Virological Traits of the SARS-CoV-2 BA.2.87.1 Lineage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Expression Plasmids and Sequence Analysis
2.3. Production of Pseudovirus Particles and Cell Entry Studies
2.4. Analysis of S Protein Processing and Particle Incorporation
2.5. Analysis of S Protein-Driven Cell–Cell Fusion
2.6. Analysis of S Protein Cell Surface Expression and ACE2 Binding Efficiency
2.7. Ethics Committee Approval and Enrollment of Study Participants
2.8. Plasma Samples
2.9. Neutralization Assay
2.10. Quantification and Statistical Analysis
3. Results
3.1. BA.2.87.1 Efficiently Enters and Fuses Human Cells
3.2. BA.2.87.1 Efficiently Utilizes Human and Animal ACE2 as Entry Receptors
3.3. Lung Cell Entry of BA.2.87.1 Depends on TMPRSS2
3.4. Few Therapeutic Monoclonal Antibodies Neutralize BA.2.87.1
3.5. Less Neutralization Evasion by BA.2.87.1 Compared to JN.1
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frenck, R.W., Jr.; Klein, N.P.; Kitchin, N.; Gurtman, A.; Absalon, J.; Lockhart, S.; Perez, J.L.; Walter, E.B.; Senders, S.; Bailey, R.; et al. Safety, immunogenicity, and efficacy of the bnt162b2 COVID-19 vaccine in adolescents. N. Engl. J. Med. 2021, 385, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Moreira, E.D., Jr.; Kitchin, N.; Xu, X.; Dychter, S.S.; Lockhart, S.; Gurtman, A.; Perez, J.L.; Zerbini, C.; Dever, M.E.; Jennings, T.W.; et al. Safety and efficacy of a third dose of bnt162b2 COVID-19 vaccine. N. Engl. J. Med. 2022, 386, 1910–1921. [Google Scholar] [CrossRef] [PubMed]
- Munoz, F.M.; Sher, L.D.; Sabharwal, C.; Gurtman, A.; Xu, X.; Kitchin, N.; Lockhart, S.; Riesenberg, R.; Sexter, J.M.; Czajka, H.; et al. Evaluation of bnt162b2 COVID-19 vaccine in children younger than 5 years of age. N. Engl. J. Med. 2023, 388, 621–634. [Google Scholar] [CrossRef] [PubMed]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Perez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and efficacy of the bnt162b2 mrna COVID-19 vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Walsh, E.E.; Frenck, R.W., Jr.; Falsey, A.R.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Mulligan, M.J.; Bailey, R.; et al. Safety and immunogenicity of two rna-based COVID-19 vaccine candidates. N. Engl. J. Med. 2020, 383, 2439–2450. [Google Scholar] [CrossRef] [PubMed]
- Moghadas, S.M.; Vilches, T.N.; Zhang, K.; Wells, C.R.; Shoukat, A.; Singer, B.H.; Meyers, L.A.; Neuzil, K.M.; Langley, J.M.; Fitzpatrick, M.C.; et al. The impact of vaccination on coronavirus disease 2019 (covid-19) outbreaks in the united states. Clin. Infect. Dis. 2021, 73, 2257–2264. [Google Scholar] [CrossRef] [PubMed]
- The WHO European Respiratory Surveillance Network. Estimated number of lives directly saved by COVID-19 vaccination programs in the who european region, december 2020 to march 2023. medRxiv 2024. [Google Scholar] [CrossRef]
- Usdan, L.; Patel, S.; Rodriguez, H.; Xu, X.; Lee, D.Y.; Finn, D.; Wyper, H.; Sci, B.B.; Lowry, F.S.; Mensa, F.J.; et al. A bivalent omicron-ba.4/ba.5-adapted bnt162b2 booster in >/=12-year-olds. Clin. Infect. Dis. 2023. advance online publication. [Google Scholar] [CrossRef]
- Lee, I.T.; Cosgrove, C.A.; Moore, P.; Bethune, C.; Nally, R.; Bula, M.; Kalra, P.A.; Clark, R.; Dargan, P.I.; Boffito, M.; et al. Omicron ba.1-containing mrna-1273 boosters compared with the original COVID-19 vaccine in the uk: A randomised, observer-blind, active-controlled trial. Lancet. Infect. Dis. 2023, 23, 1007–1019. [Google Scholar] [CrossRef] [PubMed]
- Gayed, J.; Diya, O.; Lowry, F.S.; Xu, X.; Bangad, V.; Mensa, F.; Zou, J.; Xie, X.; Hu, Y.; Lu, C.; et al. Safety and immunogenicity of the monovalent omicron xbb.1.5-adapted bnt162b2 COVID-19 vaccine in individuals >/=12 years old: A phase 2/3 trial. Vaccines 2024, 12, 118. [Google Scholar] [CrossRef]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef]
- Tomris, I.; Unione, L.; Nguyen, L.; Zaree, P.; Bouwman, K.M.; Liu, L.; Li, Z.; Fok, J.A.; Rios Carrasco, M.; van der Woude, R.; et al. Sars-cov-2 spike n-terminal domain engages 9-o-acetylated alpha2-8-linked sialic acids. ACS Chem. Biol. 2023, 18, 1180–1191. [Google Scholar] [CrossRef]
- Guo, H.; Li, A.; Lin, H.F.; Liu, M.Q.; Chen, J.; Jiang, T.T.; Li, B.; Wang, Y.; Letko, M.C.; Peng, W.; et al. The glycan-binding trait of the sarbecovirus spike n-terminal domain reveals an evolutionary footprint. J. Virol. 2022, 96, e0095822. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Qiu, Z.; Hou, Y.; Deng, X.; Xu, W.; Zheng, T.; Wu, P.; Xie, S.; Bian, W.; Zhang, C.; et al. Axl is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells. Cell Res. 2021, 31, 126–140. [Google Scholar] [CrossRef] [PubMed]
- McCallum, M.; De Marco, A.; Lempp, F.A.; Tortorici, M.A.; Pinto, D.; Walls, A.C.; Beltramello, M.; Chen, A.; Liu, Z.; Zatta, F.; et al. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell 2021, 184, 2332–2347.e2316. [Google Scholar] [CrossRef]
- Suryadevara, N.; Shrihari, S.; Gilchuk, P.; VanBlargan, L.A.; Binshtein, E.; Zost, S.J.; Nargi, R.S.; Sutton, R.E.; Winkler, E.S.; Chen, E.C.; et al. Neutralizing and protective human monoclonal antibodies recognizing the n-terminal domain of the SARS-CoV-2 spike protein. Cell 2021, 184, 2316–2331.e2315. [Google Scholar] [CrossRef] [PubMed]
- Cerutti, G.; Guo, Y.; Zhou, T.; Gorman, J.; Lee, M.; Rapp, M.; Reddem, E.R.; Yu, J.; Bahna, F.; Bimela, J.; et al. Potent SARS-CoV-2 neutralizing antibodies directed against spike n-terminal domain target a single supersite. Cell Host Microbe 2021, 29, 819–833.e817. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020, 581, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ace2 receptor. Nature 2020, 581, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Harvey, W.T.; Carabelli, A.M.; Jackson, B.; Gupta, R.K.; Thomson, E.C.; Harrison, E.M.; Ludden, C.; Reeve, R.; Rambaut, A.; Consortium, C.-G.U.; et al. Sars-cov-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 2021, 19, 409–424. [Google Scholar] [CrossRef]
- Schmidt, F.; Weisblum, Y.; Muecksch, F.; Hoffmann, H.H.; Michailidis, E.; Lorenzi, J.C.C.; Mendoza, P.; Rutkowska, M.; Bednarski, E.; Gaebler, C.; et al. Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. J. Exp. Med. 2020, 217, e20201181. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Kruger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. Sars-cov-2 cell entry depends on ace2 and tmprss2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181, 271–280.e278. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kruger, N.; Schulz, S.; Cossmann, A.; Rocha, C.; Kempf, A.; Nehlmeier, I.; Graichen, L.; Moldenhauer, A.S.; Winkler, M.S.; et al. The omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic. Cell 2022, 185, 447–456.e411. [Google Scholar] [CrossRef]
- Hoffmann, M.; Arora, P.; Nehlmeier, I.; Kempf, A.; Cossmann, A.; Schulz, S.R.; Morillas Ramos, G.; Manthey, L.A.; Jack, H.M.; Behrens, G.M.N.; et al. Profound neutralization evasion and augmented host cell entry are hallmarks of the fast-spreading SARS-CoV-2 lineage xbb.1.5. Cell. Mol. Immunol. 2023, 20, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Berger Rentsch, M.; Zimmer, G. A vesicular stomatitis virus replicon-based bioassay for the rapid and sensitive determination of multi-species type i interferon. PLoS ONE 2011, 6, e25858. [Google Scholar] [CrossRef] [PubMed]
- Bussani, R.; Schneider, E.; Zentilin, L.; Collesi, C.; Ali, H.; Braga, L.; Volpe, M.C.; Colliva, A.; Zanconati, F.; Berlot, G.; et al. Persistence of viral rna, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology. EBioMedicine 2020, 61, 103104. [Google Scholar] [CrossRef] [PubMed]
- Braga, L.; Ali, H.; Secco, I.; Chiavacci, E.; Neves, G.; Goldhill, D.; Penn, R.; Jimenez-Guardeno, J.M.; Ortega-Prieto, A.M.; Bussani, R.; et al. Drugs that inhibit tmem16 proteins block SARS-CoV-2 spike-induced syncytia. Nature 2021, 594, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Rajah, M.M.; Bernier, A.; Buchrieser, J.; Schwartz, O. The mechanism and consequences of SARS-CoV-2 spike-mediated fusion and syncytia formation. J. Mol. Biol. 2022, 434, 167280. [Google Scholar] [CrossRef] [PubMed]
- Hui, K.P.Y.; Ho, J.C.W.; Cheung, M.C.; Ng, K.C.; Ching, R.H.H.; Lai, K.L.; Kam, T.T.; Gu, H.; Sit, K.Y.; Hsin, M.K.Y.; et al. Sars-cov-2 omicron variant replication in human bronchus and lung ex vivo. Nature 2022, 603, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Shuai, H.; Chan, J.F.; Hu, B.; Chai, Y.; Yuen, T.T.; Yin, F.; Huang, X.; Yoon, C.; Hu, J.C.; Liu, H.; et al. Attenuated replication and pathogenicity of SARS-CoV-2 b.1.1.529 omicron. Nature 2022, 603, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Meng, B.; Abdullahi, A.; Ferreira, I.; Goonawardane, N.; Saito, A.; Kimura, I.; Yamasoba, D.; Gerber, P.P.; Fatihi, S.; Rathore, S.; et al. Altered tmprss2 usage by SARS-CoV-2 omicron impacts infectivity and fusogenicity. Nature 2022, 603, 706–714. [Google Scholar] [CrossRef]
- Zhang, L.; Kempf, A.; Nehlmeier, I.; Cossmann, A.; Richter, A.; Bdeir, N.; Graichen, L.; Moldenhauer, A.S.; Dopfer-Jablonka, A.; Stankov, M.V.; et al. Sars-cov-2 ba.2.86 enters lung cells and evades neutralizing antibodies with high efficiency. Cell 2024, 187, 596–608.e517. [Google Scholar] [CrossRef]
- Qu, P.; Xu, K.; Faraone, J.N.; Goodarzi, N.; Zheng, Y.M.; Carlin, C.; Bednash, J.S.; Horowitz, J.C.; Mallampalli, R.K.; Saif, L.J.; et al. Immune evasion, infectivity, and fusogenicity of SARS-CoV-2 ba.2.86 and flip variants. Cell 2024, 187, 585–595.e586. [Google Scholar] [CrossRef] [PubMed]
Cohort (n) | General Information | Immunization History | Anti-Spike IgG (BAU/mL) * | ||||
---|---|---|---|---|---|---|---|
Male-to-Female Ratio | Age (Years) | Vaccinations | XBB.1.5 Booster | Infection(s) | Days since Last Immunization | ||
1 (n = 11) | 4/7 | range: 25–74; median = 48 | range: 5–8; median = 5 | Yes | No | range: 15–21; median = 16 | range: 1114–6627; median = 2531 |
2 (n = 13) | 6/7 | range: 29–62; median = 44 | range: 4–5; median = 5 | Yes | Yes (n = 1) | range: 15–17; median = 16 | range: 1261–6090; median = 2467 |
3 (n = 9) | 3/6 | range: 31–64; median = 56 | range: 3–4; median = 3 | No | Yes (n = 1) | range: 44–88; median = 60 | range: 768–5541; median = 2796 |
4 (n = 9) | 2/7 | range: 36–58; median = 50 | range: 3–4; median = 3 | No | Yes (n = 2) | range: 44–81; median = 65 | range: 882–5937; median = 1519 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Dopfer-Jablonka, A.; Nehlmeier, I.; Kempf, A.; Graichen, L.; Calderón Hampel, N.; Cossmann, A.; Stankov, M.V.; Morillas Ramos, G.; Schulz, S.R.; et al. Virological Traits of the SARS-CoV-2 BA.2.87.1 Lineage. Vaccines 2024, 12, 487. https://doi.org/10.3390/vaccines12050487
Zhang L, Dopfer-Jablonka A, Nehlmeier I, Kempf A, Graichen L, Calderón Hampel N, Cossmann A, Stankov MV, Morillas Ramos G, Schulz SR, et al. Virological Traits of the SARS-CoV-2 BA.2.87.1 Lineage. Vaccines. 2024; 12(5):487. https://doi.org/10.3390/vaccines12050487
Chicago/Turabian StyleZhang, Lu, Alexandra Dopfer-Jablonka, Inga Nehlmeier, Amy Kempf, Luise Graichen, Noemí Calderón Hampel, Anne Cossmann, Metodi V. Stankov, Gema Morillas Ramos, Sebastian R. Schulz, and et al. 2024. "Virological Traits of the SARS-CoV-2 BA.2.87.1 Lineage" Vaccines 12, no. 5: 487. https://doi.org/10.3390/vaccines12050487
APA StyleZhang, L., Dopfer-Jablonka, A., Nehlmeier, I., Kempf, A., Graichen, L., Calderón Hampel, N., Cossmann, A., Stankov, M. V., Morillas Ramos, G., Schulz, S. R., Jäck, H. -M., Behrens, G. M. N., Pöhlmann, S., & Hoffmann, M. (2024). Virological Traits of the SARS-CoV-2 BA.2.87.1 Lineage. Vaccines, 12(5), 487. https://doi.org/10.3390/vaccines12050487