Design of a New Vaccine Prototype against Porcine Circovirus Type 2 (PCV2), M. hyopneumoniae and M. hyorhinis Based on Multiple Antigens Microencapsulation with Sulfated Chitosan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vaccine Microparticles
2.2. Morfoestructural by Scanning Electron Microscopy (SEM) and Elemental Analysis by Energy Dispersive Spectroscopy (EDS) of Vaccine Prototypes
2.3. Analysis of Surface Charge (Zeta Potential) and Polydispersity Index (PdI) of Microparticles of Vaccine Prototypes
2.4. Experimental Design
2.5. Controlled Conditions for Animals
2.6. Experimental Challenge
2.7. Intratracheal Inoculation
2.8. Obtaining and Processing of Samples
2.9. Detection of the Presence of PCV2, M. hyopneumoniae and M. hyorhinis by PCR (Real Time)
2.10. Evaluation of the Induction of Antibodies for PCV2, M. hyopneumoniae and M. hyorhinis through ELISA Test
2.11. Statistical Analysis
3. Results
3.1. Morfoestructural by Scanning Electron Microscopy (SEM) and Elemental Analysis by Energy Dispersive Spectroscopy (EDS) of Vaccine Prototypes
3.1.1. Elemental Analysis by Energy Dispersive Spectroscopy (EDS)
3.1.2. Analysis of Surface Charge and Polydispersity of Microparticles of Vaccine Prototypes
3.2. Experimental Challenge of Animals under Controlled Conditions
Evaluation of Induction of Specific Antibodies against PCV2 and M. hyopneumoniae and M. hyorhinis by ELISA Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brockmeier, S.L.; Halbur, P.G.; Thacker, E.L. Porcine Respiratory Disease Complex. In Polymicrobial Diseases; Brogden, K.A., Guthmiller, J.M., Eds.; ASM Press: Washington, DC, USA, 2014; pp. 231–258. ISBN 978-1-68367-232-6. [Google Scholar]
- Assavacheep, P.; Thanawongnuwech, R. Porcine Respiratory Disease Complex: Dynamics of Polymicrobial Infections and Management Strategies after the Introduction of the African Swine Fever. Front. Vet. Sci. 2022, 9, 1048861. [Google Scholar] [CrossRef]
- Opriessnig, T.; Giménez-Lirola, L.G.; Halbur, P.G. Polymicrobial Respiratory Disease in Pigs. Anim. Health. Res. Rev. 2011, 12, 133–148. [Google Scholar] [CrossRef]
- Chae, C. Porcine Respiratory Disease Complex: Interaction of Vaccination and Porcine Circovirus Type 2, Porcine Reproductive and Respiratory Syndrome Virus, and Mycoplasma hyopneumoniae. Vet. J. 2016, 212, 1–6. [Google Scholar] [CrossRef]
- Lee, J.-A.; Oh, Y.-R.; Hwang, M.-A.; Lee, J.-B.; Park, S.-Y.; Song, C.-S.; Choi, I.-S.; Lee, S.-W. Mycoplasma hyorhinis Is a Potential Pathogen of Porcine Respiratory Disease Complex That Aggravates Pneumonia Caused by Porcine Reproductive and Respiratory Syndrome Virus. Vet. Immunol. Immunopathol. 2016, 177, 48–51. [Google Scholar] [CrossRef]
- Chen, D.; Wei, Y.; Huang, L.; Wang, Y.; Sun, J.; Du, W.; Wu, H.; Liu, C. Synergistic Pathogenicity in Sequential Coinfection with Mycoplasma hyorhinis and Porcine Circovirus Type 2. Vet. Microbiol. 2016, 182, 123–130. [Google Scholar] [CrossRef]
- Maity, H.; Samanta, K.; Deb, R.; Gupta, V. Revisiting Porcine Circovirus Infection: Recent Insights and Its Significance in the Piggery Sector. Vaccines 2023, 11, 1308. [Google Scholar] [CrossRef]
- Rodríguez, F.; Ramírez, G.A.; Sarradell, J.; Andrada, M.; Lorenzo, H. Immunohistochemical Labelling of Cytokines in Lung Lesions of Pigs Naturally Infected with Mycoplasma hyopneumoniae. J. Comp. Pathol. 2004, 130, 306–312. [Google Scholar] [CrossRef]
- Helke, K.L.; Ezell, P.C.; Duran-Struuck, R.; Swindle, M.M. Biology and Diseases of Swine. In Laboratory Animal Medicine; Elsevier: Amsterdam, The Netherlands, 2015; pp. 695–769. ISBN 978-0-12-409527-4. [Google Scholar]
- Wei, Y.-W.; Zhu, H.-Z.; Huang, L.-P.; Xia, D.-L.; Wu, H.-L.; Bian, H.-Q.; Feng, L.; Liu, C.-M. Efficacy in Pigs of a New Inactivated Vaccine Combining Porcine Circovirus Type 2 and Mycoplasma hyorhinis. Vet. Microbiol. 2020, 242, 108588. [Google Scholar] [CrossRef]
- Abella, G.; Novell, E.; Tarancon, V.; Varona, L.; Pena, R.N.; Estany, J.; Fraile, L. Identification of Resilient Sows in Porcine Reproductive and Respiratory Syndrome Virus–Infected Farms1. J. Anim. Sci. 2019, 97, 3228–3236. [Google Scholar] [CrossRef]
- Maes, D.; Boyen, F.; Devriendt, B.; Kuhnert, P.; Summerfield, A.; Haesebrouck, F. Perspectives for Improvement of Mycoplasma hyopneumoniae Vaccines in Pigs. Vet. Res. 2021, 52, 67. [Google Scholar] [CrossRef] [PubMed]
- Servicio Agrícola y Ganadero (SAG). Registro de Productos Farmacéuticos de Uso Veterinario | SAG. Available online: https://www.sag.gob.cl/ambitos-de-accion/registro-de-productos-farmaceuticos-de-uso-veterinario (accessed on 22 May 2023).
- Fourour, S.; Tocqueville, V.; Paboeuf, F.; Lediguerher, G.; Morin, N.; Kempf, I.; Marois-Créhan, C. Pathogenicity Study of Mycoplasma hyorhinis and M. Flocculare in Specific-Pathogen-Free Pigs Pre-Infected with M. Hyopneumoniae. Vet. Microbiol. 2019, 232, 50–57. [Google Scholar] [CrossRef]
- Clavijo, M.J.; Oliveira, S.; Zimmerman, J.; Rendahl, A.; Rovira, A. Field Evaluation of a Quantitative Polymerase Chain Reaction Assay for Mycoplasma hyorhinis. J. Vet. Diagn. Investig. 2014, 26, 755–760. [Google Scholar] [CrossRef]
- Lee, J.-A.; Hwang, M.-A.; Han, J.-H.; Cho, E.-H.; Lee, J.-B.; Park, S.-Y.; Song, C.-S.; Choi, I.-S.; Lee, S.-W. Reduction of Mycoplasmal Lesions and Clinical Signs by Vaccination against Mycoplasma hyorhinis. Vet. Immunol. Immunopathol. 2018, 196, 14–17. [Google Scholar] [CrossRef]
- Martinson, B.; Zoghby, W.; Barrett, K.; Bryson, L.; Christmas, R.; Minion, F.C.; Kroll, J. Efficacy of an Inactivated Mycoplasma hyorhinis Vaccine in Pigs. Vaccine 2018, 36, 408–412. [Google Scholar] [CrossRef]
- Martinson, B.; Zoghby, W.; Barrett, K.; Bryson, L.; Kroll, J. Duration of Immunity for an Inactivated Mycoplasma hyorhinis Vaccine in Pigs. Vet. Microbiol. 2019, 230, 273–277. [Google Scholar] [CrossRef]
- Servicio Agrícola y Ganadero (SAG) Síndrome Reproductivo y Respiratorio Porcino (PRRS)|SAG. Available online: https://www.sag.gob.cl/ambitos-de-accion/sindrome-reproductivo-y-respiratorio-porcino-prrs (accessed on 22 May 2023).
- Francis, M.J. Recent Advances in Vaccine Technologies. Vet. Clin. N. Am. Small Anim. Pract. 2018, 48, 231–241. [Google Scholar] [CrossRef]
- Rizeq, B.R.; Younes, N.N.; Rasool, K.; Nasrallah, G.K. Synthesis, Bioapplications, and Toxicity Evaluation of Chitosan-Based Nanoparticles. Int. J. Mol. Sci. 2019, 20, 5776. [Google Scholar] [CrossRef]
- Illum, L. Nasal Drug Delivery—Recent Developments and Future Prospects. J. Control. Release 2012, 161, 254–263. [Google Scholar] [CrossRef]
- Bucarey, S.A.; Pujol, M.; Poblete, J.; Nuñez, I.; Tapia, C.V.; Neira-Carrillo, A.; Martinez, J.; Bassa, O. Chitosan Microparticles Loaded with Yeast-Derived PCV2 Virus-like Particles Elicit Antigen-Specific Cellular Immune Response in Mice after Oral Administration. Virol. J. 2014, 11, 149. [Google Scholar] [CrossRef]
- Li, X.; Xing, R.; Xu, C.; Liu, S.; Qin, Y.; Li, K.; Yu, H.; Li, P. Immunostimulatory Effect of Chitosan and Quaternary Chitosan: A Review of Potential Vaccine Adjuvants. Carbohydr. Polym. 2021, 264, 118050. [Google Scholar] [CrossRef]
- Aranaz, I.; Mengibar, M.; Harris, R.; Panos, I.; Miralles, B.; Acosta, N.; Galed, G.; Heras, A. Functional Characterization of Chitin and Chitosan. Curr. Chem. Biol. 2009, 3, 203–230. [Google Scholar] [CrossRef]
- Rabea, E.I.; Badawy, M.E.-T.; Stevens, C.V.; Smagghe, G.; Steurbaut, W. Chitosan as Antimicrobial Agent: Applications and Mode of Action. Biomacromolecules 2003, 4, 1457–1465. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.-S.; Xu, Y.-L.; Zou, X.-T.; Xu, Z.-R. Chitosan Nanoparticles Act as an Adjuvant to Promote Both Th1 and Th2 Immune Responses Induced by Ovalbumin in Mice. Mar. Drugs 2011, 9, 1038–1055. [Google Scholar] [CrossRef]
- Abourehab, M.A.S.; Pramanik, S.; Abdelgawad, M.A.; Abualsoud, B.M.; Kadi, A.; Ansari, M.J.; Deepak, A. Recent Advances of Chitosan Formulations in Biomedical Applications. Int. J. Mol. Sci. 2022, 23, 10975. [Google Scholar] [CrossRef] [PubMed]
- Dash, M.; Chiellini, F.; Ottenbrite, R.M.; Chiellini, E. Chitosan—A Versatile Semi-Synthetic Polymer in Biomedical Applications. Prog. Polym. Sci. 2011, 36, 981–1014. [Google Scholar] [CrossRef]
- Zhao, K.; Chen, G.; Shi, X.; Gao, T.; Li, W.; Zhao, Y.; Zhang, F.; Wu, J.; Cui, X.; Wang, Y.-F. Preparation and Efficacy of a Live Newcastle Disease Virus Vaccine Encapsulated in Chitosan Nanoparticles. PLoS ONE 2012, 7, e53314. [Google Scholar] [CrossRef]
- Borchard, G.; Esmaeili, F.; Heuking, S. Chitosan-Based Delivery Systems for Mucosal Vaccination. In Chitosan-Based Systems for Biopharmaceuticals; Sarmento, B., Das Neves, J., Eds.; Wiley: Hoboken, NJ, USA, 2012; pp. 211–224. ISBN 978-0-470-97832-0. [Google Scholar]
- Sawaengsak, C.; Mori, Y.; Yamanishi, K.; Mitrevej, A.; Sinchaipanid, N. Chitosan Nanoparticle Encapsulated Hemagglutinin-Split Influenza Virus Mucosal Vaccine. AAPS PharmSciTech 2014, 15, 317–325. [Google Scholar] [CrossRef]
- Furlani, F.; Sacco, P.; Decleva, E.; Menegazzi, R.; Donati, I.; Paoletti, S.; Marsich, E. Chitosan Acetylation Degree Influences the Physical Properties of Polysaccharide Nanoparticles: Implication for the Innate Immune Cells Response. ACS Appl. Mater. Interfaces 2019, 11, 9794–9803. [Google Scholar] [CrossRef]
- Sahariah, P.; Cibor, D.; Zielińska, D.; Hjálmarsdóttir, M.; Stawski, D.; Másson, M. The Effect of Molecular Weight on the Antibacterial Activity of N,N,N-Trimethyl Chitosan (TMC). Int. J. Mol. Sci. 2019, 20, 1743. [Google Scholar] [CrossRef]
- Fernandes, M.; Gonçalves, I.C.; Nardecchia, S.; Amaral, I.F.; Barbosa, M.A.; Martins, M.C.L. Modulation of Stability and Mucoadhesive Properties of Chitosan Microspheres for Therapeutic Gastric Application. Int. J. Pharm. 2013, 454, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Bucarey Vivanco, S.A.; Neira Carrillo, A.; Neira Ramitrez, V. Vaccine for Treating and Controlling Infectious Pathologies That Use Heparan Sulphate (HS) as a Cell Receptor. U.S. Patent 11,246,839 B2, 15 February 2022. [Google Scholar]
- Jiménez-Arriagada, D.; Hidalgo, A.A.; Neira, V.; Neira-Carrillo, A.; Bucarey, S.A. Low Molecular Weight Sulfated Chitosan Efficiently Reduces Infection Capacity of Porcine Circovirus Type 2 (PCV2) in PK15 Cells. Virol. J. 2022, 19, 52. [Google Scholar] [CrossRef] [PubMed]
- Marois, C.; Dory, D.; Fablet, C.; Madec, F.; Kobisch, M. Development of a Quantitative Real-Time TaqMan PCR Assay for Determination of the Minimal Dose of Mycoplasma hyopneumoniae Strain 116 Required to Induce Pneumonia in SPF Pigs. J. Appl. Microbiol. 2010, 108, 1523–1533. [Google Scholar] [CrossRef] [PubMed]
- Stakenborg, T.; Vicca, J.; Butaye, P.; Imberechts, H.; Peeters, J.; De Kruif, A.; Haesebrouck, F.; Maes, D. A Multiplex PCR to Identify Porcine Mycoplasmas Present in Broth Cultures. Vet. Res. Commun. 2006, 30, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Van Der Lubben, I. Chitosan Microparticles for Oral Vaccination: Preparation, Characterization and Preliminary in Vivo Uptake Studies in Murine Peyer’s Patches. Biomaterials 2001, 22, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Van Der Lubben, I.M.; Konings, F.A.J.; Borchard, G.; Verhoef, J.C.; Junginger, H.E. In Vivo Uptake of Chitosan Microparticles by Murine Peyer’s Patches: Visualization Studies Using Confocal Laser Scanning Microscopy and Immunohistochemistry. J. Drug Target. 2001, 9, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Van Der Lubben, I.M.; Van Opdorp, F.A.C.; Hengeveld, M.R.; Onderwater, J.J.M.; Koerten, H.K.; Verhoef, J.C.; Borchard, G.; Junginger, H.E. Transport of Chitosan Microparticles for Mucosal Vaccine Delivery in a Human Intestinal M-Cell Model. J. Drug Target. 2002, 10, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Van Der Lubben, I.M.; Kersten, G.; Fretz, M.M.; Beuvery, C.; Coos Verhoef, J.; Junginger, H.E. Chitosan Microparticles for Mucosal Vaccination against Diphtheria: Oral and Nasal Efficacy Studies in Mice. Vaccine 2003, 21, 1400–1408. [Google Scholar] [CrossRef] [PubMed]
- Mitragotri, S. Immunization without Needles. Nat. Rev. Immunol. 2005, 5, 905–916. [Google Scholar] [CrossRef] [PubMed]
- Steenblock, E.R.; Fahmy, T.M. A Comprehensive Platform for Ex Vivo T-Cell Expansion Based on Biodegradable Polymeric Artificial Antigen-Presenting Cells. Mol. Ther. 2008, 16, 765–772. [Google Scholar] [CrossRef]
- Canelli, E.; Ferrari, L.; Borghetti, P.; Candela, F.; Abiakam, N.S.; Bianchera, A.; Buttini, F.; Magi, G.E.; Sonvico, F.; Martelli, P.; et al. Nano-Adjuvanted Dry Powder Vaccine for the Mucosal Immunization against Airways Pathogens. Front. Vet. Sci. 2023, 10, 1116722. [Google Scholar] [CrossRef]
- Jiang, T.; Singh, B.; Li, H.-S.; Kim, Y.-K.; Kang, S.-K.; Nah, J.-W.; Choi, Y.-J.; Cho, C.-S. Targeted Oral Delivery of BmpB Vaccine Using Porous PLGA Microparticles Coated with M Cell Homing Peptide-Coupled Chitosan. Biomaterials 2014, 35, 2365–2373. [Google Scholar] [CrossRef] [PubMed]
- Andrew, M.; Jayaraman, G. Marine Sulfated Polysaccharides as Potential Antiviral Drug Candidates to Treat Corona Virus Disease (COVID-19). Carbohydr. Res. 2021, 505, 108326. [Google Scholar] [CrossRef] [PubMed]
- Schandock, F.; Riber, C.F.; Röcker, A.; Müller, J.A.; Harms, M.; Gajda, P.; Zuwala, K.; Andersen, A.H.F.; Løvschall, K.B.; Tolstrup, M.; et al. Macromolecular Antiviral Agents against Zika, Ebola, SARS, and Other Pathogenic Viruses. Adv. Healthc. Mater. 2017, 6, 1700748. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhuang, S. Antibacterial Activity of Chitosan and Its Derivatives and Their Interaction Mechanism with Bacteria: Current State and Perspectives. Eur. Polym. J. 2020, 138, 109984. [Google Scholar] [CrossRef]
- Jaber, N.; Al-Remawi, M.; Al-Akayleh, F.; Al-Muhtaseb, N.; Al-Adham, I.S.I.; Collier, P.J. A Review of the Antiviral Activity of Chitosan, Including Patented Applications and Its Potential Use against COVID-19. J. Appl. Microbiol. 2022, 132, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Bautista, E.; Jordan, D.M.; Neubauer, A.; Patterson, A.R.; Roof, M.B.; Vaughn, E.M.; Victoria, J.G. Multivalent Vaccine against Porcine Teschovirus and Other Disease Causing Organisms in Swine. U.S. Patent Application 12/964,073, 23 June 2011. [Google Scholar]
- Ma, S.J.; Sui, J. Vaccine for PCV2 and Mycoplasma. U.S. Patent 9,649,370, 16 May 2017. [Google Scholar]
- Nitzel, G.P.; Galvin, J.E.; Garrett, J.K.; Kulawik, I.J.R.; Ricker, T.L.; Smutzer, M.M. PCV/Mycoplasma hyopneumoniae Combination Vaccine. U.S. Patent 9,125,885, 8 September 2015. [Google Scholar]
- Roof, M.B.; Hayes, P.; Eichmeyer, M.; Nitzel, G. Multivalent Pcv2 Immunogenic Compositions and Methods of Producing Such Compositions. U.S. Patent 20090092636A1, 9 April 2009. [Google Scholar]
- Roof, M.B.; Eichmeyer, M. PCV2 Mycoplasma hyopneumoniae Immunogenic Compositions and Methods of Producing Such Compositions. U.S. Patent 9,669,086, 6 June 2017. [Google Scholar]
- Sibila, M.; Guevara, G.; Cuadrado, R.; Pleguezuelos, P.; Pérez, D.; Pérez De Rozas, A.; Huerta, E.; Llorens, A.; Valero, O.; Pérez, M.; et al. Comparison of Mycoplasma hyopneumoniae and Porcine Circovirus 2 Commercial Vaccines Efficacy When Applied Separate or Combined under Experimental Conditions. Porc. Health Manag. 2020, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Mancera Gracia, J.C.; Smutzer, M.; Taylor, L.; Balasch, M.; Bandrick, M. One Dose of a Novel Vaccine Containing Two Genotypes of Porcine Circovirus (PCV2a and PCV2b) and Mycoplasma hyopneumoniae Conferred a Duration of Immunity of 23 Weeks. Vaccines 2021, 9, 834. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Hou, L.; Zhou, J.; Wang, D.; Cui, Y.; Feng, X.; Liu, J. Porcine Circovirus Type 2 Vaccines: Commercial Application and Research Advances. Viruses 2022, 14, 2005. [Google Scholar] [CrossRef]
- Pethe, K.; Alonso, S.; Biet, F.; Delogu, G.; Brennan, M.J.; Locht, C.; Menozzi, F.D. The Heparin-Binding Haemagglutinin of M. Tuberculosis Is Required for Extrapulmonary Dissemination. Nature 2001, 412, 190–194. [Google Scholar] [CrossRef]
- Chen, Y.; Hayashida, A.; Bennett, A.E.; Hollingshead, S.K.; Park, P.W. Streptococcus Pneumoniae Sheds Syndecan-1 Ectodomains through ZmpC, a Metalloproteinase Virulence Factor. J. Biol. Chem. 2007, 282, 159–167. [Google Scholar] [CrossRef]
- Chung, M.-C.; Popova, T.G.; Millis, B.A.; Mukherjee, D.V.; Zhou, W.; Liotta, L.A.; Petricoin, E.F.; Chandhoke, V.; Bailey, C.; Popov, S.G. Secreted Neutral Metalloproteases of Bacillus Anthracis as Candidate Pathogenic Factors. J. Biol. Chem. 2006, 281, 31408–31418. [Google Scholar] [CrossRef] [PubMed]
- Urbinati, C.; Nicoli, S.; Giacca, M.; David, G.; Fiorentini, S.; Caruso, A.; Alfano, M.; Cassetta, L.; Presta, M.; Rusnati, M. HIV-1 Tat and Heparan Sulfate Proteoglycan Interaction: A Novel Mechanism of Lymphocyte Adhesion and Migration across the Endothelium. Blood 2009, 114, 3335–3342. [Google Scholar] [CrossRef] [PubMed]
- Hilgard, P. Heparan Sulfate Proteoglycans Initiate Dengue Virus Infection of Hepatocytes. Hepatology 2000, 32, 1069–1077. [Google Scholar] [CrossRef]
- Crim, R.L.; Audet, S.A.; Feldman, S.A.; Mostowski, H.S.; Beeler, J.A. Identification of Linear Heparin-Binding Peptides Derived from Human Respiratory Syncytial Virus Fusion Glycoprotein That Inhibit Infectivity. J. Virol. 2007, 81, 261–271. [Google Scholar] [CrossRef]
- De Farias, B.S.; Grundmann, D.D.R.; Rizzi, F.Z.; Martins, N.S.S.; Sant’Anna Cadaval Junior, T.R.; De Almeida Pinto, L.A. Production of Low Molecular Weight Chitosan by Acid and Oxidative Pathways: Effect on Physicochemical Properties. Food Res. Int. 2019, 123, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Sibila, M.; Fort, M.; Nofrarías, M.; Pérez De Rozas, A.; Galindo-Cardiel, I.; Mateu, E.; Segalés, J. Simultaneous Porcine Circovirus Type 2 and Mycoplasma hyopneumoniae Co-Inoculation Does Not Potentiate Disease in Conventional Pigs. J. Comp. Pathol. 2012, 147, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Salmon, H.; Berri, M.; Gerdts, V.; Meurens, F. Humoral and Cellular Factors of Maternal Immunity in Swine. Dev. Comp. Immunol. 2009, 33, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Haake, M.; Palzer, A.; Rist, B.; Weissenbacher-Lang, C.; Fachinger, V.; Eggen, A.; Ritzmann, M.; Eddicks, M. Influence of Age on the Effectiveness of PCV2 Vaccination in Piglets with High Levels of Maternally Derived Antibodies. Vet. Microbiol. 2014, 168, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Segalés, J.; Fraile, L.; López-Soria, S.; Sibila, M. Effect of High and Low Levels of Maternally Derived Antibodies on Porcine Circovirus Type 2 (PCV2) Infection Dynamics and Production Parameters in PCV2 Vaccinated Pigs under Field Conditions. Vaccine 2016, 34, 3044–3050. [Google Scholar] [CrossRef]
- Tassis, P.D.; Tsakmakidis, I.; Papatsiros, V.G.; Koulialis, D.; Nell, T.; Brellou, G.; Tzika, E.D. A Randomized Controlled Study on the Efficacy of a Novel Combination Vaccine against Enzootic Pneumonia (Mycoplasma hyopneumoniae) and Porcine Circovirus Type 2 (PCV2) in the Presence of Strong Maternally Derived PCV2 Immunity in Pigs. BMC Vet. Res. 2017, 13, 91. [Google Scholar] [CrossRef]
- Martelli, P.; Terreni, M.; Guazzetti, S.; Cavirani, S. Antibody Response to Mycoplasma hyopneumoniae Infection in Vaccinated Pigs with or without Maternal Antibodies Induced by Sow Vaccination. J. Vet. Med. Ser. B 2006, 53, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Bandrick, M.; Theis, K.; Molitor, T.W. Maternal Immunity Enhances Mycoplasma hyopneumoniae vaccination Induced Cell-Mediated Immune Responses in Piglets. BMC Vet. Res. 2014, 10, 124. [Google Scholar] [CrossRef] [PubMed]
- Arsenakis, I.; Panzavolta, L.; Michiels, A.; Del Pozo Sacristán, R.; Boyen, F.; Haesebrouck, F.; Maes, D. Efficacy of Mycoplasma hyopneumoniae Vaccination before and at Weaning against Experimental Challenge Infection in Pigs. BMC Vet. Res. 2016, 12, 63. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Boixaderas, N.; Garza-Moreno, L.; Sibila, M.; Segalés, J. Impact of Maternally Derived Immunity on Immune Responses Elicited by Piglet Early Vaccination against the Most Common Pathogens Involved in Porcine Respiratory Disease Complex. Porc. Health Manag. 2022, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Fuertes, M.; Correa-Fiz, F.; Fraile, L.; Sibila, M.; Aragon, V. Altered Nasal Microbiota Composition Associated with Development of Polyserositis by Mycoplasma hyorhinis. Pathogens 2021, 10, 603. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.S.; Pors, S.E.; Jensen, H.E.; Bille-Hansen, V.; Bisgaard, M.; Flachs, E.M.; Nielsen, O.L. An Investigation of the Pathology and Pathogens Associated with Porcine Respiratory Disease Complex in Denmark. J. Comp. Pathol. 2010, 143, 120–131. [Google Scholar] [CrossRef]
- Kixmöller, M.; Ritzmann, M.; Eddicks, M.; Saalmüller, A.; Elbers, K.; Fachinger, V. Reduction of PMWS-Associated Clinical Signs and Co-Infections by Vaccination against PCV2. Vaccine 2008, 26, 3443–3451. [Google Scholar] [CrossRef] [PubMed]
- Makhanon, M.; Tummaruk, P.; Thongkamkoon, P.; Thanawongnuwech, R.; Prapasarakul, N. Comparison of Detection Procedures of Mycoplasma hyopneumoniae, Mycoplasma hyosynoviae, and Mycoplasma hyorhinis in Lungs, Tonsils, and Synovial Fluid of Slaughtered Pigs and Their Distributions in Thailand. Trop. Anim. Health Prod. 2012, 44, 313–318. [Google Scholar] [CrossRef]
- Martín-Jiménez, T. Farmacocinética I: Absorción y distribución. In Farmacología y Terapéutica Veterinaria; Botana, L.M., Landoni, F., Martín-Jiménez, T., Eds.; McGRAW-Hill Interamericana de España, S.A.U.: Madrid, Spain, 2002; Volume 1, pp. 33–43. ISBN 84-486-0471-7. [Google Scholar]
- Misinzo, G.; Delputte, P.L.; Meerts, P.; Lefebvre, D.J.; Nauwynck, H.J. Porcine Circovirus 2 Uses Heparan Sulfate and Chondroitin Sulfate B Glycosaminoglycans as Receptors for Its Attachment to Host Cells. J. Virol. 2006, 80, 3487–3494. [Google Scholar] [CrossRef]
- Sánchez, S.F. Antiparasitarios internos l. Fármacos Antihelmínticos: Bencimidazoles y Otros Nematodicidas. In Farmacología y Terapéutica Veterinaria; Botana, L.M., Landoni, F., Martin-Jimenez, T., Eds.; McGRAW-Hill Interamericana de España, S.A.U.: Madrid, Spain, 2002; Volume 1, pp. 517–530. ISBN 84-486-0471-7. [Google Scholar]
Group | Number of Animals | Experimental Treatment |
---|---|---|
1 | 5 | Experimental formula 1 mL (1 mg/mL of MPs)–IM |
2 | 5 | Experimental formula 3 mL (1 mg/mL of MPs)–O/N |
3 | 5 | Placebo–3 mL (1 mg/mL of MPs)–O/N |
4 | 5 | Commercial vaccine 1 mL (1 dose)–IM |
Event and/or Experimental Procedure | Day of the Event in Experimental Period | Duration of the Period (Days) | Number of Week | Sample |
---|---|---|---|---|
Time 0 (Acclimatization) | 1 | 10 | 1,2 | nasal swab/blood |
Time 1/first immunization and start of the experiment (administration of experimental formulations, placebo and commercial vaccine for each treatment) | 11 | 14 | 2,3 | nasal swab/blood |
Time 2 | 25 | 7 | 4 | nasal swab/blood |
Vaccine boosters (21 days after the 1st immunization) | 31 | 7 | 5 | - |
Time 3 | 38 | 7 | 6 | nasal swab/blood |
Experimental challenge | 45 | 7 | 7 | - |
Time 4/Vaccine boosters (42 days after the 1st immunization) | 52 | 7 | 8 | nasal swab/blood |
Time 5 | 68 | 16 | 9,10,11 | nasal swab/blood |
Time 6 (necropsy) | 80 | 12 | 11,12 | Bronchial swab/inguinal lymph node/blood |
Primers | Sequence |
---|---|
Fw PCV2 | 5′-GGGATGATCTACTGAGACTGTGTGA-3′ |
Rv PCV2 | 5′-GGGGAAAGGGTGACGAACT-3′ |
Probe PCV2 | 5′-/56-FAM/AATGGTACT/ZEN/CCTCAACTGCTGTCCCAGC/3IABkFQ/-3′ |
Fw M. hyop | 5′-GTCAAAGTCAAAGTCAGCAAAC-3′ |
Rv M. hyop | 5′-AGCTGTTCAAATGCTTGTCC-3′ |
Probe M. hyop | 5′-/5Cy5/ACCAGTTTC/TAO/CACTTCATCGCCTCA/3IAbRQSp/-3′ |
Fw M. hyor | 5′-CGGGATGTAGCAATACATTCAG-3′ |
Rv M. hyor | 5′-AGAGGCATGATGATTTGACGTC-3′ |
PCV2/M. hyopneumoniae | M. hyorhinis | |
---|---|---|
Method | Real Time qPCR Multiplex | Real Time PCR (Sybr Green) |
Temperature | 95 °C | 95 °C |
Time | 3 min | 3 min |
Cycles | 40 (95 °C for 15 s and 60 °C per 1 min) | 40 (95 °C for 15 s and 60 °C for 35 s) |
Element | Concentration (%) | |
---|---|---|
ChS + PRC-Antigens | Chc + PRC-Antigens | |
C | 41.35 | 68.01 |
N | 9.68 | 6.81 |
O | 44.4 | 25.17 |
S | 4.56 | 0.02 |
Total | 100 | 100 |
MPs + Antigen | Zeta Potential (mV) | Polydispersity (PdI) |
---|---|---|
Chc + M. hyorhinis | 48.2 | 0.595 |
ChS + M. hyorhinis | −21.7 | 0.314 |
Chc + M. hyopneumoniae | 44.7 | 0.712 |
ChS + M. hyopneumoniae | −38.8 | 0.210 |
Chc + PCV2 | 58.2 | 0.680 |
ChS + PCV2 | −39.1 | 0.293 |
Samples Obtained in the Post-Mortem Experimental Period (T6) during the Necropsy | ||||||
---|---|---|---|---|---|---|
Bronchial Swab | Inguinal Lymph Node | Sera | ||||
Pathogen | PCV2 | M. hyop. | M. hyor. | PCV2 | PCV2 | |
Animal (ID) | ||||||
1 | − | − | − | + | − | |
2 | − | + | + | + | − | |
3 | + | − | − | + | − | |
4 | + | − | + | + | − | |
5 | − | − | − | − | − | |
6 | + | − | + | − | − | |
7 | − | − | + | + | − | |
8 | − | − | − | − | − | |
9 | + | + | + | + | − | |
10 | − | + | + | + | − | |
11 | − | − | − | − | − | |
12 | + | − | − | + | − | |
13 | − | − | − | + | − | |
14 | + | − | + | − | − | |
15 | − | − | + | − | − | |
16 | − | − | + | + | − | |
17 | + | + | − | + | − | |
18 | − | − | − | + | − | |
19 | + | − | + | − | − | |
20 | − | − | − | − | − |
Pathogen | PCV2 | M. hyopneumoniae | M. hyorhinis | |
---|---|---|---|---|
Group | ||||
(1) Experimental formula (IM) | 1/5 | 1/5 | 0/5 | |
(2) Experimental formula (O/N) | 5/5 | 0/5 | 3/5 | |
(3) Placebo control (O/N) | 3/5 | 3/5 | 3/5 | |
(4) Commercial vaccine control (IM) | 3/5 | 0/5 | 3/5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arrieta-Mendoza, D.; Garces, B.; Hidalgo, A.A.; Neira, V.; Ramirez, G.; Neira-Carrillo, A.; Bucarey, S.A. Design of a New Vaccine Prototype against Porcine Circovirus Type 2 (PCV2), M. hyopneumoniae and M. hyorhinis Based on Multiple Antigens Microencapsulation with Sulfated Chitosan. Vaccines 2024, 12, 550. https://doi.org/10.3390/vaccines12050550
Arrieta-Mendoza D, Garces B, Hidalgo AA, Neira V, Ramirez G, Neira-Carrillo A, Bucarey SA. Design of a New Vaccine Prototype against Porcine Circovirus Type 2 (PCV2), M. hyopneumoniae and M. hyorhinis Based on Multiple Antigens Microencapsulation with Sulfated Chitosan. Vaccines. 2024; 12(5):550. https://doi.org/10.3390/vaccines12050550
Chicago/Turabian StyleArrieta-Mendoza, Darwuin, Bruno Garces, Alejandro A. Hidalgo, Victor Neira, Galia Ramirez, Andrónico Neira-Carrillo, and Sergio A. Bucarey. 2024. "Design of a New Vaccine Prototype against Porcine Circovirus Type 2 (PCV2), M. hyopneumoniae and M. hyorhinis Based on Multiple Antigens Microencapsulation with Sulfated Chitosan" Vaccines 12, no. 5: 550. https://doi.org/10.3390/vaccines12050550
APA StyleArrieta-Mendoza, D., Garces, B., Hidalgo, A. A., Neira, V., Ramirez, G., Neira-Carrillo, A., & Bucarey, S. A. (2024). Design of a New Vaccine Prototype against Porcine Circovirus Type 2 (PCV2), M. hyopneumoniae and M. hyorhinis Based on Multiple Antigens Microencapsulation with Sulfated Chitosan. Vaccines, 12(5), 550. https://doi.org/10.3390/vaccines12050550