Importance of Examining Incidentality in Vaccine Safety Assessment
Abstract
:1. Introduction
2. Analysis Should Be Performed Using Multiple Statistical Methods
3. Comparing Sex Ratios by Period Is Another Incidentality Analysis
4. The SCRI Should Not Be Viewed as a Subset of the SCCS
5. Vaccine Safety Should Not Be Assessed Solely Based on Incidentality Analysis
6. Incidentality Analysis Requires a Graph Illustrating Days from Vaccination to a Particular Adverse Event and Case Count
7. The Analyses of COVID-19 Vaccine Safety Have Areas for Improvement
8. Comparison of Sex Ratios by Period Is Suitable for Vaccine Safety Assessment in Low- and Middle-Income Countries (LMICs)
9. Evidence Is Necessary for Financial Support to Patients with Severe Adverse Events
10. Conclusions and Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Causality Assessment of an Adverse Event Following Immunization (AEFI): User Manual for the Revised WHO Classification, 2nd ed.; 2019 Update; World Health Organization: Geneva, Switzerland, 2019. Available online: https://iris.who.int/bitstream/handle/10665/340802/9789241516990-eng.pdf (accessed on 20 March 2024).
- Baker, M.A.; Lieu, T.A.; Li, L.; Hua, W.; Qiang, Y.; Kawai, A.T.; Fireman, B.H.; Martin, D.B.; Nguyen, M.D. A vaccine study design selection framework for the postlicensure rapid immunization safety monitoring program. Am. J. Epidemiol. 2015, 181, 608–618. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.L.; Hu, M.; Zhou, C.K.; Lloyd, P.C.; Amend, K.L.; Beachler, D.C.; Secora, A.; McMahill-Walraven, C.N.; Lu, Y.; Wu, Y.; et al. Risk of myocarditis and pericarditis after the COVID-19 mRNA vaccination in the USA: A cohort study in claims databases. Lancet 2022, 399, 2191–2199. [Google Scholar] [CrossRef] [PubMed]
- France, E.K.; Glanz, J.M.; Xu, S.; Davis, R.L.; Black, S.B.; Shinefield, H.R.; Zangwill, K.M.; Marcy, S.M.; Mullooly, J.P.; Jackson, L.A.; et al. Safety of the trivalent inactivated influenza vaccine among children: A population-based study. Arch. Pediatr. Adolesc. Med. 2004, 158, 1031–1036. [Google Scholar] [CrossRef] [PubMed]
- Yih, W.K.; Lieu, T.A.; Kulldorff, M.; Martin, D.; McMahill-Walraven, C.N.; Platt, R.; Selvam, N.; Selvan, M.; Lee, G.M.; Nguyenet, M. Intussusception risk after rotavirus vaccination in U.S. infants. N. Engl. J. Med. 2014, 370, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Farrington, C.P. Relative incidence estimation from case series for vaccine safety evaluation. Biometrics 1995, 51, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Whitaker, H.J.; Farrington, C.P.; Spiessens, B.; Musonda, P. Tutorial in biostatistics: The self-controlled case series method. Stat. Med. 2006, 25, 1768–1797. [Google Scholar] [CrossRef] [PubMed]
- Wasserstein, R.L.; Lazar, N.A. The ASA statement on p-values: Context, process, and purpose. Am. Stat. 2016, 70, 129–133. [Google Scholar] [CrossRef]
- Amrhein, V.; Greenland, S.; McShane, B. Scientists rise up against statistical significance. Nature 2019, 567, 305–307. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.Y.; Arshad, F.; Areia, C.; Alshammari, T.M.; Alghoul, H.; Casajust, P.; Li, X.; Dawoud, D.; Nyberg, F.; Pratt, N.; et al. Current approaches to vaccine safety using observational data: A rationale for the EUMAEUS (evaluating use of methods for adverse events under surveillance-for vaccines) study design. Front. Pharmacol. 2022, 13, 837632. [Google Scholar] [CrossRef] [PubMed]
- Suzumura, Y. Analysis of the association between BNT162b2 mRNA COVID-19 vaccination and deaths within 10 days after vaccination using the sex ratio in Japan. Cureus 2023, 15, e50144. [Google Scholar] [CrossRef]
- Hamamah, S.; Fignon, A.; Lansac, J. The effect of male factors in repeated spontaneous abortion: Lesson from in-vitro fertilization and intracytoplasmic sperm injection. Hum. Reprod. Update 1997, 3, 393–400. [Google Scholar] [CrossRef]
- Kharbanda, E.O.; Haapala, J.; DeSilva, M.; Vazquez-Benitez, G.; Vesco, K.K.; Naleway, A.L.; Lipkind, H.S. Spontaneous abortion following COVID-19 vaccination during pregnancy. JAMA 2021, 326, 1629–1631. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, E.; Takita, M.; Kami, M. Time-dependent changes in death reports and the sex ratio in the safety surveillance of SARS-CoV-2 vaccination in Japan, the United States, and European countries. Cureus 2022, 14, e23380. [Google Scholar] [CrossRef]
- Moulton, V.R. Sex hormones in acquired immunity and autoimmune disease. Front. Immunol. 2018, 9, 2279. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Iwagami, M.; Ono, S.; Michihata, N.; Uemura, K.; Yasunaga, H. A post-marketing safety assessment of COVID-19 mRNA vaccination for serious adverse outcomes using administrative claims data linked with vaccination registry in a city of Japan. Vaccine 2022, 40, 7622–7630. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Stewart, B.; Weintraub, E. Evaluating efficiency and statistical power of self-controlled case series and self-controlled risk interval designs in vaccine safety. J. Biopharm. Stat. 2016, 26, 686–693. [Google Scholar] [CrossRef]
- Whitaker, H.J.; Steer, C.D.; Farrington, C.P. Self-controlled case series studies: Just how rare does a rare non-recurrent outcome need to be? Biom. J. 2018, 60, 1110–1120. [Google Scholar] [CrossRef] [PubMed]
- Korves, C.; Izurieta, H.S.; Smith, J.; Zwain, G.M.; Powell, E.I.; Balajee, A.; Ryder, K.M.; Young-Xu, Y. Relative effectiveness of booster vs. 2-dose mRNA Covid-19 vaccination in the Veterans Health Administration: Self-controlled risk interval analysis. Vaccine 2022, 40, 4742–4747. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health, Labour and Welfare. New Coronavirus Vaccine Q&A: Who Should be Cautious about Receiving this Vaccine? Available online: https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/vaccine_qa.html#6 (accessed on 10 May 2024).
- Klein, N.P.; Lewis, N.; Goddard, K.; Fireman, B.; Zerbo, O.; Hanson, K.E.; Donahue, J.G.; Kharbanda, E.O.; Naleway, A.; Nelson, J.C.; et al. Surveillance for adverse events after COVID-19 mRNA vaccination. JAMA 2021, 326, 1390–1399. [Google Scholar] [CrossRef]
- Thomas, S.J.; Moreira, E.D., Jr.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Polack, F.P.; Zerbini, C.; et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine through 6 months. N. Engl. J. Med. 2021, 385, 1761–1773. [Google Scholar] [CrossRef]
- Karlstad, Ø.; Hovi, P.; Husby, A.; Härkänen, T.; Selmer, R.M.; Pihlström, N.; Hansen, J.V.; Nohynek, H.; Gunnes, N.; Sundström, A.; et al. SARS-CoV-2 Vaccination and myocarditis in a Nordic cohort study of 23 million residents. JAMA Cardiol. 2022, 7, 600–612. [Google Scholar] [CrossRef]
- Bettinger, J.A.; Sadarangani, M.; Serres, G.D.; Valiquette, L.; Vanderkooi, O.G.; Kellner, J.D.; Muller, M.P.; Top, K.A.; Isenor, J.E.; McGeer, A.; et al. The Canadian National Vaccine Safety Network: Surveillance of adverse events following immunisation among individuals immunised with the COVID-19 vaccine, a cohort study in Canada. BMJ Open 2022, 12, e051254. [Google Scholar] [CrossRef] [PubMed]
- Harris, D.A.; Hayes, K.N.; Zullo, A.R.; Mor, V.; Chachlani, P.; Deng, Y.; McCarthy, E.P.; Djibo, D.A.; McMahill-Walraven, C.N.; Gravenstein, S. Comparative risks of potential adverse events following COVID-19 mRNA vaccination among older US adults. JAMA Netw. Open 2023, 6, e2326852. [Google Scholar] [CrossRef] [PubMed]
- Yechezkel, M.; Mofaz, M.; Painsky, A.; Patalon, T.; Gazit, S.; Shmueli, E.; Yamin, D. Safety of the fourth COVID-19 BNT162b2 mRNA (second booster) vaccine: A prospective and retrospective cohort study. Lancet Respir. Med. 2023, 11, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Sadarangani, M.; Soe, P.; Shulha, H.P.; Valiquette, L.; Vanderkooi, O.G.; Kellner, J.D.; Muller, M.P.; Top, K.A.; Isenor, J.E.; McGeer, A.; et al. Safety of COVID-19 vaccines in pregnancy: A Canadian National Vaccine Safety (CANVAS) network cohort study. Lancet Infect. Dis. 2022, 22, 1553–1564. [Google Scholar] [CrossRef] [PubMed]
- Duijster, J.W.; Lieber, T.; Pacelli, S.; Van Balveren, L.; Ruijs, L.S.; Raethke, M.; Kant, A.; Van Hunsel, F. Sex-disaggregated outcomes of adverse events after COVID-19 vaccination: A Dutch cohort study and review of the literature. Front. Immunol. 2023, 14, 1078736. [Google Scholar] [CrossRef] [PubMed]
- Ghebremichael-Weldeselassie, Y.; Jabagi, M.J.; Botton, J.; Bertrand, M.; Baricault, B.; Drouin, J.; Weill, A.; Zureik, M.; Dray-Spira, R.; Farrington, P. A modified self-controlled case series method for event-dependent exposures and high event-related mortality, with application to COVID-19 vaccine safety. Stat. Med. 2022, 41, 1735–1750. [Google Scholar] [CrossRef] [PubMed]
- Wan, E.Y.F.; Ng, V.W.S.; Chang, R.S.K.; Yan, V.K.C.; Chui, C.S.L.; Wong, C.K.H.; Li, X.; Lai, F.T.T.; Chan, E.W.Y.; Hung, I.F.N.; et al. Association between the risk of seizure and COVID-19 vaccinations: A self-controlled case-series study. Epilepsia 2022, 63, 3100–3110. [Google Scholar] [CrossRef] [PubMed]
- Massari, M.; Spila Alegiani, S.; Morciano, C.; Spuri, M.; Marchione, P.; Felicetti, P.; Belleudi, V.; Poggi, F.R.; Lazzeretti, M.; Ercolanoni, M.; et al. Postmarketing active surveillance of myocarditis and pericarditis following vaccination with COVID-19 mRNA vaccines in persons aged 12 to 39 years in Italy: A multi-database, self-controlled case series study. PLoS Med. 2022, 19, e1004056. [Google Scholar] [CrossRef] [PubMed]
- Muller, I.; Consonni, D.; Crivicich, E.; Marco, F.D.; Currò, N.; Salvi, M. Increased risk of thyroid eye disease following Covid-19 vaccination. J. Clin. Endocrinol. Metab. 2024, 109, 516–526. [Google Scholar] [CrossRef]
- Schultze, A.; Martin, I.; Messina, D.; Bots, S.; Belitser, S.; José Carreras-Martínez, J.; Correcher-Martinez, E.; Urchueguía-Fornes, A.; Martín-Pérez, M.; García-Poza, P.; et al. A comparison of four self-controlled study designs in an analysis of COVID-19 vaccines and myocarditis using five European databases. Vaccine 2024, 42, 3039–3048. [Google Scholar] [CrossRef] [PubMed]
- Goddard, K.; Donahue, J.G.; Lewis, N.; Hanson, K.E.; Weintraub, E.S.; Fireman, B.; Klein, N.P. Safety of COVID-19 mRNA vaccination among young children in the vaccine safety datalink. Pediatrics 2023, 152, e2023061894. [Google Scholar] [CrossRef] [PubMed]
- Goddard, K.; Lewis, N.; Fireman, B.; Weintraub, E.; Shimabukuro, T.; Zerbo, O.; Boyce, T.G.; Oster, M.E.; Hanson, K.E.; Donahue, J.G.; et al. Risk of myocarditis and pericarditis following BNT162b2 and mRNA-1273 COVID-19 vaccination. Vaccine 2022, 40, 5153–5159. [Google Scholar] [CrossRef] [PubMed]
- Vasileiou, E.; Shi, T.; Kerr, S.; Robertson, C.; Joy, M.; Tsang, R.; McGagh, D.; Williams, J.; Hobbs, R.; de Lusignan, S.; et al. Investigating the uptake, effectiveness and safety of COVID-19 vaccines: Protocol for an observational study using linked UK national data. BMJ Open 2022, 12, e050062. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Miller, D.C.; Sun, Y.; Arnold, B.F.; Acharya, N.R. Risk of noninfectious uveitis after coronavirus disease 2019 vaccination in a United States claims database. Ophthalmology 2023, 130, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Raventós, B.; Roel, E.; Pistillo, A.; Martinez-Hernandez, E.; Delmestri, A.; Reyes, C.; Strauss, V.; Prieto-Alhambra, D.; Burn, E.; et al. Association between Covid-19 vaccination, SARS-CoV-2 infection, and risk of immune mediated neurological events: Population based cohort and self-controlled case series analysis. BMJ 2022, 376, e068373. [Google Scholar] [CrossRef] [PubMed]
- Akpandak, I.; Miller, D.C.; Sun, Y.; Arnold, B.F.; Kelly, J.D.; Acharya, N.R. Assessment of herpes zoster risk among recipients of COVID-19 vaccine. JAMA Netw. Open 2022, 5, e2242240. [Google Scholar] [CrossRef] [PubMed]
- Bots, S.H.; Riera-Arnau, J.; Belitser, S.V.; Messina, D.; Aragón, M.; Alsina, E.; Douglas, I.J.; Durán, C.E.; García-Poza, P.; Gini, R.; et al. Myocarditis and pericarditis associated with SARS-CoV-2 vaccines: A population-based descriptive cohort and a nested self-controlled risk interval study using electronic health care data from four European countries. Front. Pharmacol. 2022, 13, 1038043. [Google Scholar] [CrossRef]
- Hanson, K.E.; Goddard, K.; Lewis, N.; Fireman, B.; Myers, T.R.; Bakshi, N.; Weintraub, E.; Donahue, J.G.; Nelson, J.C.; Xu, S.; et al. Incidence of Guillain-Barré syndrome after COVID-19 vaccination in the vaccine safety datalink. JAMA Netw. Open 2022, 5, e228879. [Google Scholar] [CrossRef]
- Sisay, M.M.; Montesinos-Guevara, C.; Osman, A.K.; Saraswati, P.W.; Tilahun, B.; Ayele, T.A.; Ahmadizar, F.; Durán, C.E.; Sturkenboom, M.C.J.M.; van de Ven, P.; et al. COVID-19 vaccine safety monitoring studies in low- and middle-income countries (LMICs)-A systematic review of study designs and methods. Vaccines 2023, 11, 1035. [Google Scholar] [CrossRef]
- Pharmaceuticals and Medical Devices Agency. Outline of Relief Services for Adverse Health Effects. Available online: https://www.pmda.go.jp/english/relief-services/0002.html (accessed on 20 March 2024).
- Ministry of Health, Labour and Welfare. About Relief Services for Adverse Health Effects. 2024. Available online: https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/vaccine_kenkouhigaikyuusai.html (accessed on 20 March 2024).
- Ministry of Health, Labour and Welfare. Sickness/Disability Certification Committee. 2024. Available online: https://www.mhlw.go.jp/stf/shingi/shingi-shippei_127696_00001.html (accessed on 20 March 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzumura, Y. Importance of Examining Incidentality in Vaccine Safety Assessment. Vaccines 2024, 12, 555. https://doi.org/10.3390/vaccines12050555
Suzumura Y. Importance of Examining Incidentality in Vaccine Safety Assessment. Vaccines. 2024; 12(5):555. https://doi.org/10.3390/vaccines12050555
Chicago/Turabian StyleSuzumura, Yasusi. 2024. "Importance of Examining Incidentality in Vaccine Safety Assessment" Vaccines 12, no. 5: 555. https://doi.org/10.3390/vaccines12050555
APA StyleSuzumura, Y. (2024). Importance of Examining Incidentality in Vaccine Safety Assessment. Vaccines, 12(5), 555. https://doi.org/10.3390/vaccines12050555