šteingolde Ž, Buitkuviene J, Václavek P, Glišić D, et al. Simultaneous Detection of Antigen and Antibodies of African Swine Fever in a Novel Combo Lateral Flow Assay. Vaccines. 2024; 12(3):307. https://doi.org/10.3390/vaccines12030307
Chicago/Turabian StyleAira, Cristina, Gabriela González-García, Juan Martínez-Cano, Nuria de la Roja, Monica Giammarioli, Francesco Feliziani, Žanete Šteingolde, Jurate Buitkuviene, Petr Václavek, Dimitrije Glišić, and et al. 2024. "Simultaneous Detection of Antigen and Antibodies of African Swine Fever in a Novel Combo Lateral Flow Assay" Vaccines 12, no. 3: 307. https://doi.org/10.3390/vaccines12030307
APA StyleAira, C., González-García, G., Martínez-Cano, J., de la Roja, N., Giammarioli, M., Feliziani, F., Šteingolde, Ž., Buitkuviene, J., Václavek, P., Glišić, D., Gallardo, C., Sastre, P., García-Durán, M., Rueda, P., & Fresco-Taboada, A. (2024). Simultaneous Detection of Antigen and Antibodies of African Swine Fever in a Novel Combo Lateral Flow Assay. Vaccines, 12(3), 307. https://doi.org/10.3390/vaccines12030307