Trends in Intention to Take the Second Booster COVID-19 Vaccination and Associated Factors in China: Serial Cross-Sectional Surveys
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Population
2.2. Data Collection
3. Measurements
3.1. Primary Outcome
3.2. Background Characteristics
3.3. Psychological Characteristics
3.3.1. The Generalized Anxiety Disorder Scale-7 (GAD-7)
3.3.2. Patient Health Questionnaire-9 (PHQ-9)
3.3.3. COVID-19-Related Worries
4. Behavioral Characteristics
4.1. COVID-19-Related Preventive Behaviors
4.2. COVID-19-Related Information Engagement Behavior
4.3. Statistical Analysis
5. Results
5.1. Profiles of the Study Respondents
5.2. Dynamics of Intention to Receive the Second Booster Vaccination and COVID-19 Infection Status during the Study Period
5.3. The Differences among Respondents with and without an Intention to Take the Second Booster Vaccination
5.4. Factors Associated with an Intention to Receive the Second Booster Vaccination
5.5. Factors Associated with an Intention among Respondents with Different Infection Status
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Items | |
---|---|
Intention to receive the second booster vaccination | |
Will you receive a second booster dose of COVID-19 vaccine in the next six months? | 0: No; 1: Yes |
Psychological information | |
COVID-19-related worries | |
In the past week, to what extent have you been worried about COVID-19 infection for yourself and your family members? | 1: Not worried at all; 2: Not very worried; 3: Somewhat worried; 4: Worried; 5: Very worried |
In the past week, to what extent have you been worried about the impact of the pandemic on the daily lives of you and your family members? | 1: Not worried at all; 2: Not very worried; 3: Somewhat worried; 4: Worried; 5: Very worried |
There may be a large number of new COVID-19 cases in Guangzhou in the future | 1: Not worried at all; 2: Not very worried; 3: Somewhat worried; 4: Worried; 5: Very worried |
There may be a significant number of COVID-19 deaths in Guangzhou in the future | 1: Not worried at all; 2: Not very worried; 3: Somewhat worried; 4: Worried; 5: Very worried |
The healthcare system may face challenges in coping with the situation in the future system | 1: Not worried at all; 2: Not very worried; 3: Somewhat worried; 4: Worried; 5: Very worried |
Behavioral information | |
COVID-19-related preventive behaviors | |
Wearing masks in public | 1: not well-implemented [0–40% of time]; 2: partially implemented [41–70% of time]; 3: mostly implemented [71–90% of time]; 4: strictly implemented [91–100% of time] |
Washing hands immediately upon returning home | 1: not well-implemented [0–40% of time]; 2: partially implemented [41–70% of time]; 3: mostly implemented [71–90% of time]; 4: strictly implemented [91–100% of time] |
Maintaining a one-meter distance in line | 1: not well-implemented [0–40% of time]; 2: partially implemented [41–70% of time]; 3: mostly implemented [71–90% of time]; 4: strictly implemented [91–100% of time] |
COVID-19-related information engagement behavior | |
Do you usually pay attention to information related to the pandemic on a daily basis? | 1: Not at all; 2: Rarely; 3: Sometimes; 4: Everyday |
Characteristics | Respondents Completed the Survey | Respondents Included in the Analyses | p-Value |
---|---|---|---|
Number of respondents | 9860 | 8048 | |
Sociodemographic characteristics | |||
Sex (Female) | 4363 (44.2) | 3495 (43.4) | 0.270 |
Age (mean ± SD) | 36.1 ± 11.6 | 36.3 ± 11.6 | 0.251 |
Age group | 0.277 | ||
18- | 1923 (19.5) | 1550 (19.3) | |
26- | 3473 (35.2) | 2739 (34.0) | |
36- | 2265 (23.0) | 1901 (23.6) | |
45- | 1787 (18.1) | 1536 (19.1) | |
60- | 406 (4.1) | 322 (4.0) | |
Residential area (Urban) | 4541 (46.1) | 3668 (45.6) | 0.523 |
Marital status | 0.579 | ||
Unmarried | 3934 (39.9) | 3179 (39.5) | |
Married | 5281 (53.6) | 4365 (54.2) | |
Divorced/widowed/other | 645 (6.5) | 504 (6.3) | |
Monthly income (CNY) | 0.173 | ||
<2000 (<275 USD) | 1904 (19.3) | 1514 (18.8) | |
2001- (275 USD-) | 2546 (25.8) | 2172 (27.0) | |
5001- (685 USD-) | 3260 (33.1) | 2686 (33.4) | |
10,001 (1370 USD-) | 2150 (21.8) | 1676 (20.8) | |
Health characteristics | |||
Chronic disease (Yes) | 1427 (14.5) | 1105 (13.7) | 0.156 |
Ever infected with COVID-19 (Yes) | 5886 (59.7) | 4832 (60.0) | 0.640 |
Psychological characteristics | |||
Anxiety (GAD-7, score ≥ 10) | 2604 (26.4) | 2038 (25.3) | 0.099 |
Depression (PHQ-9, score ≥ 10) | 3771 (38.2) | 3005 (37.3) | 0.213 |
Scores of worries about COVID-19 | 16.0 ± 5.9 | 16.0 ± 5.9 | 0.536 |
Behavioral characteristics | |||
COVID-19-related preventive behavior | 12.6 ± 2.9 | 10.3 ± 2.0 | <0.001 *** |
COVID-19-related information engagement behavior (High engagement) | 8353 (84.7) | 6880 (85.5) | 0.150 |
Primary outcome | |||
An intention of the second booster of COVID-19 vaccine (Yes) | 5810 (72.2) |
Characteristics | Uninfected | Infected | ||||||
---|---|---|---|---|---|---|---|---|
ORu (95% CI) | p-Value | ORm (95%CI) | p-Value | ORu (95% CI) | p-Value | ORm (95%CI) | p-Value | |
Sociodemographic information | ||||||||
Sex (Ref: male) | N.A. | |||||||
Female | 0.93 (0.83, 1.05) | 0.260 | N.A. | 1.00 (0.84, 1.18) | 0.980 | |||
Age group (Ref: 18-) | ||||||||
26- | 0.86 (0.73, 1.02) | 0.087 | N.S. | 0.99 (0.78, 1.24) | 0.906 | 0.78 (0.66, 0.93) | 0.006 ** | |
36- | 1.14 (0.95, 1.38) | 0.170 | N.S. | 1.10 (0.86, 1.42) | 0.444 | 0.94 (0.77, 1.14) | 0.529 | |
45- | 1.34 (1.09, 1.64) | 0.005 ** | N.S. | 1.46 (1.11, 1.91) | 0.007 ** | 1.06 (0.86, 1.32) | 0.964 | |
60 or above | 1.23 (0.86, 1.78) | 0.264 | N.S. | 1.00 (0.67, 1.53) | 0.992 | 0.99 (0.68, 1.45) | 0.964 | |
Residential area (Ref: Suburb) | N.A. | |||||||
Urban | 1.14 (1.01, 1.29) | 0.030 | N.A. | 0.88 (0.75, 1.04) | 0.140 | |||
Marital status (Ref: Unmarried) | N.A. | |||||||
Married | 1.09 (0.96, 1.23) | 0.201 | N.S. | 1.13 (0.95, 1.34) | 0.170 | |||
Divorced/widowed or other | 1.43 (1.07, 1.92) | 0.016 * | N.S. | 1.06 (0.77, 1.49) | 0.720 | |||
Month income (Ref: <2000 CHY/275USD) | N.A. | |||||||
2001- (275 USD-) | 1.19 (0.98, 1.43) | 0.072 | N.S. | 1.14 (0.90, 1.43) | 0.288 | |||
5001- (685 USD-) | 1.20 (1.00, 1.43) | 0.047 * | N.S. | 1.25 (0.99, 1.58) | 0.056 | |||
10,001 (1370 USD-) | 1.00 (0.83, 1.21) | 0.963 | N.S. | 0.91 (0.71, 1.18) | 0.472 | |||
Chronic disease (Ref: No) | N.A. | |||||||
Yes | 1.26 (1.05, 1.53) | 0.014 * | N.S. | 0.84 (0.67, 1.05) | 0.130 | N.A. | ||
Psychological information | ||||||||
Anxiety (Ref: No) | ||||||||
Yes | 0.76 (0.66, 0.87) | <0.001 *** | 0.68 (0.59, 0.78) | <0.001 *** | 0.68 (0.57, 0.83) | <0.001 *** | 0.81 (0.68, 0.96) | 0.016 * |
Depression (Ref: No) | ||||||||
Yes | 0.76 (0.68, 0.87) | <0.001 *** | N.S. | 0.71 (0.59, 0.84) | <0.001 *** | 0.78 (0.66, 0.92) | 0.003 ** | |
Scores of worries about COVID-19 | 1.00 (0.99, 1.02) | 0.360 | N.A. | 1.02 (1.00, 1.03) | 0.019 * | N.S. | ||
Behavioral information | ||||||||
COVID-19-related preventive behavior | 1.15 (1.12, 1.19) | <0.001 *** | 1.08 (1.05, 1.12) | <0.001 *** | 1.21 (1.16, 1.26) | <0.001 *** | 1.07 (1.04, 1.11) | <0.001 *** |
COVID-19-related information engagement behavior (Ref: low engagement) | ||||||||
High engagement | 2.28 (1.96, 2.66) | <0.001 *** | 1.84 (1.55, 2.18) | <0.001 *** | 2.81 (2.22, 3.55) | <0.001 *** | 1.82 (1.53, 2.16) | <0.001 *** |
Survey date (Ref: 13 December 2022) | ||||||||
20 December 2022 | 1.00 (0.72, 1.39) | 0.989 | 1.00 (0.71, 1.39) | 0.999 | 0.83 (0.66, 1.04) | 0.107 | 1.01 (0.72, 1.4) | 0.965 |
27 December 2022 | 0.88 (0.64, 1.19) | 0.418 | 0.88 (0.64, 1.20) | 0.434 | 0.95 (0.72, 1.25) | 0.705 | 0.89 (0.65, 1.22) | 0.472 |
6 January 2023 | 0.67 (0.48, 0.92) | 0.015 * | 0.66 (0.47, 0.91) | 0.012 * | 0.59 (0.41, 0.87) | 0.007 ** | 0.66 (0.47, 0.91) | 0.013 * |
15 January 2023 | 0.51 (0.37, 0.69) | <0.001 *** | 0.51 (0.37, 0.70) | <0.001 *** | 0.44 (0.31, 0.64) | <0.001 *** | 0.50 (0.36, 0.68) | <0.001 *** |
8 February 2023 | 0.54 (0.39, 0.74) | <0.001 *** | 0.59 (0.42, 0.81) | 0.002 ** | 0.32 (0.22, 0.47) | <0.001 *** | 0.55 (0.40, 0.77) | <0.001 *** |
9 March 2023 | 0.48 (0.35, 0.66) | <0.001 *** | 0.61 (0.44, 0.84) | 0.003 ** | 0.22 (0.16, 0.32) | <0.001 *** | 0.58 (0.42, 0.81) | 0.001 ** |
20 April 2023 | 0.31 (0.21, 0.44) | <0.001 *** | 0.46 (0.32, 0.67) | <0.001 *** | 0.25 (0.16, 0.38) | <0.001 *** | 0.43 (0.29, 0.62) | <0.001 *** |
References
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard with Vaccination Data. 2023. Available online: https://data.who.int/dashboards/covid19/cases?n=c (accessed on 1 June 2023).
- Barranco, R.; Caristo, I.; Spigno, F.; Ponzano, M.; Trevisan, A.; Signori, A.; Di Biagio, A.; Ventura, F. Management of the Medico-Legal Dispute of Healthcare-Related SARS-CoV-2 Infections: Evaluation Criteria and Case Study in a Large University Hospital in Northwest Italy from 2020 to 2021. Int. J. Environ. Res. Public Health 2022, 19, 16764. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Wang, C.; Han, B.; Zhao, T.; Liu, B.; Chen, L.; Xie, M.; Zheng, H.; Zhang, S.; Wang, Y.; et al. Change in willingness to COVID-19 vaccination in China: Two online surveys during the pandemic. J. Med. Virol. 2022, 94, 5271–5278. [Google Scholar] [CrossRef] [PubMed]
- Munro, A.P.S.; Feng, S.; Janani, L.; Cornelius, V.; Aley, P.K.; Babbage, G.; Baxter, D.; Bula, M.; Cathie, K.; Chatterjee, K.; et al. Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): A multicentre, blinded, phase 2, randomised trial. Lancet. Infect. Dis. 2022, 22, 1131–1141. [Google Scholar] [CrossRef]
- Bar-On, Y.M.; Goldberg, Y.; Mandel, M.; Bodenheimer, O.; Amir, O.; Freedman, L.; Alroy-Preis, S.; Ash, N.; Huppert, A.; Milo, R. Protection by a Fourth Dose of BNT162b2 against Omicron in Israel. N. Engl. J. Med. 2022, 386, 1712–1720. [Google Scholar] [CrossRef] [PubMed]
- Arbel, R.; Sergienko, R.; Friger, M.; Peretz, A.; Beckenstein, T.; Yaron, S.; Netzer, D.; Hammerman, A. Effectiveness of a second BNT162b2 booster vaccine against hospitalization and death from COVID-19 in adults aged over 60 years. Nat. Med. 2022, 28, 1486–1490. [Google Scholar] [CrossRef] [PubMed]
- Della Polla, G.; Miraglia Del Giudice, G.; Pelullo, C.P.; Angelillo, I.F. Bivalent second booster dose of the COVID-19 vaccine: Eligible populations’ reasons for receiving in Italy. Hum. Vaccines Immunother. 2023, 19, 2188856. [Google Scholar] [CrossRef] [PubMed]
- Kiss, Z.; Wittmann, I.; Polivka, L.; Surján, G.; Surján, O.; Barcza, Z.; Molnár, G.A.; Nagy, D.; Müller, V.; Bogos, K.; et al. Nationwide Effectiveness of First and Second SARS-CoV2 Booster Vaccines During the Delta and Omicron Pandemic Waves in Hungary (HUN-VE 2 Study). Front. Immunol. 2022, 13, 905585. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, S.; Pascucci, D.; Laurenti, P. Humoral response after a fourth dose of SARS-CoV-2 vaccine in immunocompromised patients. Results of a systematic review. Front. Public Health 2023, 11, 1108546. [Google Scholar] [CrossRef] [PubMed]
- Grewal, R.; Kitchen, S.A.; Nguyen, L.; Buchan, S.A.; Wilson, S.E.; Costa, A.P.; Kwong, J.C. Effectiveness of a fourth dose of covid-19 mRNA vaccine against the omicron variant among long term care residents in Ontario, Canada: Test negative design study. BMJ (Clin. Res. Ed.) 2022, 378, e071502. [Google Scholar] [CrossRef]
- Fabiani, M.; Mateo-Urdiales, A.; Sacco, C.; Fotakis, E.A.; Rota, M.C.; Petrone, D.; Bressi, M.; Del Manso, M.; Siddu, A.; Fedele, G.; et al. Protection against severe COVID-19 after second booster dose of adapted bivalent (original/Omicron BA.4-5) mRNA vaccine in persons ≥ 60 years, by time since infection, Italy, 12 September to 11 December 2022. Euro Surveill. Bull. Eur. Sur Les Mal. Transm. Eur. Commun. Dis. Bull. 2023, 28, 2300105. [Google Scholar] [CrossRef]
- Link-Gelles, R.; Levy, M.E.; Gaglani, M.; Irving, S.A.; Stockwell, M.; Dascomb, K.; DeSilva, M.B.; Reese, S.E.; Liao, I.C.; Ong, T.C.; et al. Effectiveness of 2, 3, and 4 COVID-19 mRNA Vaccine Doses Among Immunocompetent Adults During Periods when SARS-CoV-2 Omicron BA.1 and BA.2/BA.2.12.1 Sublineages Predominated—VISION Network, 10 States, December 2021-June 2022. MMWR. Morb. Mortal. Wkly. Rep. 2022, 71, 931–939. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lu, X.; Lai, X.; Lyu, Y.; Zhang, H.; Fenghuang, Y.; Jing, R.; Li, L.; Yu, W.; Fang, H. The Changing Acceptance of COVID-19 Vaccination in Different Epidemic Phases in China: A Longitudinal Study. Vaccines 2021, 9, 191. [Google Scholar] [CrossRef] [PubMed]
- Kreps, S.; Prasad, S.; Brownstein, J.S.; Hswen, Y.; Garibaldi, B.T.; Zhang, B.; Kriner, D.L. Factors Associated with US Adults’ Likelihood of Accepting COVID-19 Vaccination. JAMA Netw. Open 2020, 3, e2025594. [Google Scholar] [CrossRef]
- Al-Qerem, W.; Al Bawab, A.Q.; Hammad, A.; Ling, J.; Alasmari, F. Willingness of the Jordanian Population to Receive a COVID-19 Booster Dose: A Cross-Sectional Study. Vaccines 2022, 10, 410. [Google Scholar] [CrossRef]
- Zhang, K.C.; Fang, Y.; Cao, H.; Chen, H.; Hu, T.; Chen, Y.; Zhou, X.; Wang, Z. Behavioral Intention to Receive a COVID-19 Vaccination Among Chinese Factory Workers: Cross-sectional Online Survey. J. Med. Internet Res. 2021, 23, e24673. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Du, M.; Wang, Y.; Liu, Q.; Yan, W.; Tao, L.; Liu, M.; Liu, J. Assessing acceptability of the fourth dose against COVID-19 among Chinese adults: A population-based survey. Hum. Vaccines Immunother. 2023, 19, 2186108. [Google Scholar] [CrossRef] [PubMed]
- Gaffney, A.; Himmelstein, D.U.; McCormick, D.; Woolhandler, S. Disparities in COVID-19 Vaccine Booster Uptake in the USA: December 2021-February 2022. J. Gen. Intern. Med. 2022, 37, 2918–2921. [Google Scholar] [CrossRef] [PubMed]
- The Joint Prevention and Control Mechanism of the State Council. Notice on Further Optimizing the Implementation of New Crown Pneumonia Epidemic Prevention and Control Measures. 2022. Available online: https://www.gov.cn/xinwen/2022-12/07/content_5730443.htm (accessed on 12 May 2023).
- Leung, K.; Lau, E.H.Y.; Wong, C.K.H.; Leung, G.M.; Wu, J.T. Estimating the transmission dynamics of SARS-CoV-2 Omicron BF.7 in Beijing after adjustment of the zero-COVID policy in November-December 2022. Nat. Med. 2023, 29, 579–582. [Google Scholar] [CrossRef] [PubMed]
- The Joint Prevention and Control Mechanism of the State Council. Notice on the Issuance of the Vaccination Work Plan in Response to the Recent Epidemic of New Coronavirus Infection. 2023. Available online: https://www.gov.cn/lianbo/2023-04/10/content_5750733.htm (accessed on 12 May 2023).
- Tram, K.H.; Saeed, S.; Bradley, C.; Fox, B.; Eshun-Wilson, I.; Mody, A.; Geng, E. Deliberation, Dissent, and Distrust: Understanding Distinct Drivers of Coronavirus Disease 2019 Vaccine Hesitancy in the United States. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2022, 74, 1429–1441. [Google Scholar] [CrossRef]
- Xiao, J.; Cheung, J.K.; Wu, P.; Ni, M.Y.; Cowling, B.J.; Liao, Q. Temporal changes in factors associated with COVID-19 vaccine hesitancy and uptake among adults in Hong Kong: Serial cross-sectional surveys. Lancet Reg. Health. West. Pac. 2022, 23, 100441. [Google Scholar] [CrossRef]
- Bendezu-Quispe, G.; Caira-Chuquineyra, B.; Fernandez-Guzman, D.; Urrunaga-Pastor, D.; Herrera-Añazco, P.; Benites-Zapata, V.A. Factors Associated with Not Receiving a Booster Dose of COVID-19 Vaccine in Peru. Vaccines 2022, 10, 1183. [Google Scholar] [CrossRef]
- Li, C.C.; Wang, W.; Wang, Z.W.; Chen, C.T. Analysis of public appeals for vaccination in Guangzhou’s Government Hotline from 2018 to 2020. Zhonghua Yu Fang Yi Xue Za Zhi [Chin. J. Prev. Med.] 2022, 56, 397–400. [Google Scholar] [CrossRef] [PubMed]
- Van Mol, C. Improving web survey efficiency: The impact of an extra reminder and reminder content on web survey response. Int. J. Soc. Res. Methodol. 2017, 20, 317–327. [Google Scholar] [CrossRef]
- Plummer, F.; Manea, L.; Trepel, D.; McMillan, D. Screening for anxiety disorders with the GAD-7 and GAD-2: A systematic review and diagnostic metaanalysis. Gen. Hosp. Psychiatry 2016, 39, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.; Löwe, B. The Patient Health Questionnaire Somatic, Anxiety, and Depressive Symptom Scales: A systematic review. Gen. Hosp. Psychiatry 2010, 32, 345–359. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Bian, Q.; Zhao, Y.; Li, X.; Wang, W.; Du, J.; Zhang, G.; Zhou, Q.; Zhao, M. Reliability and validity of the Chinese version of the Patient Health Questionnaire (PHQ-9) in the general population. Gen. Hosp. Psychiatry 2014, 36, 539–544. [Google Scholar] [CrossRef]
- Taylor, S.; Landry, C.A.; Paluszek, M.M.; Fergus, T.A.; McKay, D.; Asmundson, G.J.G. Development and initial validation of the COVID Stress Scales. J. Anxiety Disord. 2020, 72, 102232. [Google Scholar] [CrossRef]
- Schmidt, A.; Brose, A.; Kramer, A.C.; Schmiedek, F.; Witthöft, M.; Neubauer, A.B. Dynamic relations among COVID-19-related media exposure and worries during the COVID-19 pandemic. Psychol. Health 2022, 37, 933–947. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, D.B.; Wilding, S.; Ferguson, E.; Cleare, S.; Wetherall, K.; McClelland, H.; Melson, A.J.; Niedzwiedz, C.; O’Carroll, R.E.; Platt, S.; et al. Effects of COVID-19-related worry and rumination on mental health and loneliness during the pandemic: Longitudinal analyses of adults in the UK COVID-19 mental health & wellbeing study. J. Ment. Health 2023, 32, 1122–1133. [Google Scholar] [CrossRef]
- Fairman, R.T.; Weaver, S.R.; Nyman, A.L.; Popova, L.; Massey, Z.; Reynolds, R.M.; Spears, C.A. Disparities among smokers during the COVID-19 pandemic: Examination of COVID-19-related worries by sociodemographic factors in a U.S. Nationally representative survey. Prev. Med. Rep. 2022, 28, 101835. [Google Scholar] [CrossRef]
- Chen, H.; Feng, H.; Liu, Y.; Wu, S.; Li, H.; Zhang, G.; Yang, P.; Zhang, K. Anxiety, depression, insomnia, and PTSD among college students after optimizing the COVID-19 response in China. J. Affect. Disord. 2023, 337, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Taylor, T.K.; Das, R.; Mueller, K.L.; Pransky, G.S.; Harber, P.; McLellan, R.K.; Hartenbaum, N.P.; Behrman, A.J.; Roy, D.R.; Blink, R.C. Safely Returning America to Work Part II: Industry-Specific Guidance. J. Occup. Environ. Med. 2021, 63, e373–e391. [Google Scholar] [CrossRef] [PubMed]
- Chekol Abebe, E.; Tiruneh, G.M.M.; Behaile, T.M.A.; Asmamaw Dejenie, T.; Mengie Ayele, T.; Tadele Admasu, F.; Tilahun Muche, Z.; Asmare Adela, G. Mutational Pattern, Impacts and Potential Preventive Strategies of Omicron SARS-CoV-2 Variant Infection. Infect. Drug Resist. 2022, 15, 1871–1887. [Google Scholar] [CrossRef]
- Ahmed, N.; Abbasi, M.S.; Bin-Shuwaish, M.S.; Al-Aali, K.A.; Al-Hamdan, R.S.; Abduljabbar, T.; Vohra, F. Knowledge attitude and practice of safety measures for corona virus disease—19 (COVID-19) among general population. Niger. J. Clin. Pract. 2021, 24, 1037–1043. [Google Scholar] [CrossRef] [PubMed]
- Lewis, N.; Martinez, L.S. Information Seeking as A Predictor of Risk Behavior: Testing A Behavior and Risk Information Engagement Model (BRIE). J. Health Commun. 2020, 25, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Record, R.A.; Silberman, W.R.; Santiago, J.E.; Ham, T. I Sought It, I Reddit: Examining Health Information Engagement Behaviors among Reddit Users. J. Health Commun. 2018, 23, 470–476. [Google Scholar] [CrossRef]
- Bosnjak, M.; Ajzen, I.; Schmidt, P. The Theory of Planned Behavior: Selected Recent Advances and Applications. Eur. J. Psychol. 2020, 16, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Bobrovitz, N.; Ware, H.; Ma, X.; Li, Z.; Hosseini, R.; Cao, C.; Selemon, A.; Whelan, M.; Premji, Z.; Issa, H.; et al. Protective effectiveness of previous SARS-CoV-2 infection and hybrid immunity against the omicron variant and severe disease: A systematic review and meta-regression. Lancet. Infect. Dis. 2023, 23, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Liew, F.; Talwar, S.; Cross, A.; Willett, B.J.; Scott, S.; Logan, N.; Siggins, M.K.; Swieboda, D.; Sidhu, J.K.; Efstathiou, C.; et al. SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination. EBioMedicine 2023, 87, 104402. [Google Scholar] [CrossRef]
- The Joint Prevention and Control Mechanism of the State Council. Notice on the Issuance of the Novel Coronavirus Infection Prevention and Control Plan (10th Edition). 2023. Available online: https://www.gov.cn/xinwen/2023-01/07/content_5735448.htm (accessed on 15 May 2023).
- Meacci, L.; Primicerio, M. Pandemic fatigue impact on COVID-19 spread: A mathematical modelling answer to the Italian scenario. Results Phys. 2021, 31, 104895. [Google Scholar] [CrossRef]
- The Joint Prevention and Control Mechanism of the State Council. Notice on the Issuance of the Implementation Plan for the Second Dose of Booster Immunization of the New Coronavirus Vaccine. 2022. Available online: https://www.gov.cn/xinwen/2022-12/14/content_5731899.htm (accessed on 15 May 2023).
- Bendau, A.; Plag, J.; Petzold, M.B.; Ströhle, A. COVID-19 vaccine hesitancy and related fears and anxiety. Int. Immunopharmacol. 2021, 97, 107724. [Google Scholar] [CrossRef] [PubMed]
- Sekizawa, Y.; Hashimoto, S.; Denda, K.; Ochi, S.; So, M. Association between COVID-19 vaccine hesitancy and generalized trust, depression, generalized anxiety, and fear of COVID-19. BMC Public Health 2022, 22, 126. [Google Scholar] [CrossRef] [PubMed]
- Urrunaga-Pastor, D.; Fernandez-Guzman, D.; Caira-Chuquineyra, B.; Herrera-Añazco, P.; Benites-Zapata, V.A.; Bendezu-Quispe, G. Prevalence and factors associated with not receiving the booster dose of the COVID-19 vaccine in adults in Latin America and the Caribbean. Travel Med. Infect. Dis. 2022, 50, 102409. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Dai, H.; Wang, P.; Zhang, X.; Cui, D.; Huang, Y.; Zhang, J.; Xiang, T. Will People Accept a Third Booster Dose of the COVID-19 Vaccine? A Cross-Sectional Study in China. Front. Public Health 2022, 10, 914950. [Google Scholar] [CrossRef] [PubMed]
- Di Schiena, R.; Luminet, O.; Chang, B.; Philippot, P. Why are Depressive Individuals Indecisive? Different Modes of Rumination Account for Indecision in Non-clinical Depression. Cogn. Ther. Res. 2013, 37, 713–724. [Google Scholar] [CrossRef]
- Li, W.; Yang, Y.; Liu, Z.H.; Zhao, Y.J.; Zhang, Q.; Zhang, L.; Cheung, T.; Xiang, Y.T. Progression of Mental Health Services during the COVID-19 Outbreak in China. Int. J. Biol. Sci. 2020, 16, 1732–1738. [Google Scholar] [CrossRef] [PubMed]
- Galanis, P.; Vraka, I.; Katsiroumpa, A.; Siskou, O.; Konstantakopoulou, O.; Katsoulas, T.; Mariolis-Sapsakos, T.; Kaitelidou, D. Predictors of second COVID-19 booster dose or new COVID-19 vaccine hesitancy among nurses: A cross-sectional study. J. Clin. Nurs. 2023, 32, 3943–3953. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Qin, C.; Du, M.; Liu, Q.; Tao, L.; Liu, J. The association between social media use and hesitancy toward COVID-19 vaccine booster shots in China: A web-based cross-sectional survey. Hum. Vaccines Immunother. 2022, 18, 2065167. [Google Scholar] [CrossRef]
- Lazarus, J.V.; Romero, D.; Kopka, C.J.; Karim, S.A.; Abu-Raddad, L.J.; Almeida, G.; Baptista-Leite, R.; Barocas, J.A.; Barreto, M.L.; Bar-Yam, Y.; et al. A multinational Delphi consensus to end the COVID-19 public health threat. Nature 2022, 611, 332–345. [Google Scholar] [CrossRef]
- Limbu, Y.B.; Huhmann, B.A. Why Some People Are Hesitant to Receive COVID-19 Boosters: A Systematic Review. Trop. Med. Infect. Dis. 2023, 8, 159. [Google Scholar] [CrossRef]
- Fisher, W.A.; Fisher, J.D.; Harman, J. The Information-Motivation-Behavioral Skills Model: A General Social Psychological Approach to Understanding and Promoting Health Behavior. Soc. Psychol. Found. Health Illn. 2003, 82–106. [Google Scholar] [CrossRef]
- Zampetakis, L.A.; Melas, C. The health belief model predicts vaccination intentions against COVID-19: A survey experiment approach. Appl. Psychol. Health Well-Being 2021, 13, 469–484. [Google Scholar] [CrossRef] [PubMed]
- Dobrowolska, K.; Brzdęk, M.; Zarębska-Michaluk, D.; Rzymski, P.; Rogalska, M.; Moniuszko-Malinowska, A.; Szymanek-Pasternak, A.; Jaroszewicz, J.; Dutkiewicz, E.; Kowalska, J.; et al. Differences between the course of SARS-CoV-2 infections in the periods of the Delta and Omicron variant dominance in Poland. Pol. Arch. Intern. Med. 2023, 133. [Google Scholar] [CrossRef] [PubMed]
- Veneti, L.; Bøås, H.; Bråthen Kristoffersen, A.; Stålcrantz, J.; Bragstad, K.; Hungnes, O.; Storm, M.L.; Aasand, N.; Rø, G.; Starrfelt, J.; et al. Reduced risk of hospitalisation among reported COVID-19 cases infected with the SARS-CoV-2 Omicron BA.1 variant compared with the Delta variant, Norway, December 2021 to January 2022. Euro Surveill. Bull. Eur. Sur Les Mal. Transm. Eur. Commun. Dis. Bull. 2022, 27, 2200077. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Overall | 13 December 2022 | 20 December 2022 | 27 December 2022 | 6 January 2023 | 15 January 2023 | 8 February 2023 | 9 March 2023 | 20 April 2023 |
---|---|---|---|---|---|---|---|---|---|
Number of respondents | 8048 | 1382 | 1570 | 1456 | 801 | 913 | 718 | 806 | 402 |
Sociodemographic characteristics | |||||||||
Sex (Female) | 3495 (43.4) | 611 (44.2) | 668 (42.5) | 666 (45.7) | 330 (41.2) | 420 (46.0) | 290 (40.4) | 336 (41.7) | 174 (43.3) |
Age (mean ± SD) | 36.3 ± 11.6 | 35.7 ± 11.7 | 36.4 ± 11.0 | 36.5 ± 10.8 | 37.0 ± 11.7 | 36.6 ± 11.8 | 36.9 ± 12.6 | 34.9 ± 11.5 | 37.3 ± 13.0 |
Age group | |||||||||
18- | 1550 (19.3) | 293 (21.2) | 284 (18.1) | 248 (17.0) | 133 (16.6) | 180 (19.7) | 148 (20.6) | 175 (21.7) | 89 (22.1) |
26- | 2739 (34.0) | 471 (34.1) | 524 (33.4) | 499 (34.3) | 286 (35.7) | 303 (33.2) | 235 (32.7) | 307 (38.1) | 114 (28.4) |
36- | 1901 (23.6) | 320 (23.2) | 409 (26.1) | 379 (26.0) | 183 (22.8) | 213 (23.3) | 137 (19.1) | 167 (20.7) | 93 (23.1) |
45- | 1536 (19.1) | 241 (17.4) | 298 (19.0) | 294 (20.2) | 162 (20.2) | 177 (19.4) | 158 (22.0) | 126 (15.6) | 80 (19.9) |
60- | 322 (4.0) | 57 (4.1) | 55 (3.5) | 36 (2.5) | 37 (4.6) | 40 (4.4) | 40 (5.6) | 31 (3.8) | 26 (6.5) |
Residential area (Urban) | 3668 (45.6) | 596 (43.1) | 678 (43.2) | 651 (44.7) | 423 (52.8) | 452 (49.5) | 365 (50.8) | 344 (42.7) | 159 (39.6) |
Marital status | |||||||||
Unmarried | 3179 (39.5) | 585 (42.3) | 580 (36.9) | 550 (37.8) | 304 (38.0) | 348 (38.1) | 286 (39.8) | 359 (44.5) | 167 (41.5) |
Married | 4365 (54.2) | 713 (51.6) | 890 (56.7) | 811 (55.7) | 438 (54.7) | 505 (55.3) | 390 (54.3) | 407 (50.5) | 211 (52.5) |
Divorced/widowed/other | 504 (6.3) | 84 (6.1) | 100 (6.4) | 95 (6.5) | 59 (7.4) | 60 (6.6) | 42 (5.8) | 40 (5.0) | 24 (6.0) |
Monthly income (CNY) | |||||||||
<2000 (<275 USD) | 1514 (18.8) | 261 (18.9) | 320 (20.4) | 282 (19.4) | 148 (18.5) | 162 (17.7) | 124 (17.3) | 140 (17.4) | 77 (19.2) |
2001- (275 USD-) | 2172 (27.0) | 414 (30.0) | 468 (29.8) | 366 (25.1) | 205 (25.6) | 238 (26.1) | 187 (26.0) | 206 (25.6) | 88 (21.9) |
5001- (685 USD-) | 2686 (33.4) | 433 (31.3) | 513 (32.7) | 499 (34.3) | 281 (35.1) | 308 (33.7) | 248 (34.5) | 267 (33.1) | 137 (34.1) |
10,001 (1370 USD-) | 1676 (20.8) | 274 (19.8) | 269 (17.1) | 309 (21.2) | 167 (20.8) | 205 (22.5) | 159 (22.1) | 193 (23.9) | 100 (24.9) |
Health-related characteristics | |||||||||
Had chronic disease (Yes) | 1105 (13.7) | 175 (12.7) | 204 (13.0) | 197 (13.5) | 105 (13.1) | 151 (16.5) | 104 (14.5) | 115 (14.3) | 54 (13.4) |
Ever infected with COVID-19 (Yes) | 4832 (60.0) | 296 (21.4) | 665 (42.4) | 947 (65.0) | 638 (79.7) | 746 (81.7) | 580 (80.8) | 660 (81.9) | 300 (74.6) |
Psychological characteristics | |||||||||
Anxiety (GAD-7, score ≥ 10) | 2038 (25.3) | 368 (26.6) | 453 (28.9) | 453 (31.1) | 207 (25.8) | 206 (22.6) | 131 (18.2) | 162 (20.1) | 58 (14.4) |
Depression (PHQ-9, score ≥ 10) | 3005 (37.3) | 494 (35.7) | 645 (41.1) | 675 (46.4) | 337 (42.1) | 334 (36.6) | 196 (27.3) | 232 (28.8) | 92 (22.9) |
Scores of worries about COVID-19 | 16.0 ± 5.9 | 17.0 ± 5.5 | 17.5 ± 5.6 | 17.6 ± 5.7 | 16.6 ± 5.4 | 16.0 ± 5.3 | 13.1 ± 5.4 | 11.8 ± 5.5 | 12.3 ± 5.2 |
Behavioral characteristics | |||||||||
COVID-19-related preventive behavior | 10.3 ± 2.0 | 10.8 ± 1.6 | 10.8 ± 1.6 | 10.8 ± 1.6 | 10.4 ± 1.9 | 10.2 ± 1.9 | 9.4 ± 2.2 | 8.7 ± 2.5 | 8.7 ± 2.4 |
COVID-19-related information engagement behavior (High engagement) | 6880 (85.5) | 1281 (92.7) | 1442 (91.8) | 1309 (89.9) | 746 (93.1) | 818 (89.6) | 586 (81.6) | 553 (68.6) | 145 (36.1) |
Primary outcome | |||||||||
An intention to receive the second booster of COVID-19 vaccine (Yes) | 5810 (72.2) | 1126 (81.5) | 1238 (78.9) | 1130 (77.6) | 567 (70.8) | 590 (64.6) | 461 (64.2) | 488 (60.5) | 210 (52.2) |
Intention to Receive the Second Booster COVID-19 Vaccination (n, %) | p-Value | ||
---|---|---|---|
Characteristics | No (n = 2238) | Yes (n = 5810) | |
Sociodemographic characteristics | |||
Sex (Female) | 0.102 | ||
Female | 1005 (44.9) | 2490 (42.9) | |
Age (mean ± SD) | 35.3 ± 11.2 | 36.7 ± 11.7 | <0.001 *** |
Age group | |||
18- | 449 (20.1) | 1101 (19.0) | <0.001 *** |
26- | 855 (38.2) | 1884 (32.4) | |
36- | 503 (22.5) | 1398 (24.1) | |
45- | 347 (15.5) | 1189 (20.5) | |
60 or above | 84 (3.8) | 238 (4.1) | |
Residence (Urban) | 1023 (45.7) | 2645 (45.5) | 0.901 |
Marital status | |||
Unmarried | 927 (41.4) | 2252 (38.8) | 0.032 * |
Married | 1189 (53.1) | 3176 (54.7) | |
Divorced/widowed or other | 122 (5.5) | 382 (6.6) | |
Monthly income (CNY) | |||
<2000 (<275 USD) | 446 (19.9) | 1068 (18.4) | 0.001 ** |
2001- (275 USD-) | 574 (25.6) | 1598 (27.5) | |
5001- (685 USD-) | 701 (31.3) | 1985 (34.2) | |
10,001 (1370 USD-) | 517 (23.1) | 1159 (19.9) | |
Health characteristics | |||
Chronic disease (Yes) | 291 (13.0) | 814 (14.0) | 0.254 |
Ever infected with COVID-19 (Yes) | 1501 (67.1) | 3331 (57.3) | <0.001 *** |
Psychological characteristics | |||
Anxiety (GAD-7, score ≥ 10) | 671 (30.0) | 1367 (23.5) | <0.001 *** |
Depression (PHQ-9, score ≥ 10) | 963 (43.0) | 2042 (35.1) | <0.001 *** |
Scores of worries about COVID-19 (mean ± SD) | 15.7 ± 6.1 | 16.1 ± 5.8 | 0.232 |
Behavioral characteristics | |||
COVID-19-related preventive behavior (mean ± SD) | 9.7 ± 2.3 | 10.5 ± 1.9 | <0.001 *** |
COVID-19-related information engagement behavior (High engagement) | 1707 (76.3) | 5173 (89.0) | <0.001 *** |
Characteristics | Univariate Analysis | Adjusted Analysis | Multivariate Analysis | |||
---|---|---|---|---|---|---|
ORu (95%CI) | p-Value | ORa (95%CI) | p-Value | ORm (95%CI) | p-Value | |
Sociodemographic characteristics | ||||||
Sex (ref: male) | ||||||
Female | 0.92 (0.83, 1.02) | 0.096 | N.A. | N.A. | ||
Age group (Ref: 18-) | ||||||
26- | 0.90 (0.78, 1.03) | 0.124 | N.A. | N.S. | ||
36- | 1.13 (0.98, 1.32) | 0.101 | N.S. | |||
45- | 1.40 (1.19, 1.64) | <0.001 *** | N.S. | |||
60 or above | 1.16 (0.88, 1.52) | 0.298 | N.S. | |||
Residential area (Ref: Suburb) | N.A. | N.A. | ||||
Urban | 0.99 (0.90, 1.10) | 0.881 | ||||
Marital status (Ref: Unmarried) | N.A. | |||||
Married | 1.10 (0.99, 1.22) | 0.067 | N.S. | |||
Divorced/widowed or other | 1.29 (1.04, 1.61) | 0.022 * | N.S. | |||
Month income (Ref: <2000 CHY/275USD) | N.A. | |||||
2001- (275 USD-) | 1.16 (1.00, 1.35) | 0.043 * | N.S. | |||
5001- (685 USD-) | 1.18 (1.03, 1.36) | 0.019 * | N.S. | |||
10,001 (1370 USD-) | 0.94 (0.80, 1.09) | 0.394 | N.S. | |||
Health characteristics | ||||||
Chronic disease (Ref: No) | ||||||
Yes | 1.09 (0.95, 1.26) | 0.239 | 0.99 (0.85, 1.15) | 0.882 | N.A. | |
Ever infected with COVID-19 (Ref: Yes) | ||||||
Uninfected/not sure | 1.52 (1.37, 1.68) | <0.001 *** | 1.49 (1.35, 1.66) | <0.001 *** | N.S. | |
Psychological characteristics | ||||||
Anxiety (Ref: No) | ||||||
Yes | 0.72 (0.65, 0.80) | <0.001 *** | 0.74 (0.66, 0.83) | <0.001 *** | 0.78 (0.67, 0.90) | <0.001 *** |
Depression (Ref: No) | ||||||
Yes | 0.72 (0.65, 0.79) | <0.001 *** | 0.74 (0.67, 0.82) | <0.001 *** | 0.76 (0.67, 0.87) | <0.001 *** |
Scores of worries about COVID-19 | 1.01 (1.00, 1.02) | 0.009 ** | 1.01 (1.00, 1.02) | 0.001 ** | N.S. | |
Behavioral characteristics | ||||||
COVID-19-related preventive behavior | 1.18 (1.16, 1.21) | <0.001 *** | 1.18 (1.15, 1.21) | <0.001 *** | 1.09 (1.06, 1.12) | <0.001 *** |
COVID-19-related information engagement behavior (Ref: low engagement) | ||||||
High engagement | 2.53 (2.22, 2.87) | <0.001 *** | 2.45 (2.16, 2.79) | <0.001 *** | 1.84 (1.59, 2.12) | <0.001 *** |
Survey date (Ref: 13 December 2022) | ||||||
20 December 2022 | 0.85 (0.71, 1.02) | 0.075 | 0.84 (0.70, 1.01) | 0.061 | 0.86 (0.72, 1.03) | 0.101 |
27 December 2022 | 0.79 (0.66, 0.95) | 0.011 * | 0.78 (0.65, 0.94) | 0.009 ** | 0.83 (0.69, 1.00) | 0.053 |
6 January 2023 | 0.55 (0.45, 0.68) | <0.001 *** | 0.54 (0.44, 0.67) | <0.001 *** | 0.57 (0.46, 0.70) | <0.001 *** |
15 January 2023 | 0.42 (0.34, 0.50) | <0.001 *** | 0.41 (0.34, 0.50) | <0.001 *** | 0.43 (0.36, 0.53) | <0.001 *** |
8 February 2023 | 0.41 (0.33, 0.50) | <0.001 *** | 0.40 (0.32, 0.49) | <0.001 *** | 0.46 (0.38, 0.57) | <0.001 *** |
9 March 2023 | 0.35 (0.29, 0.42) | <0.001 *** | 0.35 (0.29, 0.43) | <0.001 *** | 0.46 (0.37, 0.57) | <0.001 *** |
20 April 2023 | 0.25 (0.20, 0.32) | <0.001 *** | 0.24 (0.19, 0.31) | <0.001 *** | 0.38 (0.30, 0.50) | <0.001 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, L.; Wang, X.; Yang, Z.; Tang, Y.; Wang, Z.; Ma, Y.; Li, J.; Zhang, Z.; Gu, J. Trends in Intention to Take the Second Booster COVID-19 Vaccination and Associated Factors in China: Serial Cross-Sectional Surveys. Vaccines 2024, 12, 502. https://doi.org/10.3390/vaccines12050502
Kong L, Wang X, Yang Z, Tang Y, Wang Z, Ma Y, Li J, Zhang Z, Gu J. Trends in Intention to Take the Second Booster COVID-19 Vaccination and Associated Factors in China: Serial Cross-Sectional Surveys. Vaccines. 2024; 12(5):502. https://doi.org/10.3390/vaccines12050502
Chicago/Turabian StyleKong, Lingyu, Xu Wang, Ziying Yang, Yihan Tang, Zhiwei Wang, Yu Ma, Jinghua Li, Zhoubin Zhang, and Jing Gu. 2024. "Trends in Intention to Take the Second Booster COVID-19 Vaccination and Associated Factors in China: Serial Cross-Sectional Surveys" Vaccines 12, no. 5: 502. https://doi.org/10.3390/vaccines12050502
APA StyleKong, L., Wang, X., Yang, Z., Tang, Y., Wang, Z., Ma, Y., Li, J., Zhang, Z., & Gu, J. (2024). Trends in Intention to Take the Second Booster COVID-19 Vaccination and Associated Factors in China: Serial Cross-Sectional Surveys. Vaccines, 12(5), 502. https://doi.org/10.3390/vaccines12050502