Impact of Circulating Anti-Spike Protein Antibody Levels on Multi-Organ Long COVID Symptoms
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Clinical and Laboratory Data
2.3. Hypothesis and Aims
2.4. Statistical Analyses
3. Results
3.1. Vaccination Status and Long COVID Symptoms
3.2. Time-Dependent Decrease in Levels of Circulating SARS-CoV-2 Anti-Spike Protein Antibodies in the Two Groups
3.3. Determination of a Cutoff Value for Anti-Spike Protein Antibody Characterizing Vaccinated versus Unvaccinated Patients
3.4. Subgroup Analysis of Patients with Low versus High Anti-Spike Protein Antibody Levels
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vos, T.; Hanson, S.W.; Abbafati, C.; Aerts, J.G.; Al-Aly, Z.; Ashbaugh, C.; Ballouz, T.; Blyuss, O.; Bobkova, P.; Bonsel, G.; et al. Estimated Global Proportions of Individuals with Persistent Fatigue, Cognitive, and Respiratory Symptom Clusters Following Symptomatic COVID-19 in 2020 and 2021. JAMA 2022, 328, 1604–1615. [Google Scholar] [CrossRef] [PubMed]
- Fernández-de-las-Peñas, C.; Cancela-Cilleruelo, I.; Rodríguez-Jiménez, J.; Fuensalida-Novo, S.; Martín-Guerrero, J.D.; Pellicer-Valero, O.J.; de-la-Llave-Rincón, A.I. Trajectory of Post-COVID Self-Reported Fatigue and Dyspnoea in Individuals Who Had Been Hospitalized by COVID-19: The LONG-COVID-EXP Multicenter Study. Biomedicines 2023, 11, 1863. [Google Scholar] [CrossRef] [PubMed]
- Crook, H.; Raza, S.; Nowell, J.; Young, M.; Edison, P. Long Covid—Mechanisms, Risk Factors, and Management. BMJ 2021, 374, n1648. [Google Scholar] [CrossRef] [PubMed]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-Acute COVID-19 Syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Sudre, C.H.; Murray, B.; Varsavsky, T.; Graham, M.S.; Penfold, R.S.; Bowyer, R.C.; Pujol, J.C.; Klaser, K.; Antonelli, M.; Canas, L.S.; et al. Attributes and Predictors of Long COVID. Nat. Med. 2021, 27, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Dennis, A.; Wamil, M.; Alberts, J.; Oben, J.; Cuthbertson, D.J.; Wootton, D.; Crooks, M.; Gabbay, M.; Brady, M.; Hishmeh, L.; et al. Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: A prospective, community-based study. BMJ Open 2021, 11, 3048391. [Google Scholar] [CrossRef] [PubMed]
- Ledford, H. Do Vaccines Protect against Long COVID? What the Data Say. Nature 2021, 599, 546–548. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, A.; Iwagami, M.; Yasuhara, J.; Takagi, H.; Kuno, T. Protective Effect of COVID-19 Vaccination against Long COVID Syndrome: A Systematic Review and Meta-Analysis. Vaccine 2023, 41, 1783–1790. [Google Scholar] [CrossRef] [PubMed]
- Azzolini, E.; Levi, R.; Sarti, R.; Pozzi, C.; Mollura, M.; Mantovani, A.; Rescigno, M. Association between BNT162b2 Vaccination and Long COVID after Infections Not Requiring Hospitalization in Health Care Workers. JAMA 2022, 328, 676–678. [Google Scholar] [CrossRef]
- Al-Aly, Z.; Bowe, B.; Xie, Y. Long COVID after Breakthrough SARS-CoV-2 Infection. Nat. Med. 2022, 28, 1461–1467. [Google Scholar] [CrossRef]
- Ayoubkhani, D.; Bermingham, C.; Pouwels, K.B.; Glickman, M.; Nafilyan, V.; Zaccardi, F.; Khunti, K.; Alwan, N.A.; Walker, A.S. Trajectory of Long Covid Symptoms after Covid-19 Vaccination: Community Based Cohort Study. BMJ 2022, 377, e069676. [Google Scholar] [CrossRef] [PubMed]
- Strain, W.D.; Sherwood, O.; Banerjee, A.; Van der Togt, V.; Hishmeh, L.; Rossman, J. The Impact of COVID Vaccination on Symptoms of Long COVID: An International Survey of People with Lived Experience of Long COVID. Vaccines 2022, 10, 652. [Google Scholar] [CrossRef] [PubMed]
- Varnai, R.; Molnar, T.; Zavori, L.; Tőkés-Füzesi, M.; Illes, Z.; Kanizsai, A.; Csecsei, P. Serum Level of Anti-Nucleocapsid, but Not Anti-Spike Antibody, Is Associated with Improvement of Long COVID Symptoms. Vaccines 2022, 10, 165. [Google Scholar] [CrossRef] [PubMed]
- Wynberg, E.; Han, A.X.; Boyd, A.; van Willigen, H.D.G.; Verveen, A.; Lebbink, R.; van der Straten, K.; Kootstra, N.; van Gils, M.J.; Russell, C.; et al. The Effect of SARS-CoV-2 Vaccination on Post-Acute Sequelae of COVID-19 (PASC): A Prospective Cohort Study. Vaccine 2022, 40, 4424–4431. [Google Scholar] [CrossRef]
- Gyöngyösi, M.; Lukovic, D.; Mester-Tonczar, J.; Zlabinger, K.; Einzinger, P.; Spannbauer, A.; Schweiger, V.; Schefberger, K.; Samaha, E.; Bergler-Klein, J.; et al. Effect of Monovalent COVID-19 Vaccines on Viral Interference between SARS-CoV-2 and Several DNA Viruses in Patients with Long-COVID Syndrome. NPJ Vaccines 2023, 8, 145. [Google Scholar] [CrossRef] [PubMed]
- Hayes, L.D.; Ingram, J.; Sculthorpe, N.F. More Than 100 Persistent Symptoms of SARS-CoV-2 (Long COVID): A Scoping Review. Front. Med. 2021, 8, 750378. [Google Scholar] [CrossRef]
- Munblit, D.; Nicholson, T.; Akrami, A.; Apfelbacher, C.; Chen, J.; De Groote, W.; Diaz, J.V.; Gorst, S.L.; Harman, N.; Kokorina, A.; et al. A Core Outcome Set for Post-COVID-19 Condition in Adults for Use in Clinical Practice and Research: An International Delphi Consensus Study. Lancet Respir. Med. 2022, 10, 715–724. [Google Scholar] [CrossRef]
- Parotto, M.; Gyöngyösi, M.; Howe, K.; Myatra, S.N.; Ranzani, O.; Shankar-Hari, M.; Herridge, M.S. Post-Acute Sequelae of COVID-19: Understanding and Addressing the Burden of Multisystem Manifestations. Lancet Respir. Med. 2023, 11, 739–754. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Liu, J.; Liu, M. Effect of COVID-19 Vaccines on Reducing the Risk of Long COVID in the Real World: A Systematic Review and Meta-Analysis. Int. J. Env. Res. Public Health 2022, 19, 12422. [Google Scholar] [CrossRef]
- Notarte, K.I.; Catahay, J.A.; Velasco, J.V.; Pastrana, A.; Ver, A.T.; Pangilinan, F.C.; Peligro, P.J.; Casimiro, M.; Guerrero, J.J.; Gellaco, M.M.L.; et al. Impact of COVID-19 Vaccination on the Risk of Developing Long-COVID and on Existing Long-COVID Symptoms: A Systematic Review. EClinicalMedicine 2022, 53, 101624. [Google Scholar] [CrossRef]
- Desimmie, B.A.; Raru, Y.Y.; Awadh, H.M.; He, P.; Teka, S.; Willenburg, K.S. Insights into SARS-CoV-2 Persistence and Its Relevance. Viruses 2021, 13, 1025. [Google Scholar] [CrossRef] [PubMed]
- Scherlinger, M.; Pijnenburg, L.; Chatelus, E.; Arnaud, L.; Gottenberg, J.E.; Sibilia, J.; Felten, R. Effect of SARS-CoV-2 Vaccination on Symptoms from Post-Acute Sequelae of COVID-19: Results from the Nationwide VAXILONG Study. Vaccines 2021, 10, 46. [Google Scholar] [CrossRef] [PubMed]
- Sigfrid, L.; Drake, T.M.; Pauley, E.; Jesudason, E.C.; Olliaro, P.; Lim, W.S.; Gillesen, A.; Berry, C.; Lowe, D.J.; McPeake, J.; et al. Long Covid in Adults Discharged from UK Hospitals after COVID-19: A Prospective, Multicentre Cohort Study Using the ISARIC WHO Clinical Characterisation Protocol. Lancet Reg. Health Eur. 2021, 8, 100186. [Google Scholar] [CrossRef] [PubMed]
- Cervia, C.; Zurbuchen, Y.; Taeschler, P.; Ballouz, T.; Menges, D.; Hasler, S.; Adamo, S.; Raeber, M.E.; Bächli, E.; Rudiger, A.; et al. Immunoglobulin Signature Predicts Risk of Post-Acute COVID-19 Syndrome. Nat. Commun. 2022, 13, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sonnweber, T.; Tymoszuk, P.; Sahanic, S.; Boehm, A.; Pizzini, A.; Luger, A.; Schwabl, C.; Nairz, M.; Grubwieser, P.; Kurz, K.; et al. Investigating Phenotypes of Pulmonary COVID-19 Recovery: A Longitudinal Observational Prospective Multicenter Trial. Elife 2022, 11, e72500. [Google Scholar] [CrossRef] [PubMed]
- Molnar, T.; Varnai, R.; Schranz, D.; Zavori, L.; Peterfi, Z.; Sipos, D.; Tőkés-füzesi, M.; Illes, Z.; Buki, A.; Csecsei, P. Severe Fatigue and Memory Impairment Are Associated with Lower Serum Level of Anti-SARS-CoV-2 Antibodies in Patients with Post-COVID Symptoms. J. Clin. Med. 2021, 10, 4337. [Google Scholar] [CrossRef]
- Blomberg, B.; Mohn, K.G.I.; Brokstad, K.A.; Zhou, F.; Linchausen, D.W.; Hansen, B.A.; Lartey, S.; Onyango, T.B.; Kuwelker, K.; Sævik, M.; et al. Long COVID in a Prospective Cohort of Home-Isolated Patients. Nat. Med. 2021, 27, 1607. [Google Scholar] [CrossRef]
Variable | Total n = 198 | Vaccinated n = 138 | Unvaccinated n = 60 | p-Value |
---|---|---|---|---|
Age (years) | 45.1 ± 14.2 | 45.5 ± 14.7 | 44.3 ± 13.2 | 0.603 |
Female (%) | 139 (70.2) | 96 (69.6) | 43 (71.7) | 0.766 |
BMI (kg/m2) | 25.3 ± 5.2 | 24.9 ± 4.9 | 26.2 ± 5.8 | 0.165 |
Hypertension (%) | 73 (36.9) | 53 (38.4) | 20 (33.3) | 0.497 |
Diabetes mellitus (%) | 8 (4.0) | 7 (5.1) | 2 (1.7) | 0.263 |
Hyperlipidemia (%) | 55 (27.8) | 38 (27.5) | 17 (28.3) | 0.908 |
Family history for CVD (%) | 29 (14.6) | 21 (15.2) | 8 (13.3) | 0.730 |
Symptom Class (%) | 0.014 | |||
I | 88 (44.4) | 69 (50.0) | 19 (31.7) | |
II | 82 (41.4) | 55 (39.9) | 27 (45.0) | |
III | 28 (14.1) | 14 (10.1) | 14 (23.3) | |
Anti-SARS-CoV2-spike (BAU/mL) | 1487 ± 1109 | 1925 ± 938 | 481 ± 768 | <0.001 |
Days from infection to blood sampling (d) | 246 ± 152 | 269 ± 151 | 193 ± 140 | 0.001 |
Days from infection to vaccination (d) | 110 ± 167 | |||
Vaccine prior to infection (%) | 23 (11.6) | 23 (16.7) | 0 (0) | - |
Vaccine doses (%) | <0.001 | |||
0 | 60 (30.3) | 0 (0.0) | 60 (100) | |
1 | 43 (21.7) | 43 (31.2) | ||
2 | 57 (28.8) | 57 (41.3) | ||
3 | 34 (17.2) | 34 (24.6) | ||
4 | 4 (2.0) | 4 (2.9) | ||
First vaccine type (%) | - | |||
AstraZeneca | 20 (10.1) | 20 (14.5) | ||
Janssen | 2 (1.0) | 2 (1.4) | ||
Moderna | 12 (6.1) | 12 (8.7) | ||
Pfizer-BioNTech | 104 (52.5) | 104 (74.4) | ||
NT-proBNP (mg/dL) | 89.1 ± 164 | 94.8 ± 184.5 | 76.4 ± 104.4 | 0.425 |
CRP (µg/mL) | 0.2 ± 0.3 | 0.2 ± 0.32 | 0.21 ± 0.28 | 0.668 |
TSH (mIU/L) | 1.52 ± 0.81 | 1.53 ± 0.83 | 1.49 ± 0.78 | 0.812 |
IgG (mg/dL) | 1126 ± 300 | 1104 ± 239 | 1177 ± 404 | 0.115 |
Cholesterol (mg/dL) | 199 ± 42 | 197 ± 42 | 202 ± 41 | 0.527 |
Triglycerides (mg/dL) | 115.65 ± 78.15 | 108 ± 71 | 134 ± 91 | 0.122 |
Lp(a) (mg/dL) | 49 ± 75 | 55 ± 82 | 36 ± 53 | 0.346 |
CK (U/L) | 99 ± 58 | 96 ± 51 | 106 ± 72 | 0.801 |
Procalcitonin (ng/mL) | 0.03 ± 0.03 | 0.03 ± 0.02 | 0.03 ± 0.03 | 0.930 |
Ferritin (ng/mL) | 118 ± 122 | 122 ± 125 | 111 ± 116 | 0.250 |
D-Dimer (mg/L FEU) | 0.27 ± 0.38 | 0.31 ± 0.42 | 0.18 ± 0.21 | 0.086 |
IgA (mg/dL) | 207 ± 100 | 204 ± 101 | 217 ± 97 | 0.348 |
Fibrinogen (mg/dL) | 319 ± 67 | 320 ± 69 | 318 ± 63 | 0.964 |
aPTT (s) | 35.3 ± 3.6 | 35.4 ± 3.7 | 35.1 ± 3.5 | 0.947 |
Thrombocytes (/nL) | 261 ± 54 | 260 ± 56 | 262 ± 50 | 0.816 |
Hemoglobin (g/dL) | 14.35 ± 2.36 | 14.4 ± 2.55 | 14.24 ± 1.92 | 0.945 |
Variable | Low Anti-Spike Level (<665.5 BAU/mL) n = 73 | High Anti-Spike Level (≥665.5 BAU/mL) n = 125 | p-Value |
---|---|---|---|
Vaccinated (%) | 27 (37.0) | 111 (88.8) | <0.001 |
Female (%) | 53 (72.6) | 86 (68.8) | 0.572 |
Hypertension (%) | 26 (35.6) | 47 (37.6) | 0.780 |
Diabetes mellitus (%) | 1 (1.4) | 7 (5.6) | 0.145 |
Hyperlipidemia (%) | 18 (24.7) | 37 (29.6) | 0.454 |
Family history for CVD (%) | 8 (11.0) | 21 (16.8) | 0.262 |
Symptom Class (%) | 0.042 | ||
I | 24 (32.9) | 64 (51.2) | |
II | 36 (49.3) | 46 (36.8) | |
III | 13 (17.8) | 15 (12.0) | |
Vaccination (%) | 0 | 0 | <0.001 |
before COVID-19 | 3 (4.1) | 20 (16.0) | |
after COVID-19 | 24 (32.9) | 91 (72.8) | |
Vaccine doses (%) | <0.001 | ||
0 | 46 (63.0) | 14 (11.2) | |
1 | 11 (15.1) | 32 (25.6) | |
2 | 11 (15.2) | 46 (36.8) | |
3 | 5 (6.8) | 29 (23.2) | |
4 | 0 (0.0) | 4 (3.2) | |
First vaccine type (%) | 4 (5.5) | 16 (12.8) | - |
Astra Zeneca | 0 (0) | 2 (1.6) | |
Janssen | 1 (1.4) | 11 (8.8) | |
Moderna | 22 (30.1) | 82 (65.6) | |
Pfizer-BioNTech | 46 (63.0) | 14 (11.2) | |
SARS-CoV-2 anti-spike (BAU/mL) | 146 ± 166 | 2270 ± 514 | <0.001 |
Age (y) | 44.0 ± 13.8 | 45.8 ± 14.4 | 0.399 |
BMI (kg/m2) | 24.9 ± 5.03 | 25.5 ± 5.24 | 0.496 |
Days from infection (d) | 189 ± 140 | 280 ± 149 | <0.001 |
NT-proBNP (mg/dL) | 73 ± 96.3 | 98.8 ± 193.3 | 0.198 |
CRP (µg/mL) | 0.22 ± 0.31 | 0.19 ± 0.3 | 0.573 |
TSH (mIU/L) | 1.47 ± 0.71 | 1.54±0.87 | 0.555 |
IgG (mg/dL) | 1116 ± 232 | 1132 ± 334 | 0.712 |
Cholesterol (mg/dL) | 201 ± 42 | 197 ± 42 | 0.445 |
Triglycerides (mg/dL) | 117 ± 76 | 115 ± 80 | 0.669 |
Lp(a) (mg/dL) | 36.1 ± 56.2 | 56.7 ± 84.0 | 0.448 |
CK (U/L) | 96.6 ± 67.9 | 100.7 ± 51.2 | 0.063 |
Procalcitonin (ng/mL) | 0.03 ± 0.03 | 0.03 ± 0.02 | 0.774 |
Ferritin (ng/mL) | 145 ±164 | 102 ± 86 | 0.236 |
D-Dimer (mg/L FEU) | 0.24±0.29 | 0.29±0.41 | 0.796 |
IgA (mg/dL) | 209 ± 90 | 207 ± 106 | 0.685 |
Fibrinogen (mg/dL) | 318.4 ± 65.2 | 319.5 ± 68,4 | 0.982 |
aPTT (s) | 35.1 ± 3.8 | 35.4 ± 3.5 | 0.754 |
Thrombocytes (/nL) | 258 ± 52 | 261 ± 55 | 0.674 |
Hemoglobin (g/dL) | 14.19 ± 1.79 | 14.44 ± 2.65 | 0.737 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamzaraj, K.; Han, E.; Hasimbegovic, E.; Poschenreiter, L.; Vavrikova, A.; Lukovic, D.; Kastrati, L.; Bergler-Klein, J.; Gyöngyösi, M. Impact of Circulating Anti-Spike Protein Antibody Levels on Multi-Organ Long COVID Symptoms. Vaccines 2024, 12, 610. https://doi.org/10.3390/vaccines12060610
Hamzaraj K, Han E, Hasimbegovic E, Poschenreiter L, Vavrikova A, Lukovic D, Kastrati L, Bergler-Klein J, Gyöngyösi M. Impact of Circulating Anti-Spike Protein Antibody Levels on Multi-Organ Long COVID Symptoms. Vaccines. 2024; 12(6):610. https://doi.org/10.3390/vaccines12060610
Chicago/Turabian StyleHamzaraj, Kevin, Emilie Han, Ena Hasimbegovic, Laura Poschenreiter, Anja Vavrikova, Dominika Lukovic, Lisbona Kastrati, Jutta Bergler-Klein, and Mariann Gyöngyösi. 2024. "Impact of Circulating Anti-Spike Protein Antibody Levels on Multi-Organ Long COVID Symptoms" Vaccines 12, no. 6: 610. https://doi.org/10.3390/vaccines12060610
APA StyleHamzaraj, K., Han, E., Hasimbegovic, E., Poschenreiter, L., Vavrikova, A., Lukovic, D., Kastrati, L., Bergler-Klein, J., & Gyöngyösi, M. (2024). Impact of Circulating Anti-Spike Protein Antibody Levels on Multi-Organ Long COVID Symptoms. Vaccines, 12(6), 610. https://doi.org/10.3390/vaccines12060610