Immunogenicity of Recombinant Zoster Vaccine: A Systematic Review, Meta-Analysis, and Meta-Regression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Search Strategy and Selection Criteria
2.3. Data Analysis
3. Results
3.1. Literature Search
3.2. Humoral Immunity
3.3. Geometric Mean Concentration
3.4. Antibody Avidity
3.5. Cell-Mediated Immunity
3.6. Persistence of Immunity
3.7. Risk-of-Bias Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cohen, J.I. Herpes Zoster. N. Engl. J. Med. 2013, 369, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Sampathkumar, P.; Drage, L.A.; Martin, D.P. Herpes Zoster (Shingles) and Postherpetic Neuralgia. Mayo Clin. Proc. 2009, 84, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention—National Center for Immunization and Respiratory Diseases, Division of Viral Diseases. Shingles (Herpes Zoster). 2023. Available online: https://www.cdc.gov/shingles/hcp/clinical-overview.html (accessed on 5 May 2024).
- Thomas, S.L.; Hall, A.J. What Does Epidemiology Tell Us about Risk Factors for Herpes Zoster? Lancet Infect. Dis. 2004, 4, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Dagnew, A.F.; Vink, P.; Drame, M.; Willer, D.O.; Salaun, B.; Schuind, A.E. Immune Responses to the Adjuvanted Recombinant Zoster Vaccine in Immunocompromised Adults: A Comprehensive Overview. Hum. Vaccines Immunother. 2021, 17, 4132–4143. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, A.; Levin, M.J. VZV T Cell-Mediated Immunity. In Varicella-Zoster Virus; Abendroth, A., Arvin, A.M., Moffat, J.F., Eds.; Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 2010; Volume 342, pp. 341–357. [Google Scholar] [CrossRef]
- Sullivan, N.L.; Reuter-Monslow, M.A.; Sei, J.; Durr, E.; Davis, C.W.; Chang, C.; McCausland, M.; Wieland, A.; Krah, D.; Rouphael, N.; et al. Breadth and Functionality of Varicella-Zoster Virus Glycoprotein-Specific Antibodies Identified after Zostavax Vaccination in Humans. J. Virol. 2018, 92, e00269-18. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Levin, M.J.; Canniff, J.; Johnson, M.; Schmid, D.S.; Weinberg, A. Development of Antibody-Dependent Cellular Cytotoxicity in Response to Recombinant and Live-Attenuated Herpes Zoster Vaccines. Npj Vaccines 2022, 7, 123. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Ihara, T.; Grose, C.; Starr, S. Human Leukocytes Kill Varicella-Zoster Virus-Infected Fibroblasts in the Presence of Murine Monoclonal Antibodies to Virus-Specific Glycoproteins. J. Virol. 1985, 54, 98–103. [Google Scholar] [CrossRef]
- Harbecke, R.; Cohen, J.I.; Oxman, M.N. Herpes Zoster Vaccines. J. Infect. Dis. 2021, 224 (Suppl. S4), S429–S442. [Google Scholar] [CrossRef] [PubMed]
- Malavige, G.N.; Jones, L.; Black, A.P.; Ogg, G.S. Varicella Zoster Virus Glycoprotein E-Specific CD4+ T Cells Show Evidence of Recent Activation and Effector Differentiation, Consistent with Frequent Exposure to Replicative Cycle Antigens in Healthy Immune Donors. Clin. Exp. Immunol. 2008, 152, 522–531. [Google Scholar] [CrossRef]
- Didierlaurent, A.M.; Collignon, C.; Bourguignon, P.; Wouters, S.; Fierens, K.; Fochesato, M.; Dendouga, N.; Langlet, C.; Malissen, B.; Lambrecht, B.N.; et al. Enhancement of Adaptive Immunity by the Human Vaccine Adjuvant AS01 Depends on Activated Dendritic Cells. J. Immunol. 2014, 193, 1920–1930. [Google Scholar] [CrossRef]
- Vandepapelière, P.; Horsmans, Y.; Moris, P.; Van Mechelen, M.; Janssens, M.; Koutsoukos, M.; Van Belle, P.; Clement, F.; Hanon, E.; Wettendorff, M.; et al. Vaccine Adjuvant Systems Containing Monophosphoryl Lipid A and QS21 Induce Strong and Persistent Humoral and T Cell Responses against Hepatitis B Surface Antigen in Healthy Adult Volunteers. Vaccine 2008, 26, 1375–1386. [Google Scholar] [CrossRef] [PubMed]
- Lal, H.; Cunningham, A.L.; Godeaux, O.; Chlibek, R.; Diez-Domingo, J.; Hwang, S.-J.; Levin, M.J.; McElhaney, J.E.; Poder, A.; Puig-Barberà, J.; et al. Efficacy of an Adjuvanted Herpes Zoster Subunit Vaccine in Older Adults. N. Engl. J. Med. 2015, 372, 2087–2096. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, A.L.; Lal, H.; Kovac, M.; Chlibek, R.; Hwang, S.-J.; Díez-Domingo, J.; Godeaux, O.; Levin, M.J.; McElhaney, J.E.; Puig-Barberà, J.; et al. Efficacy of the Herpes Zoster Subunit Vaccine in Adults 70 Years of Age or Older. N. Engl. J. Med. 2016, 375, 1019–1032. [Google Scholar] [CrossRef] [PubMed]
- Curran, D.; Kim, J.H.; Matthews, S.; Dessart, C.; Levin, M.J.; Oostvogels, L.; Riley, M.E.; Schmader, K.E.; Cunningham, A.L.; McNeil, S.A.; et al. Recombinant Zoster Vaccine Is Efficacious and Safe in Frail Individuals. J. Am. Geriatr. Soc. 2021, 69, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Strezova, A.; Diez-Domingo, J.; Al Shawafi, K.; Tinoco, J.C.; Shi, M.; Pirrotta, P.; Mwakingwe-Omari, A.; Zoster-049 Study Group; Adams, M.; Ahonen, A.; et al. Long-Term Protection Against Herpes Zoster by the Adjuvanted Recombinant Zoster Vaccine: Interim Efficacy, Immunogenicity, and Safety Results up to 10 Years After Initial Vaccination. Open Forum Infect. Dis. 2022, 9, ofac485. [Google Scholar] [CrossRef]
- Cunningham, A.L.; Heineman, T.C.; Lal, H.; Godeaux, O.; Chlibek, R.; Hwang, S.-J.; McElhaney, J.E.; Vesikari, T.; Andrews, C.; Choi, W.S.; et al. Immune Responses to a Recombinant Glycoprotein E Herpes Zoster Vaccine in Adults Aged 50 Years or Older. J. Infect. Dis. 2018, 217, 1750–1760. [Google Scholar] [CrossRef] [PubMed]
- Stadtmauer, E.A.; Sullivan, K.M.; El Idrissi, M.; Salaun, B.; Alonso Alonso, A.; Andreadis, C.; Anttila, V.-J.; Bloor, A.J.; Broady, R.; Cellini, C.; et al. Adjuvanted Recombinant Zoster Vaccine in Adult Autologous Stem Cell Transplant Recipients: Polyfunctional Immune Responses and Lessons for Clinical Practice. Hum. Vaccines Immunother. 2021, 17, 4144–4154. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, A.; Scott Schmid, D.; Leung, J.; Johnson, M.J.; Miao, C.; Levin, M.J. Predictors of 5-Year Persistence of Antibody Responses to Zoster Vaccines. J. Infect. Dis. 2023, 228, 1367–1374. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, T.F.; Volpe, S.; Catteau, G.; Chlibek, R.; David, M.P.; Richardus, J.H.; Lal, H.; Oostvogels, L.; Pauksens, K.; Ravault, S.; et al. Persistence of Immune Response to an Adjuvanted Varicella-Zoster Virus Subunit Vaccine for up to Year Nine in Older Adults. Hum. Vaccines Immunother. 2018, 14, 1370–1377. [Google Scholar] [CrossRef]
- Bastidas, A.; De La Serna, J.; El Idrissi, M.; Oostvogels, L.; Quittet, P.; López-Jiménez, J.; Vural, F.; Pohlreich, D.; Zuckerman, T.; Issa, N.C.; et al. Effect of Recombinant Zoster Vaccine on Incidence of Herpes Zoster after Autologous Stem Cell Transplantation: A Randomized Clinical Trial. JAMA 2019, 322, 123. [Google Scholar] [CrossRef]
- Pleyer, C.; Laing, K.J.; Ali, M.A.; McClurkan, C.L.; Soto, S.; Ahn, I.E.; Nierman, P.; Maddux, E.; Lotter, J.; Superata, J.; et al. BTK Inhibitors Impair Humoral and Cellular Responses to Recombinant Zoster Vaccine in CLL. Blood Adv. 2022, 6, 1732–1740. [Google Scholar] [CrossRef]
- Hirzel, C.; L’Huillier, A.G.; Ferreira, V.H.; Marinelli, T.; Ku, T.; Ierullo, M.; Miao, C.; Schmid, D.S.; Juvet, S.; Humar, A.; et al. Safety and Immunogenicity of Adjuvanted Recombinant Subunit Herpes Zoster Vaccine in Lung Transplant Recipients. Am. J. Transplant. 2021, 21, 2246–2253. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- PROSPERO. Immunogenicity of Recombinant Zoster Vaccine: A Systematic Review, Meta-Analysis and Meta-Regression [CRD42023459621]. Available online: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=459621 (accessed on 13 September 2023).
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A Revised Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Joanna Briggs Institute. Critical Appraisal Tools for Use in JBI Systematic Reviews: Checklist for Non-Randomized Experimental Studies. Available online: https://joannabriggs.org/critical-appraisal-tools (accessed on 18 December 2023).
- Deeks, J.; Higgins, J.; Altman, D. Analysing Data and Undertaking Meta-Analyses. In Cochrane Handbook for Systematic Reviews of Interventions; Version 6.4; The Cochrane Collaboration: London, UK, 2023. [Google Scholar]
- Schmid, D.S.; Miao, C.; Leung, J.; Johnson, M.; Weinberg, A.; Levin, M.J. Comparative Antibody Responses to the Live-Attenuated and Recombinant Herpes Zoster Vaccines. J. Virol. 2021, 95, e00240-21. [Google Scholar] [CrossRef]
- Moris, P.; Van Der Most, R.; Leroux-Roels, I.; Clement, F.; Dramé, M.; Hanon, E.; Leroux-Roels, G.G.; Van Mechelen, M. H5N1 Influenza Vaccine Formulated with AS03A Induces Strong Cross-Reactive and Polyfunctional CD4 T-Cell Responses. J. Clin. Immunol. 2011, 31, 443–454. [Google Scholar] [CrossRef]
- Wang, N. How to Conduct a Meta-Analysis of Proportions in R: A Comprehensive Tutorial. J. Behav. Data. Sci. 2023, 3, 64–126. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in Meta-Analysis Detected by a Simple, Graphical Test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Schwarzer, G.; Carpenter, J.R.; Rücker, G. Meta-Analysis with R; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Harrer, M.; Cuijpers, P.; Furukawa, T.A.; Ebert, D.D. Doing Meta-Analysis with R: A Hands-on Guide, 1st ed.; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- R Foundation for Statistical Computing. Available online: www.R-project.org (accessed on 8 January 2024).
- Muchtar, E.; Koehler, A.B.; Johnson, M.J.; Rabe, K.G.; Ding, W.; Call, T.G.; Leis, J.F.; Kenderian, S.S.; Hayman, S.R.; Wang, Y.; et al. Humoral and Cellular Immune Responses to Recombinant Herpes Zoster Vaccine in Patients with Chronic Lymphocytic Leukemia and Monoclonal B Cell Lymphocytosis. Am. J. Hematol. 2022, 97, 90–98. [Google Scholar] [CrossRef]
- Zent, C.S.; Brady, M.T.; Delage, C.; Strawderman, M.; Laniewski, N.; Contant, P.N.; Kanagaiah, P.; Sangster, M.Y.; Barr, P.M.; Chu, C.C.; et al. Short Term Results of Vaccination with Adjuvanted Recombinant Varicella Zoster Glycoprotein E during Initial BTK Inhibitor Therapy for CLL or Lymphoplasmacytic Lymphoma. Leukemia 2021, 35, 1788–1791. [Google Scholar] [CrossRef]
- Chlibek, R.; Bayas, J.M.; Collins, H.; De La Pinta, M.L.R.; Ledent, E.; Mols, J.F.; Heineman, T.C. Safety and Immunogenicity of an AS01-Adjuvanted Varicella-Zoster Virus Subunit Candidate Vaccine Against Herpes Zoster in Adults >=50 Years of Age. J. Infect. Dis. 2013, 208, 1953–1961. [Google Scholar] [CrossRef]
- Godeaux, O.; Kovac, M.; Shu, D.; Grupping, K.; Campora, L.; Douha, M.; Heineman, T.C.; Lal, H. Immunogenicity and Safety of an Adjuvanted Herpes Zoster Subunit Candidate Vaccine in Adults ≥ 50 Years of Age with a Prior History of Herpes Zoster: A Phase III, Non-Randomized, Open-Label Clinical Trial. Hum. Vaccines Immunother. 2017, 13, 1051–1058. [Google Scholar] [CrossRef]
- Naficy, A.; Kuxhausen, A.; Pirrotta, P.; Leav, B.; Miller, J.; Anteyi, K.; Danier, J.; Breuer, T.; Mwakingwe-Omari, A. No Immunological Interference or Safety Concerns When Adjuvanted Recombinant Zoster Vaccine Is Coadministered with a Coronavirus Disease 2019 mRNA-1273 Booster Vaccine in Adults Aged 50 Years and Older: A Randomized Trial. Clin. Infect. Dis. 2023, 77, 1238–1246. [Google Scholar] [CrossRef]
- Min, J.-Y.; Mwakingwe-Omari, A.; Riley, M.; Molo, L.Y.; Soni, J.; Girard, G.; Danier, J. The Adjuvanted Recombinant Zoster Vaccine Co-Administered with the 13-Valent Pneumococcal Conjugate Vaccine in Adults Aged ≥ 50 Years: A Randomized Trial. J. Infect. 2022, 84, 490–498. [Google Scholar] [CrossRef]
- Maréchal, C.; Lal, H.; Poder, A.; Ferguson, M.; Enweonye, I.; Heineman, T.C.; Hervé, C.; Rheault, P.; Talli, J.; Wauters, D.; et al. Immunogenicity and Safety of the Adjuvanted Recombinant Zoster Vaccine Co-Administered with the 23-Valent Pneumococcal Polysaccharide Vaccine in Adults ≥50 Years of Age: A Randomized Trial. Vaccine 2018, 36, 4278–4286. [Google Scholar] [CrossRef]
- Strezova, A.; Lal, H.; Enweonye, I.; Campora, L.; Beukelaers, P.; Segall, N.; Heineman, T.C.; Schuind, A.E.; Oostvogels, L. The Adjuvanted Recombinant Zoster Vaccine Co-Administered with a Tetanus, Diphtheria and Pertussis Vaccine in Adults Aged ≥ 50 Years: A Randomized Trial. Vaccine 2019, 37, 5877–5885. [Google Scholar] [CrossRef]
- Schwarz, T.F.; Aggarwal, N.; Moeckesch, B.; Schenkenberger, I.; Claeys, C.; Douha, M.; Godeaux, O.; Grupping, K.; Heineman, T.C.; Fauqued, M.L.; et al. Immunogenicity and Safety of an Adjuvanted Herpes Zoster Subunit Vaccine Coadministered with Seasonal Influenza Vaccine in Adults Aged 50 Years or Older. J. Infect. Dis. 2017, 216, 1352–1361. [Google Scholar] [CrossRef]
- Lal, H.; Poder, A.; Campora, L.; Geeraerts, B.; Oostvogels, L.; Vanden Abeele, C.; Heineman, T.C. Immunogenicity, Reactogenicity and Safety of 2 Doses of an Adjuvanted Herpes Zoster Subunit Vaccine Administered 2, 6 or 12 Months Apart in Older Adults: Results of a Phase III, Randomized, Open-Label, Multicenter Study. Vaccine 2018, 36, 148–154. [Google Scholar] [CrossRef]
- Grupping, K.; Campora, L.; Douha, M.; Heineman, T.C.; Klein, N.P.; Lal, H.; Peterson, J.; Vastiau, I.; Oostvogels, L. Immunogenicity and Safety of the HZ/Su Adjuvanted Herpes Zoster Subunit Vaccine in Adults Previously Vaccinated with a Live Attenuated Herpes Zoster Vaccine. J. Infect. Dis. 2017, 216, 1343–1351. [Google Scholar] [CrossRef]
- Vink, P.; Shiramoto, M.; Ogawa, M.; Eda, M.; Douha, M.; Heineman, T.; Lal, H. Safety and Immunogenicity of a Herpes Zoster Subunit Vaccine in Japanese Population Aged ≥ 50 Years When Administered Subcutaneously vs. Intramuscularly. Hum. Vaccines Immunother. 2017, 13, 574–578. [Google Scholar] [CrossRef]
- L’Huillier, A.G.; Hirzel, C.; Ferreira, V.H.; Ierullo, M.; Ku, T.; Selzner, N.; Schiff, J.; Juvet, S.; Miao, C.; Schmid, D.S.; et al. Evaluation of Recombinant Herpes Zoster Vaccine for Primary Immunization of Varicella-Seronegative Transplant Recipients. Transplantation 2021, 105, 2316–2323. [Google Scholar] [CrossRef]
- Johnson, M.J.; Liu, C.; Ghosh, D.; Lang, N.; Levin, M.J.; Weinberg, A. Cell-Mediated Immune Responses After Administration of the Live or the Recombinant Zoster Vaccine: 5-Year Persistence. J. Infect. Dis. 2022, 225, 1477–1481. [Google Scholar] [CrossRef]
- Weinberg, A.; Kroehl, M.E.; Johnson, M.J.; Hammes, A.; Reinhold, D.; Lang, N.; Levin, M.J. Comparative Immune Responses to Licensed Herpes Zoster Vaccines. J. Infect. Dis. 2018, 218 (Suppl. S2), S81–S87. [Google Scholar] [CrossRef]
- Vink, P.; Delgado Mingorance, I.; Maximiano Alonso, C.; Rubio-Viqueira, B.; Jung, K.H.; Rodriguez Moreno, J.F.; Grande, E.; Marrupe Gonzalez, D.; Lowndes, S.; Puente, J.; et al. Immunogenicity and Safety of the Adjuvanted Recombinant Zoster Vaccine in Patients with Solid Tumors, Vaccinated before or during Chemotherapy: A Randomized Trial. Cancer 2019, 125, 1301–1312. [Google Scholar] [CrossRef]
- Vink, P.; Ramon Torrell, J.M.; Sanchez Fructuoso, A.; Kim, S.-J.; Kim, S.; Zaltzman, J.; Ortiz, F.; Campistol Plana, J.M.; Fernandez Rodriguez, A.M.; Rebollo Rodrigo, H.; et al. Immunogenicity and Safety of the Adjuvanted Recombinant Zoster Vaccine in Chronically Immunosuppressed Adults Following Renal Transplant: A Phase III, Randomized Clinical Trial. Clin. Infect. Dis. 2019. [CrossRef]
- Leroux-Roels, I.; Leroux-Roels, G.; Clement, F.; Vandepapelière, P.; Vassilev, V.; Ledent, E.; Heineman, T.C. A Phase 1/2 Clinical Trial Evaluating Safety and Immunogenicity of a Varicella Zoster Glycoprotein E Subunit Vaccine Candidate in Young and Older Adults. J. Infect. Dis. 2012, 206, 1280–1290. [Google Scholar] [CrossRef]
- Dagnew, A.F.; Klein, N.P.; Hervé, C.; Kalema, G.; Di Paolo, E.; Peterson, J.; Salaun, B.; Schuind, A. The Adjuvanted Recombinant Zoster Vaccine in Adults Aged ≥ 65 Years Previously Vaccinated with a Live-Attenuated Herpes Zoster Vaccine. J. Infect. Dis. 2021, 224, 1139–1146. [Google Scholar] [CrossRef]
- Laing, K.J.; Ford, E.S.; Johnson, M.J.; Levin, M.J.; Koelle, D.M.; Weinberg, A. Recruitment of Naïve CD4+ T Cells by the Recombinant Zoster Vaccine Correlates with Persistent Immunity. J. Clin. Investig. 2023, 133, e172634. [Google Scholar] [CrossRef]
- Hastie, A.; Catteau, G.; Enemuo, A.; Mrkvan, T.; Salaun, B.; Volpe, S.; Smetana, J.; Rombo, L.; Schwarz, T.; Pauksens, K.; et al. Immunogenicity of the Adjuvanted Recombinant Zoster Vaccine: Persistence and Anamnestic Response to Additional Doses Administered 10 Years After Primary Vaccination. J. Infect. Dis. 2021, 224, 2025–2034. [Google Scholar] [CrossRef]
- Chlibek, R.; Smetana, J.; Pauksens, K.; Rombo, L.; Van Den Hoek, J.A.R.; Richardus, J.H.; Plassmann, G.; Schwarz, T.F.; Ledent, E.; Heineman, T.C. Safety and Immunogenicity of Three Different Formulations of an Adjuvanted Varicella-Zoster Virus Subunit Candidate Vaccine in Older Adults: A Phase II, Randomized, Controlled Study. Vaccine 2014, 32, 1745–1753. [Google Scholar] [CrossRef]
- Chlibek, R.; Pauksens, K.; Rombo, L.; Van Rijckevorsel, G.; Richardus, J.H.; Plassmann, G.; Schwarz, T.F.; Catteau, G.; Lal, H.; Heineman, T.C. Long-Term Immunogenicity and Safety of an Investigational Herpes Zoster Subunit Vaccine in Older Adults. Vaccine 2016, 34, 863–868. [Google Scholar] [CrossRef] [PubMed]
- Boutry, C.; Hastie, A.; Diez-Domingo, J.; Tinoco, J.C.; Yu, C.-J.; Andrews, C.; Beytout, J.; Caso, C.; Cheng, H.-S.; Cheong, H.J.; et al. The Adjuvanted Recombinant Zoster Vaccine Confers Long-Term Protection against Herpes Zoster: Interim Results of an Extension Study of the Pivotal Phase 3 Clinical Trials ZOE-50 and ZOE-70. Clin. Infect. Dis. 2022, 74, 1459–1467. [Google Scholar] [CrossRef] [PubMed]
- Dagnew, A.F.; Ilhan, O.; Lee, W.-S.; Woszczyk, D.; Kwak, J.-Y.; Bowcock, S.; Sohn, S.K.; Rodriguez Macías, G.; Chiou, T.-J.; Quiel, D.; et al. Immunogenicity and Safety of the Adjuvanted Recombinant Zoster Vaccine in Adults with Haematological Malignancies: A Phase 3, Randomised, Clinical Trial and Post-Hoc Efficacy Analysis. Lancet Infect. Dis. 2019, 19, 988–1000. [Google Scholar] [CrossRef] [PubMed]
- Stadtmauer, E.A.; Sullivan, K.M.; Marty, F.M.; Dadwal, S.S.; Papanicolaou, G.A.; Shea, T.C.; Mossad, S.B.; Andreadis, C.; Young, J.-A.H.; Buadi, F.K.; et al. A Phase 1/2 Study of an Adjuvanted Varicella-Zoster Virus Subunit Vaccine in Autologous Hematopoietic Cell Transplant Recipients. Blood 2014, 124, 2921–2929. [Google Scholar] [CrossRef] [PubMed]
- Herishanu, Y.; Avivi, I.; Aharon, A.; Shefer, G.; Levi, S.; Bronstein, Y.; Morales, M.; Ziv, T.; Shorer Arbel, Y.; Scarfò, L.; et al. Efficacy of the BNT162b2 mRNA COVID-19 Vaccine in Patients with Chronic Lymphocytic Leukemia. Blood 2021, 137, 3165–3173. [Google Scholar] [CrossRef] [PubMed]
- Yri, O.E.; Torfoss, D.; Hungnes, O.; Tierens, A.; Waalen, K.; Nordøy, T.; Dudman, S.; Kilander, A.; Wader, K.F.; Østenstad, B.; et al. Rituximab Blocks Protective Serologic Response to Influenza A (H1N1) 2009 Vaccination in Lymphoma Patients during or within 6 Months after Treatment. Blood 2011, 118, 6769–6771. [Google Scholar] [CrossRef] [PubMed]
- Bedognetti, D.; Zoppoli, G.; Massucco, C.; Zanardi, E.; Zupo, S.; Bruzzone, A.; Sertoli, M.R.; Balleari, E.; Racchi, O.; Messina, M.; et al. Impaired Response to Influenza Vaccine Associated with Persistent Memory B Cell Depletion in Non-Hodgkin’s Lymphoma Patients Treated with Rituximab-Containing Regimens. J. Immunol. 2011, 186, 6044–6055. [Google Scholar] [CrossRef] [PubMed]
- Vlachonikola, E.; Stamatopoulos, K.; Chatzidimitriou, A. T Cells in Chronic Lymphocytic Leukemia: A Two-Edged Sword. Front. Immunol. 2021, 11, 612244. [Google Scholar] [CrossRef]
- Hirzel, C.; Kumar, D. Influenza Vaccine Strategies for Solid Organ Transplant Recipients. Curr. Opin. Infect. Dis. 2018, 31, 309–315. [Google Scholar] [CrossRef]
- Gourishankar, S.; McDermid, J.C.; Jhangri, G.S.; Preiksaitis, J.K. Herpes zoster infection following solid organ transplantation: Incidence, risk factors and outcomes in the current immunosuppressive era. Am. J. Transplant. 2004, 4, 108–115. [Google Scholar] [CrossRef]
- US Centers for Disease Control and Prevention—Advisory Committee on Immunization Practices. General Best Practice Guidelines for Immunization—Timing and Spacing of Immunobiologics. 2023. Available online: https://www.cdc.gov/vaccines/hcp/acip-recs/general-recs/timing.html (accessed on 5 May 2024).
- Alexander, K.E.; Tong, P.L.; Macartney, K.; Beresford, R.; Sheppeard, V.; Gupta, M. Live Zoster Vaccination in an Immunocompromised Patient Leading to Death Secondary to Disseminated Varicella Zoster Virus Infection. Vaccine 2018, 36, 3890–3893. [Google Scholar] [CrossRef]
- Whitmire, J.K. Induction and Function of Virus-Specific CD4+ T Cell Responses. Virology 2011, 411, 216–228. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.J.; Kroehl, M.E.; Johnson, M.J.; Hammes, A.; Reinhold, D.; Lang, N.; Weinberg, A. Th1 Memory Differentiates Recombinant from Live Herpes Zoster Vaccines. J. Clin. Investig. 2018, 128, 4429–4440. [Google Scholar] [CrossRef] [PubMed]
- Leroux-Roels, G.; Van Belle, P.; Vandepapeliere, P.; Horsmans, Y.; Janssens, M.; Carletti, I.; Garçon, N.; Wettendorff, M.; Van Mechelen, M. Vaccine Adjuvant Systems Containing Monophosphoryl Lipid A and QS-21 Induce Strong Humoral and Cellular Immune Responses against Hepatitis B Surface Antigen Which Persist for at Least 4 Years after Vaccination. Vaccine 2015, 33, 1084–1091. [Google Scholar] [CrossRef]
- Leroux-Roels, G.; Marchant, A.; Levy, J.; Van Damme, P.; Schwarz, T.F.; Horsmans, Y.; Jilg, W.; Kremsner, P.G.; Haelterman, E.; Clément, F.; et al. Impact of Adjuvants on CD4+ T Cell and B Cell Responses to a Protein Antigen Vaccine: Results from a Phase II, Randomized, Multicenter Trial. Clin. Immunol. 2016, 169, 16–27. [Google Scholar] [CrossRef]
- Coccia, M.; Collignon, C.; Hervé, C.; Chalon, A.; Welsby, I.; Detienne, S.; Van Helden, M.J.; Dutta, S.; Genito, C.J.; Waters, N.C.; et al. Cellular and Molecular Synergy in AS01-Adjuvanted Vaccines Results in an Early IFNγ Response Promoting Vaccine Immunogenicity. Npj Vaccines 2017, 2, 25. [Google Scholar] [CrossRef]
- Qi, Q.; Cavanagh, M.M.; Le Saux, S.; Wagar, L.E.; Mackey, S.; Hu, J.; Maecker, H.; Swan, G.E.; Davis, M.M.; Dekker, C.L.; et al. Defective T Memory Cell Differentiation after Varicella Zoster Vaccination in Older Individuals. PLOS Pathog. 2016, 12, e1005892. [Google Scholar] [CrossRef] [PubMed]
- Tseng, H.F.; Harpaz, R.; Luo, Y.; Hales, C.M.; Sy, L.S.; Tartof, S.Y.; Bialek, S.; Hechter, R.C.; Jacobsen, S.J. Declining Effectiveness of Herpes Zoster Vaccine in Adults Aged ≥ 60 Years. J. Infect. Dis. 2016, 213, 1872–1875. [Google Scholar] [CrossRef] [PubMed]
- Tafuri, S.; Bianchi, F.P.; Stefanizzi, P. The Public Health and the Question of the “Best Vaccine”. Vaccine 2022, 40, 3813–3814. [Google Scholar] [CrossRef]
- Baker, W.L.; Michael White, C.; Cappelleri, J.C.; Kluger, J.; Coleman, C.I.; From the Health Outcomes, Policy, and Economics (HOPE) Collaborative Group. Understanding Heterogeneity in Meta-Analysis: The Role of Meta-Regression. Int. J. Clin. Pract. 2009, 63, 1426–1434. [Google Scholar] [CrossRef]
- Berkowitz, E.M.; Moyle, G.; Stellbrink, H.-J.; Schürmann, D.; Kegg, S.; Stoll, M.; El Idrissi, M.; Oostvogels, L.; Heineman, T.C.; for the Zoster-015 HZ/su Study Group; et al. Safety and Immunogenicity of an Adjuvanted Herpes Zoster Subunit Candidate Vaccine in HIV-Infected Adults: A Phase 1/2a Randomized, Placebo-Controlled Study. J. Infect. Dis. 2015, 211, 1279–1287. [Google Scholar] [CrossRef] [PubMed]
Immunogenicity Endpoints | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Author and Year | Location | Study Design | Immunocompromised Population | Included Individuals with History of HZ | Included Individuals Previously Vaccinated with ZVL | Co-Administration with Other Vaccines | Time between RZV2 and Blood Sampling | HI | CMI | Avidity | GMC | N | Age/Age Range | Proportion of Women | HI-VRR Responder | CMI-VRR Responders | Meta-Analysis |
Laing et al., 2023 | United States | RCT | - | - | - | - | One month | - | Yes | - | - | 16 | 50–85 | 50.0 | - | NR | - |
Naficy et al., 2023 (a) | United States | RCT | - | - | NR | - | One month | Yes | - | - | Yes | 100 | 50–59 | 54.8 | 97.0 | - | Yes |
Naficy et al., 2023 (b) | United States | RCT | - | - | NR | - | One month | Yes | - | - | Yes | 75 | 60–69 | 54.8 | 94.7 | - | Yes |
Naficy et al., 2023 (c) | United States | RCT | - | - | NR | - | One month | Yes | - | - | Yes | 53 | ≥70 | 54.8 | 100 | - | Yes |
Naficy et al., 2023 (d) | United States | RCT | - | - | NR | COVID-19 mRNA-1273 | One month | Yes | - | - | Yes | 102 | 50–59 | 58.1 | 98.0 | - | Yes |
Naficy et al., 2023 (e) | United States | RCT | - | - | NR | COVID-19 mRNA-1273 | One month | Yes | - | - | Yes | 80 | 60–69 | 58.1 | 97.5 | - | Yes |
Naficy et al., 2023 (f) | United States | RCT | - | - | NR | COVID-19 mRNA-1273 | One month | Yes | - | - | Yes | 48 | 70–88 | 58.1 | 95.8 | - | Yes |
Weinberg et al., 2023 | United States | RCT | - | - | Yes | - | One month | Yes | - | Yes | - | 80 | ≥50 | 53.0 | NR | - | - |
Boutry et al., 2022 | Multi-country | RCT | - | - | - | - | 72 months | Yes | Yes | - | - | 813 | ≥50 | 60.8 | NR | NR | - |
Johnson et al., 2022 (a) | United States | RCT | - | - | - | - | One month | - | Yes | - | - | 160 | 50–85 | 52.0 | - | 93.7 | - |
Johnson et al., 2022 (b) | United States | RCT | - | - | - | - | 60 months | - | Yes | - | - | 160 | 50–85 | 52.0 | - | 74.0 | - |
Min et al., 2022 (a) | Multi-country | RCT | - | - | - | - | One month | Yes | - | - | Yes | 163 | 50–59 | 61.9 | 99.4 | Yes | |
Min et al., 2022 (b) | Multi-country | RCT | - | - | - | - | One month | Yes | - | - | Yes | 167 | 60–69 | 61.9 | 100 | Yes | |
Min et al., 2022 (c) | Multi-country | RCT | - | - | - | - | One month | Yes | - | - | Yes | 106 | ≥70 | 61.9 | 97.2 | Yes | |
Min et al., 2022 (d) | Multi-country | RCT | - | - | - | PCV13 | One month | Yes | - | - | Yes | 161 | 50–59 | 57.8 | 99.4 | Yes | |
Min et al., 2022 (e) | Multi-country | RCT | - | - | - | PCV13 | One month | Yes | - | - | Yes | 162 | 60–69 | 57.8 | 99.4 | Yes | |
Min et al., 2022 (f) | Multi-country | RCT | - | - | - | PCV13 | One month | Yes | - | - | Yes | 104 | ≥70 | 57.8 | 98.1 | Yes | |
Muchtar et al., 2022 (a) | United States | Cohort | Chronic lymphocytic leukemia and monoclonal B cell lymphocytosis (treatment naïve) | NR | Yes | - | One month | Yes | Yes | - | - | 37 | 32–85 | 37.8 | 51.0 | 72.7 | Only for HI |
Muchtar et al., 2022 (b) | United States | Cohort | Chronic lymphocytic leukemia and monoclonal B cell lymphocytosis (BTKi treated) | NR | Yes | - | One month | Yes | Yes | - | - | 25 | 48–82 | 32.0 | 36.0 | 31.6 | Only for HI |
Muchtar et al., 2022 (a + b) | United States | Cohort | Chronic lymphocytic leukemia and monoclonal B cell lymphocytosis | NR | Yes | - | 12 months | Yes | Yes | - | - | 47 | 32–85 | 35.0 | 34.0 | NR | Only for HI |
Pleyer et al., 2022 (a) | United States | RCT | Chronic lymphocytic leukemia patients (treatment naïve) | - | - | - | 3 months | Yes | Yes | - | - | 56 | ≥50 | 41.1 | 76.8 | 70.0 | - |
Pleyer et al., 2022 (b) | United States | RCT | Chronic lymphocytic leukemia patients receiving Bruton tyrosine kinase inhibitors (BTKi treated) | - | - | - | 3 months | Yes | Yes | - | - | 50 | ≥50 | 38.0 | 40.0 | 41.3 | - |
Pleyer et al., 2022 (a + b) | United States | RCT | Chronic lymphocytic leukemia patients | - | - | - | 12 months | Yes | - | - | - | 26 | ≥50 | 38.0 | 42.3 | - | - |
Strezova et al., 2022 | Multi-country | RCT | - | - | - | - | 120 months | Yes | Yes | - | - | 813 | ≥50 | 60.7 | NR | NR | - |
Dagnew et al., 2021 (a) | Multi-country | qRCT | - | - | - | - | 12 months | Yes | Yes | - | - | 199 | ≥65 | 50.8 | NR | NR | - |
Dagnew et al., 2021 (b) | Multi-country | qRCT | - | - | Yes | - | 12 months | Yes | Yes | - | - | 198 | ≥65 | 51.0 | NR | NR | - |
Hastie et al., 2021 | Multi-country | RCT | - | - | - | - | 120 months | Yes | Yes | - | - | 68 | ≥60 | 61.8 | NR | NR | - |
Hirzel et al., 2021 | Canada | Cohort | Lung transplant recipients | - | NR | - | 3–6 weeks | Yes | Yes | Yes | - | 43 | ≥18 | 40.8 | NR | NR | - |
L’Huillier et al., 2021 | Canada | Cohort | Solid organ transplant recipients | - | - | - | One month | Yes | Yes | Yes | - | 20 | ≥18 | 52.2 | 55.0 | NR | - |
Schmid et al., 2021 | United States | RCT | - | - | Yes | - | One month | - | - | Yes | - | 80 | 50–85 | NR | - | - | - |
Stadtmauer et al., 2021 (a) | Multi-country | RCT | Hematopoietic stem cell transplant recipients | - | - | - | One month | Yes | Yes | - | - | 26 | 18–49 | 35.4 | 57.7 | 100 | Yes |
Stadtmauer et al., 2021 (b) | Multi-country | RCT | Hematopoietic stem cell transplant recipients | - | - | - | One month | Yes | Yes | - | - | 56 | ≥50 | 35.4 | 71.4 | 89.3 | Yes |
Stadtmauer et al., 2021 (c) | Multi-country | RCT | Hematopoietic stem cell transplant recipients | - | - | - | 12 months | Yes | Yes | - | - | 18 | 18–49 | 35.4 | 33.3 | 90.0 | Yes |
Stadtmauer et al., 2021 (d) | Multi-country | RCT | Hematopoietic stem cell transplant recipients | - | - | - | 12 months | Yes | Yes | - | - | 34 | ≥50 | 35.4 | 44.1 | 58.8 | Yes |
Stadtmauer et al., 2021 (e) | Multi-country | RCT | Hematopoietic stem cell transplant recipients | - | - | - | 24 months | Yes | Yes | - | - | 13 | 18–49 | 35.4 | 23.1 | 100 | Yes |
Stadtmauer et al., 2021 (f) | Multi-country | RCT | Hematopoietic stem cell transplant recipients | - | - | - | 24 months | Yes | Yes | - | - | 25 | ≥50 | 35.4 | 56.0 | 58.8 | Yes |
Zent et al., 2021 | United States | Cohort | Patients with chronic lymphocytic leukemia or lymphoplasmacytic lymphoma BTKi treated | Yes | Yes | - | One month | Yes | Yes | - | - | 32 | ≥50 | 34.4 | 75.0 | 78.1 | - |
Vink et al., 2020 (a) | Multi-country | RCT | Renal transplant recipients | - | - | - | One month | Yes | Yes | - | - | 46 | 18–49 | 28.8 | 84.8 | 63.6 | Yes |
Vink et al., 2020 (b) | Multi-country | RCT | Renal transplant recipients | - | - | - | One month | Yes | Yes | - | - | 75 | ≥50 | 28.8 | 77.3 | 76.5 | Yes |
Vink et al., 2020 (c) | Multi-country | RCT | Renal transplant recipients | - | - | - | 6 months | Yes | Yes | - | - | 41 | 18–49 | 28.8 | 80.5 | NR | Yes |
Vink et al., 2020 (d) | Multi-country | RCT | Renal transplant recipients | - | - | - | 12 months | Yes | Yes | - | - | 41 | 18–49 | 28.8 | 70.7 | 58.3 | Yes |
Bastidas et al., 2019 (a) | Multi-country | RCT | Autologous hemopoietic stem cell transplantation recipients | - | - | - | One month | Yes | Yes | - | - | 82 | 18–78 | 37.1 | 67.0 | 93.0 | Yes |
Bastidas et al., 2019 (b) | Multi-country | RCT | Autologous hemopoietic stem cell transplantation recipients | - | - | - | 12 months | Yes | - | - | - | 52 | 18–78 | 37.1 | 41.0 | - | Yes |
Bastidas et al., 2019 (c) | Multi-country | RCT | Autologous hemopoietic stem cell transplantation recipients | - | - | - | 24 months | Yes | - | - | - | 38 | 18–78 | 37.1 | 45.0 | - | Yes |
Dagnew et al., 2019 (a) | Multi-country | RCT | Patients with hematological malignancies excluding NHBCL&CLL | - | - | - | One month | Yes | Yes | - | - | 148 | ≥18 | 40.3 | 80.4 | 83.7 | Yes |
Dagnew et al., 2019 (b) | Multi-country | RCT | Patients with all hematological malignancies | - | - | - | One month | Yes | Yes | - | - | 69 | ≥18 | 40.3 | 33.3 | Yes | |
Dagnew et al., 2019 (c) | Multi-country | RCT | Patients with hematological malignancies (all) | - | - | - | 12 months | Yes | Yes | - | - | 165 | ≥18 | 40.3 | 52.1 | 66.7 | Yes |
Marechal et al., 2019 (a) | Multi-country | RCT | - | - | - | - | One month | Yes | - | - | Yes | 402 | ≥50 | 58.2 | 98.3 | - | Yes |
Marechal et al., 2019 (b) | Multi-country | RCT | - | - | - | PPSV23 | One month | Yes | - | - | Yes | 401 | ≥50 | 61.1 | 98.3 | - | Yes |
Strezova et al., 2019 (a) | United States | RCT | - | - | - | - | One month | Yes | - | - | Yes | 378 | ≥50 | 53.8 | 97.9 | - | Yes |
Strezova et al., 2019 (b) | United States | RCT | - | - | - | Tdap | One month | Yes | - | - | Yes | 369 | ≥50 | 53.9 | 97.8 | - | Yes |
Vink et al., 2019 (a) | Multi-country | RCT | Patients with solid tumors before chemotherapy | - | - | - | One month | Yes | Yes | - | - | 65 | ≥18 | 59.8 | 93.8 | 50.0 | Yes |
Vink et al., 2019 (b) | Multi-country | RCT | Patients with solid tumors during chemotherapy | - | - | - | One month | Yes | Yes | - | - | 22 | ≥18 | 59.8 | NR | NR | - |
Cunningham et al., 2018 (a) | Multi-country | RCT | - | - | - | - | One month | Yes | Yes | - | - | 1455 | ≥50 | 58.5 | 97.8 | 93.3 | Yes |
Cunningham et al., 2018 (b) | Multi-country | RCT | - | - | - | - | 12 months | - | Yes | - | - | 1384 | ≥50 | 58.5 | - | 57.2 | Yes |
Cunningham et al., 2018 (c) | Multi-country | RCT | - | - | - | - | 24 months | - | Yes | - | - | 1338 | ≥50 | 58.5 | - | 57.2 | Yes |
Cunningham et al., 2018 (d) | Multi-country | RCT | - | - | - | - | 36 months | Yes | - | - | - | 1279 | ≥50 | 58.5 | 77.1 | NR | Yes |
Lal et al., 2018 (a) | Multi-country | RCT | - | - | - | - | One month | Yes | - | - | Yes | 118 | ≥50 | 75.6 | 96.6 | - | Yes |
Lal et al., 2018 (b) | Multi-country | RCT | - | - | - | - | One month | Yes | - | - | Yes | 114 | ≥50 | 64.7 | 96.5 | - | - |
Lal et al., 2018 (c) | Multi-country | RCT | - | - | - | - | One month | Yes | - | - | Yes | 111 | ≥50 | 68.1 | 94.5 | - | - |
Schwarz et al., 2018 | Multi-country | RCT | - | - | - | - | 108 months | Yes | Yes | - | - | 70 | ≥60 | 61.4 | NR | NR | - |
Weinberg et al., 2018 | United States | RCT | - | - | Yes | - | One month | - | Yes | - | - | 158 | ≥50 | 54.0 | - | NR | - |
Godeaux et al., 2017 (a) | United States | RCT | - | Yes | NR | - | One month | Yes | - | - | Yes | 31 | 50–59 | 75.0 | 87.1 | - | Yes |
Godeaux et al., 2017 (b) | United States | RCT | - | Yes | NR | - | One month | Yes | - | - | Yes | 31 | 60–69 | 59.4 | 93.5 | - | Yes |
Godeaux et al., 2017 (c) | United States | RCT | - | Yes | NR | - | One month | Yes | - | - | Yes | 29 | ≥70 | 62.5 | 86.2 | - | Yes |
Grupping et al., 2017 (a) | United States | qRCT | - | - | - | - | One month | Yes | Yes | - | Yes | 204 | ≥65 | 51.6 | NR | NR | - |
Grupping et al., 2017 (b) | United States | qRCT | - | - | Yes | - | One month | Yes | Yes | - | Yes | 204 | ≥65 | 50.7 | NR | NR | - |
Schwarz et al., 2017 (a) | Multi-country | RCT | - | - | - | - | One month | Yes | - | - | Yes | 388 | ≥50 | 52.5 | 97.9 | - | Yes |
Schwarz et al., 2017 (b) | Multi-country | RCT | - | - | - | IIV4 | One month | Yes | - | - | Yes | 382 | ≥50 | 51.1 | 95.8 | - | Yes |
Strezova et al., 2017 (a) | Multi-country | RCT | - | - | - | - | One month | Yes | - | - | - | 210 | 50–89 | 53.2 | 95.7 | - | Yes |
Strezova et al., 2017 (b) | Multi-country | RCT | - | - | - | - | One month | Yes | - | - | - | 210 | 50–91 | 59.9 | 97.6 | - | Yes |
Strezova et al., 2017 (c) | Multi-country | RCT | - | - | - | - | One month | Yes | - | - | - | 202 | 50–91 | 52.8 | 97.5 | - | Yes |
Vink et al., 2017 (a) | Japan | RCT | - | - | - | - | One month | Yes | - | - | Yes | 29 | ≥50 | 50.0 | 100 | - | - |
Vink et al., 2017 (b) | Japan | RCT | - | - | - | - | One month | Yes | - | - | Yes | 29 | ≥50 | 50.0 | 100 | - | - |
Vink et al., 2017 (c) | Japan | RCT | - | - | - | - | 12 months | Yes | - | - | Yes | 28 | ≥50 | 50.0 | 89.3 | - | Yes |
Vink et al., 2017 (d) | Japan | RCT | - | - | - | - | 12 months | Yes | - | - | Yes | 30 | ≥50 | 50.0 | 83.3 | - | Yes |
Chlibek et al., 2016 | Multi-country | RCT | - | - | - | - | 72 months | Yes | Yes | - | - | 129 | 60–84 | 60.5 | NR | NR | - |
Berkowitz et al., 2015 | Multi-country | RCT | People living with HIV | - | - | - | One month | Yes | Yes | - | - | 53 | 6.8 | 98.1 | 85.7 | Yes | |
Chlibek et al., 2014 | Multi-country | RCT | - | - | - | - | One month | Yes | Yes | - | - | 166 | 60–84 | 60.5 | NR | NR | - |
Stadtmauer et al., 2014 (a) | United States | RCT | Autologous hemopoietic stem cell transplantation recipients | - | - | - | One month | Yes | Yes | - | - | 27 | 42–68 | 32.3 | 76.9 | 75.0 | Only for CMI |
Stadtmauer et al., 2014 (b) | United States | RCT | Autologous hemopoietic stem cell transplantation recipients | - | - | - | 12 months | Yes | Yes | - | - | 23 | 42–68 | 32.3 | 54.5 | NR | - |
Chlibek et al., 2013 | Multi-country | RCT | - | - | - | - | One month | Yes | Yes | - | - | 148 | ≥50 | 54.0 | NR | NR | - |
Leroux-Roels et al., 2012 (a) | Belgium | RCT | - | - | - | - | One month | Yes | Yes | - | - | 10 | 18–30 | 50.0 | 100 | NR | - |
Leroux-Roels et al., 2012 (b) | Belgium | RCT | - | - | - | - | One month | Yes | Yes | - | - | 45 | 50–70 | 73.0 | 100 | NR | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Losa, L.; Antonazzo, I.C.; Di Martino, G.; Mazzaglia, G.; Tafuri, S.; Mantovani, L.G.; Ferrara, P. Immunogenicity of Recombinant Zoster Vaccine: A Systematic Review, Meta-Analysis, and Meta-Regression. Vaccines 2024, 12, 527. https://doi.org/10.3390/vaccines12050527
Losa L, Antonazzo IC, Di Martino G, Mazzaglia G, Tafuri S, Mantovani LG, Ferrara P. Immunogenicity of Recombinant Zoster Vaccine: A Systematic Review, Meta-Analysis, and Meta-Regression. Vaccines. 2024; 12(5):527. https://doi.org/10.3390/vaccines12050527
Chicago/Turabian StyleLosa, Lorenzo, Ippazio Cosimo Antonazzo, Giuseppe Di Martino, Giampiero Mazzaglia, Silvio Tafuri, Lorenzo Giovanni Mantovani, and Pietro Ferrara. 2024. "Immunogenicity of Recombinant Zoster Vaccine: A Systematic Review, Meta-Analysis, and Meta-Regression" Vaccines 12, no. 5: 527. https://doi.org/10.3390/vaccines12050527
APA StyleLosa, L., Antonazzo, I. C., Di Martino, G., Mazzaglia, G., Tafuri, S., Mantovani, L. G., & Ferrara, P. (2024). Immunogenicity of Recombinant Zoster Vaccine: A Systematic Review, Meta-Analysis, and Meta-Regression. Vaccines, 12(5), 527. https://doi.org/10.3390/vaccines12050527