Current Status of Poultry Recombinant Virus Vector Vaccine Development
Abstract
:1. Introduction
2. Various Important Virus Vectors
2.1. Marek’s Disease Virus and Herpesvirus of Turkey
2.2. Fowl Poxvirus
2.3. Fowl Adenovirus
2.4. Newcastle Disease Virus
2.5. Other Recombinant Virus Vectors
Vector | Foreign Gene Insertion Site | Pathogen | Antigen/s | Inoculation Route | Efficacy | Ref. |
---|---|---|---|---|---|---|
FPV | - | ILTV | gB | SC | Provided 100% and 70% protection for mortality and morbidity. | [83] |
FPV | - | H7N3 | HA | SC | rFPV-H7/3002 can provide 100% protection for mortality and morbidity. rFPV-H7/2155 cannot provide effective protection. | [166] |
FPV | - | H5N1 | HA and NA | WW, IM, or SC | Provided 100% protection for mortality via WW, IM, and SC. | [167] |
FPV | Between the ORF161 and ORF162 | NDV | F | WW | Provided 100% protection against FPV for morbidity. Provided 66.7% protection against NDV for mortality and morbidity. | [64] |
FPV | - | H9N2 | HA | WW | No virus shedding was detected. | [168] |
FPV | - | IBV | S1 | WW | Provided 100% protection for mortality. | [169] |
FPV | - | IBDV | VP2 | WW | Provided 100% protection for bursa of Fabricius Lesions. | [63] |
FAdV-4 | C terminus of fiber-2 | H9N2 | HA | - | Viral shedding was reduced. | [106] |
FAdV-4 | fiber-2 | FAdV-8a | fiber | IM | Provided 100% protection for mortality. | [97] |
CELO (FAdV-1) | Between two XbaI restriction sites | IBDV | VP2 | SC or ID | Provided 100% protection for mortality and morbidity. | [113] |
FAdV-8 | Between two SpeI restriction sites or between SnaBI and XbaI restriction sites | IBV | S1 | Oral | rFAV-S1 DA3 can provide 92.3% protection strain Vic S for replicating challenge virus in the trachea. rFAV-S1 CA6-20 can provide 100% protection against strain N1/62 for replicating challenge virus in the trachea. | [98] |
FAdV-10 | - | IBDV | VP2 | IP, SC, IM | Provided 100% protection. | [100] |
NDV | Between the P and M genes | IBDV | VP2 | ON | Provided 100% protection for mortality and clinical signs. | [126] |
NDV | Between the P and M genes | HPAIV H5N6 | HA | ON | Provided 100% protection for mortality. | [141] |
NDV | Replace the original NDV HN gene | NDV | HN | ON | Provided 100% protection for mortality and clinical signs. | [150] |
NDV | Between the P and M genes | IBV | S1 | ON | Provided 100% protection against NDV for mortality and clinical signs; Provided 90% protection against IBV for mortality. | [144] |
NDV | Between the P and M genes | FAdV-4 | fiber-2 | IM | Provided 100% protection against NDV and FAdV-4 for mortality and clinical signs. | [96] |
NDV | Between the P and M genes | IBDV | VP2 | In ovo | Provided 100% protection against NDV for mortality. Provided 83.3% and 100% protection against IBDV for mortality. | [125] |
NDV | Between the P and M genes | MDV | gB, gC, gE or gI | ON | The recombinant expressing the MDV gB protein provided about 90% and 70% protection against MD-induced tumor formation, respectively. Provided 100% protection against NDV for mortality and clinical signs. | [127] |
NDV | Between the P and M genes | HPAI H7N9 | HA | IN | Provided 100% protection against NDV for mortality. Provided 80% protection against HPAI for mortality and clinical signs. | [143] |
NDV | Between the P and M genes | ILTV | gB, gC, or gD | ON | Provided 100% protection against NDV for mortality and clinical signs. rNDV expressing ILTV gD provided 100% protection against ILTV for mortality. | [148] |
HVT | - | HPAI H5N1 | Recombinant H5 | SC or IM | Provided 100% protection for mortality (Except for MDA chickens). | [5] |
HVT | - | IBDV | VP2 | In ovo | Provided 100% protection for mortality and bursa of Fabricius Lesions. | [170] |
HVT | UL45-46 | Chlamydia psittaci | N-terminal fragment of PmpD protein | SC | Provided 100% protection against MDV for mortality, tumor formation, organ lesions, and clinical signs. Provided effective protection against Chlamydia psittaci. | [171] |
HVT | - | HPAI H5 | HA | SC | Provided 100% protection against homologous HPAI H5 for mortality and clinical signs. | [172] |
HVT | US2 | NDV | F | SC | Provided 70% protection against NDV for mortality. | [19] |
HVT | Between HVT065 and HVT066 gene | HPAI H7N9 | HA | SC | Provided 90% protection for mortality and clinical signs. | [173] |
HVT | - | NDV IBDV | F and VP2 | SC | Provided 100% protection against NDV for mortality and clinical signs. | [174] |
HVT | Between UL45 and UL46 gene | NDV | F and HN | SC | Provided 100% protection against genotype IV NDV for mortality and clinical signs in SPF chicken. Provided 95% and 90% protection against genotype IV NDV for mortality and clinical signs in broiler chickens, respectively. Provided 100% protection against genotype VIIb NDV for mortality and clinical signs in broiler chickens, respectively. | [175] |
HVT | Between UL45 and UL46 gene | H9N2 | HA | SC | Provided 100% protection against H9N2 for clinical signs in SPF chicken. No virus shedding was detected. | [34] |
HVT | US2 | NDV ILT | F, gD and gI | in ovo or SC | Provided over 95% protection against velogenic NDV strain Texas GB for mortality and clinical signs. Provided over 85% protection against USDA strain ILTV 96-3 for mortality and clinical signs. Provided over 80% protection against MDV GA5 strain for clinical signs. | [16] |
HVT | Between UL55 and UL56 gene | IBDV | VP2 | SC | Provided 100% and 70% protection for mortality and clinical signs, respectively. | [31] |
HVT | UL45–UL46 | NDV | F | SC | Provided 100% protection for mortality and clinical signs. | [26] |
MDV-1 | UL41, US2, US10 | IBDV | VP2 | SC | Only r814US2VP2 provided 100% protection against vvIBDV for mortality, clinical signs, and bursal lesions. All rMDV provided 100% protection against vvMDV for mortality and clinical signs. | [22] |
MDV-1 | US2 | ALV-J | env gene or gag-IRES-env | SC | Provided effective protection for viremia and development of the bursa of Fabricius in SPF chickens. | [36] |
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Romanutti, C.; Keller, L.; Zanetti, F.A. Current status of virus-vectored vaccines against pathogens that affect poultry. Vaccine 2020, 38, 6990–7001. [Google Scholar] [CrossRef]
- Hein, R.; Koopman, R.; Garcia, M.; Armour, N.; Dunn, J.R.; Barbosa, T.; Martinez, A. Review of Poultry Recombinant Vector Vaccines. Avian Dis. 2021, 65, 438–452. [Google Scholar] [CrossRef] [PubMed]
- McCann, N.; O’Connor, D.; Lambe, T.; Pollard, A.J. Viral vector vaccines. Curr. Opin. Immunol. 2022, 77, 102210. [Google Scholar] [CrossRef] [PubMed]
- Bublot, M.; Pritchard, N.; Le Gros, F.X.; Goutebroze, S. Use of a vectored vaccine against infectious bursal disease of chickens in the face of high-titred maternally derived antibody. J. Comp. Pathol. 2007, 137 (Suppl. S1), S81–S84. [Google Scholar] [CrossRef] [PubMed]
- Reemers, S.; Verstegen, I.; Basten, S.; Hubers, W.; van de Zande, S. A broad spectrum HVT-H5 avian influenza vector vaccine which induces a rapid onset of immunity. Vaccine 2021, 39, 1072–1079. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Liu, Q.; Niu, S.; Huang, D.; Yan, D.; Teng, Q.; Li, X.; Beerens, N.; Forlenza, M.; de Jong, M.C.M.; et al. Efficacy of a recombinant turkey herpesvirus (H9) vaccine against H9N2 avian influenza virus in chickens with maternal-derived antibodies. Front. Microbiol. 2022, 13, 1107975. [Google Scholar] [CrossRef] [PubMed]
- Esaki, M.; Noland, L.; Eddins, T.; Godoy, A.; Saeki, S.; Saitoh, S.; Yasuda, A.; Dorsey, K.M. Safety and efficacy of a turkey herpesvirus vector laryngotracheitis vaccine for chickens. Avian Dis. 2013, 57, 192–198. [Google Scholar] [CrossRef] [PubMed]
- El-Hamid, H.S.; Ellakany, H.; Elbestawy, A.R.; Setta, A. The combined use of rHVT-H5 and rHVT-F vector vaccines in the hatchery enhances immunity against highly pathogenic avian influenza H5N1 and velogenic newcastle disease viral infections in commercial chickens. Poult. Sci. J. 2018, 6, 165–171. [Google Scholar]
- Williams, C.J.; Hopkins, B.A. Field evaluation of the accuracy of vaccine deposition by two different commercially available in ovo injection systems. Poult Sci. 2011, 90, 223–226. [Google Scholar] [CrossRef]
- Yu, Z.H.; Zhang, Y.H.; Li, Z.D.; Yu, Q.Z.; Jia, Y.Y.; Yu, C.; Chen, J.; Chen, S.B.; He, L. Rapid construction of infectious clones for distinct Newcastle disease virus genotypes. Front. Vet. Sci. 2023, 10, 1178801. [Google Scholar] [CrossRef]
- Liu, H.J.; Albina, E.; Gil, P.; Minet, C.; de Almeida, R.S. Two-plasmid system to increase the rescue efficiency of paramyxoviruses by reverse genetics: The example of rescuing Newcastle Disease Virus. Virology 2017, 509, 42–51. [Google Scholar] [CrossRef]
- Calnek, B.W. Pathogenesis of Marek’s disease virus infection. Curr. Top. Microbiol. 2001, 255, 25–55. [Google Scholar]
- McPherson, M.C.; Delany, M.E. Virus and host genomic, molecular, and cellular interactions during Marek’s disease pathogenesis and oncogenesis. Poult. Sci. 2016, 95, 412–429. [Google Scholar] [CrossRef] [PubMed]
- van Hulten, M.C.W.; Cruz-Coy, J.; Gergen, L.; Pouwels, H.; ten Dam, G.B.; Verstegen, I.; de Groof, A.; Morsey, M.; Tarpey, I. Efficacy of a turkey herpesvirus double construct vaccine (HVT-ND-IBD) against challenge with different strains of Newcastle disease, infectious bursal disease and Marek’s disease viruses. Avian Pathol. 2021, 50, 18–30. [Google Scholar] [CrossRef]
- Tang, N.; Zhang, Y.Y.; Sadigh, Y.; Moffat, K.; Shen, Z.Q.; Nair, V.; Yao, Y.X. Generation of A Triple Insert Live Avian Herpesvirus Vectored Vaccine Using CRISPR/Cas9-Based Gene Editing. Vaccines 2020, 8, 97. [Google Scholar] [CrossRef] [PubMed]
- Gergen, L.; Cook, S.; Ledesma, B.; Cress, W.; Higuchi, D.; Counts, D.; Cruz-Coy, J.; Crouch, C.; Davis, P.; Tarpey, I.; et al. A double recombinant herpes virus of turkeys for the protection of chickens against Newcastle, infectious laryngotracheitis and Marek’s diseases. Avian Pathol. 2019, 48, 45–56. [Google Scholar] [CrossRef]
- Bertzbach, L.D.; Conradie, A.M.; You, Y.; Kaufer, B.B. Latest Insights into Marek’s Disease Virus Pathogenesis and Tumorigenesis. Cancers 2020, 12, 647. [Google Scholar] [CrossRef]
- Osterrieder, N.; Kamil, J.P.; Schumacher, D.; Tischer, B.K.; Trapp, S. Marek’s disease virus: From miasma to model. Nat. Rev. Microbiol. 2006, 4, 283–294. [Google Scholar] [CrossRef]
- Jia, W.F.; Zhang, X.H.; Wang, H.R.; Teng, Q.Y.; Xue, J.; Zhang, G.Z. Construction and immune efficacy of a recombinant turkey herpesvirus vaccine strain expressing fusion protein of genotype VII Newcastle disease virus. Vet. Microbiol. 2022, 268, 109429. [Google Scholar] [CrossRef]
- Gao, H.B.; Cui, H.Y.; Cui, X.L.; Shi, X.M.; Zhao, Y.; Zhao, X.Y.; Quan, Y.M.; Yan, S.A.; Zeng, W.W.; Wang, Y.F. Expression of HA of HPAI H5N1 Virus at US2 Gene Insertion Site of Turkey Herpesvirus Induced Better Protection than That at US10 Gene Insertion Site. PLoS ONE 2011, 6, e22549. [Google Scholar] [CrossRef]
- Zai, X.S.; Shi, B.; Shao, H.X.; Qian, K.; Ye, J.Q.; Yao, Y.X.; Nair, V.; Qin, A.J. Identification of a Novel Insertion Site HVT-005/006 for the Generation of Recombinant Turkey Herpesvirus Vector. Front. Microbiol. 2022, 13, 886873. [Google Scholar] [CrossRef]
- Li, K.; Liu, Y.Z.; Liu, C.J.; Gao, L.; Zhang, Y.P.; Cui, H.Y.; Gao, Y.L.; Qi, X.L.; Zhong, L.; Wang, X.M. Recombinant Marek’s disease virus type 1 provides full protection against very virulent Marek’s and infectious bursal disease viruses in chickens. Sci. Rep. 2016, 6, 39263. [Google Scholar] [CrossRef]
- Chang, P.X.; Ameen, F.; Sealy, J.E.; Sadeyen, J.R.; Bhat, S.; Li, Y.Q.; Iqbal, M. Application of HDR-CRISPR/Cas9 and Erythrocyte Binding for Rapid Generation of Recombinant Turkey Herpesvirus-Vectored Avian Influenza Virus Vaccines. Vaccines 2019, 7, 192. [Google Scholar] [CrossRef] [PubMed]
- Apinda, N.; Yao, Y.X.; Zhang, Y.Y.; Muenthaisong, A.; Sangkakam, K.; Nambooppha, B.; Rittipornlertrak, A.; Koonyosying, P.; Nair, V.; Sthitmatee, N. Efficiency of NHEJ-CRISPR/Cas9 and Cre-LoxP Engineered Recombinant Turkey Herpesvirus Expressing OmpH Protein for Fowl Cholera Prevention in Ducks. Vaccines 2023, 11, 1498. [Google Scholar] [CrossRef]
- Tang, N.; Zhang, Y.Y.; Pedrera, M.; Chang, P.X.; Baigent, S.; Moffat, K.; Shen, Z.Q.; Nair, V.; Yao, Y.X. A simple and rapid approach to develop recombinant avian herpesvirus vectored vaccines using CRISPR/Cas9 system. Vaccine 2018, 36, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Calderón, K.; Rojas-Neyra, A.; Carbajal-Lévano, B.; Luján-Valenzuela, L.; Ticona, J.; Isasi-Rivas, G.; Montalvan, A.; Criollo-Orozco, M.; Huaccachi-Gonzáles, E.; Tataje-Lavanda, L.; et al. A Recombinant Turkey Herpesvirus Expressing the F Protein of Newcastle Disease Virus Genotype XII Generated by NHEJ-CRISPR/Cas9 and Cre-LoxP Systems Confers Protection against Genotype XII Challenge in Chickens. Viruses 2022, 14, 793. [Google Scholar] [CrossRef]
- Panier, S.; Boulton, S.J. Double-strand break repair: 53BP1 comes into focus. Nat. Rev. Mol. Cell Biol. 2014, 15, 7–18. [Google Scholar] [CrossRef]
- Mali, P.; Yang, L.H.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-Guided Human Genome Engineering via Cas9. Science 2013, 339, 823–826. [Google Scholar] [CrossRef]
- Wang, H.Y.; Yang, H.; Shivalila, C.S.; Dawlaty, M.M.; Cheng, A.W.; Zhang, F.; Jaenisch, R. One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering. Cell 2013, 153, 910–918. [Google Scholar] [CrossRef]
- Yang, H.; Wang, H.Y.; Shivalila, C.S.; Cheng, A.W.; Shi, L.Y.; Jaenisch, R. One-Step Generation of Mice Carrying Reporter and Conditional Alleles by CRISPR/Cas-Mediated Genome Engineering. Cell 2013, 154, 1370–1379. [Google Scholar] [CrossRef]
- Shah, A.U.; Wang, Z.S.; Zheng, Y.T.; Guo, R.L.; Chen, S.S.; Xu, M.W.; Zhang, C.J.; Liu, Y.M.; Wang, J.C. Construction of a Novel Infectious Clone of Recombinant Herpesvirus of Turkey Fc-126 Expressing VP2 of IBDV. Vaccines 2022, 10, 1391. [Google Scholar] [CrossRef]
- Zhao, Y.; Petherbridge, L.; Smith, L.P.; Baigent, S.; Nair, V. Self-excision of the BAC sequences from the recombinant Marek’s disease virus genome increases replication and pathogenicity. Virol. J. 2008, 5, 19. [Google Scholar] [CrossRef]
- Su, S.; Cui, N.; Li, J.; Sun, P.; Li, H.; Li, Y.; Cui, Z. Deletion of the BAC sequences from recombinant meq-null Marek’s disease (MD) virus increases immunosuppression while maintaining protective efficacy against MD. Poult. Sci. 2016, 95, 1504–1512. [Google Scholar] [CrossRef]
- Liu, L.; Wang, T.; Wang, M.; Tong, Q.; Sun, Y.; Pu, J.; Sun, H.; Liu, J. Recombinant turkey herpesvirus expressing H9 hemagglutinin providing protection against H9N2 avian influenza. Virology 2019, 529, 7–15. [Google Scholar] [CrossRef]
- Li, K.; Liu, Y.Z.; Liu, C.J.; Gao, L.; Zhang, Y.P.; Gao, Y.L.; Cui, H.Y.; Qi, X.L.; Zhong, L.; Wang, X.M. Effects of different promoters on the protective efficacy of recombinant Marek’s disease virus type 1 expressing the VP2 gene of infectious bursal disease virus. Vaccine 2016, 34, 5744–5750. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Li, K.; Gao, Y.L.; Gao, L.; Zhong, L.; Zhang, Y.; Liu, C.J.; Zhang, Y.P.; Wang, X.M. Recombinant Marek’s Disease Virus as a Vector-Based Vaccine against Avian Leukosis Virus Subgroup J in Chicken. Viruses 2016, 8, 301. [Google Scholar] [CrossRef]
- Knickmann, J.; Staliunaite, L.; Puhach, O.; Ostermann, E.; Gunther, T.; Nichols, J.; Jarvis, M.A.; Voigt, S.; Grundhoff, A.; Davison, A.J.; et al. A simple method for rapid cloning of complete herpesvirus genomes. Cell Rep. Methods 2024, 4, 100696. [Google Scholar] [CrossRef]
- Zai, X.S.; Shi, B.; Shao, H.X.; Qian, K.; Ye, J.Q.; Yao, Y.X.; Nair, V.; Qin, A.J. Recombinant Turkey Herpesvirus Expressing H9N2 HA Gene at the HVT005/006 Site Induces Better Protection Than That at the HVT029/031 Site. Viruses 2022, 14, 2495. [Google Scholar] [CrossRef]
- Zhang, F.S.; Chen, W.Q.; Ma, C.T.; Zhang, Z.J.; Zhao, P.; Du, Y.; Zhang, Y.Y.; Duan, L.T.; Fang, J.; Li, S.F.; et al. Transcriptional activity comparison of different sites in recombinant Marek’s disease virus for the expression of the H9N2 avian influenza virus hemagglutinin gene. J. Virol. Methods 2014, 207, 138–145. [Google Scholar] [CrossRef]
- Tsukamoto, K.; Saito, S.; Saeki, S.; Sato, T.; Tanimura, N.; Isobe, T.; Mase, M.; Imada, T.; Yuasa, N.; Yamaguchi, S. Complete, long-lasting protection against lethal infectious bursal disease virus challenge by a single vaccination with an avian herpesvirus vector expressing VP2 antigens. J. Virol. 2002, 76, 5637–5645. [Google Scholar] [CrossRef]
- Sonoda, K.; Sakaguchi, M.; Okamura, H.; Yokogawa, K.; Tokunaga, E.; Tokiyoshi, S.; Kawaguchi, Y.; Hirai, K. Development of an effective polyvalent vaccine against both Marek’s and Newcastle diseases based on recombinant Marek’s disease virus type 1 in commercial chickens with maternal antibodies. J. Virol. 2000, 74, 3217–3226. [Google Scholar] [CrossRef]
- Sakaguchi, M.; Nakamura, H.; Sonoda, K.; Okamura, H.; Yokogawa, K.; Matsuo, K.; Hira, K. Protection of chickens with or without maternal antibodies against both Marek’s and Newcastle diseases by one-time vaccination with recombinant vaccine of Marek’s disease virus type 1. Vaccine 1998, 16, 472–479. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, Z.; Zhao, P.; Duan, L.; Zhang, Y.; Zhang, F.; Chen, W.; Cui, Z. Comparative transcriptional activity of five promoters in BAC-cloned MDV for the expression of the hemagglutinin gene of H9N2 avian influenza virus. J. Virol. Methods 2014, 206, 119–127. [Google Scholar] [CrossRef]
- Umthong, S.; Dunn, J.R.; Cheng, H.H. Towards a mechanistic understanding of the synergistic response induced by bivalent Marek’s disease vaccines to prevent lymphomas. Vaccine 2019, 37, 6397–6404. [Google Scholar] [CrossRef]
- Liao, Y.F.; Reddy, S.M.; Khan, O.A.; Sun, A.J.; Lupiani, B. A Novel Effective and Safe Vaccine for Prevention of Marek’s Disease Caused by Infection with a Very Virulent Plus (vv+) Marek’s Disease Virus. Vaccines 2021, 9, 159. [Google Scholar] [CrossRef]
- Ishihara, Y.; Esaki, M.; Saitoh, S.; Yasuda, A. Combination of Two Marek’s Disease Virus Vectors Shows Effective Vaccination Against Marek’s Disease, Infectious Bursal Disease, and Newcastle Disease. Avian Dis. 2016, 60, 473–479. [Google Scholar] [CrossRef]
- Haq, K.; Elawadli, I.; Parvizi, P.; Mallick, A.I.; Behboudi, S.; Sharif, S. Interferon-γ influences immunity elicited by vaccines against very virulent Marek’s disease virus. Antivir. Res. 2011, 90, 218–226. [Google Scholar] [CrossRef]
- Boodhoo, N.; Matsuyama-Kato, A.; Raj, S.; Fazel, F.; St-Denis, M.; Sharif, S. Effect of Pre-Treatment with a Recombinant Chicken Interleukin-17A on Vaccine Induced Immunity against a Very Virulent Marek’s Disease Virus. Viruses 2023, 15, 1633. [Google Scholar] [CrossRef]
- Gimeno, I.M. Marek’s disease vaccines: A solution for today but a worry for tomorrow? Vaccine 2008, 26, C31–C41. [Google Scholar] [CrossRef]
- Read, A.F.; Baigent, S.J.; Powers, C.; Kgosana, L.B.; Blackwell, L.; Smith, L.P.; Kennedy, D.A.; Walkden-Brown, S.W.; Nair, V.K. Imperfect Vaccination Can Enhance the Transmission of Highly Virulent Pathogens. PLoS Biol. 2015, 13, e1002198. [Google Scholar] [CrossRef]
- Gandon, S.; Mackinnon, M.J.; Nee, S.; Read, A.F. Imperfect vaccines and the evolution of pathogen virulence. Nature 2001, 414, 751–756. [Google Scholar] [CrossRef]
- Prow, N.A.; Jimenez Martinez, R.; Hayball, J.D.; Howley, P.M.; Suhrbier, A. Poxvirus-based vector systems and the potential for multi-valent and multi-pathogen vaccines. Expert. Rev. Vaccines 2018, 17, 925–934. [Google Scholar] [CrossRef]
- Wilken, L.; Stelz, S.; Agac, A.; Sutter, G.; Prajeeth, C.K.; Rimmelzwaan, G.F. Recombinant Modified Vaccinia Virus Ankara Expressing a Glycosylation Mutant of Dengue Virus NS1 Induces Specific Antibody and T-Cell Responses in Mice. Vaccines 2023, 11, 714. [Google Scholar] [CrossRef]
- Jasperse, B.; O’Connell, C.M.; Wang, Y.X.; Verardi, P.H. Single dose of a replication-defective vaccinia virus expressing Zika virus-like particles is protective in mice. Sci. Rep. 2021, 11, 6492. [Google Scholar] [CrossRef]
- Malherbe, D.C.; Domi, A.; Hauser, M.J.; Atyeo, C.; Fischinger, S.; Hyde, M.A.; Williams, J.M.; Alter, G.; Guirakhoo, F.; Bukreyev, A. A single immunization with a modified vaccinia Ankara vectored vaccine producing Sudan virus-like particles protects from lethal infection. NPJ Vaccines 2022, 7, 83. [Google Scholar] [CrossRef]
- Langenmayer, M.C.; Luelf-Averhoff, A.T.; Marr, L.; Jany, S.; Freudenstein, A.; Adam-Neumair, S.; Tscherne, A.; Fux, R.; Rojas, J.J.; Blutke, A.; et al. Newly Designed Poxviral Promoters to Improve Immunogenicity and Efficacy of MVA-NP Candidate Vaccines against Lethal Influenza Virus Infection in Mice. Pathogens 2023, 12, 867. [Google Scholar] [CrossRef]
- Villadiego, J.; Garcia-Arriaza, J.; Ramirez-Lorca, R.; Garcia-Swinburn, R.; Cabello-Rivera, D.; Rosales-Nieves, A.E.; Alvarez-Vergara, M.I.; Cala-Fernandez, F.; Garcia-Roldan, E.; Lopez-Ogayar, J.L.; et al. Full protection from SARS-CoV-2 brain infection and damage in susceptible transgenic mice conferred by MVA-CoV2-S vaccine candidate. Nat. Neurosci. 2023, 26, 226–238. [Google Scholar] [CrossRef]
- Afonso, C.L.; Tulman, E.R.; Lu, Z.; Zsak, L.; Kutish, G.F.; Rock, D.L. The genome of fowlpox virus. J. Virol. 2000, 74, 3815–3831. [Google Scholar] [CrossRef]
- Sprygin, A.; Mazloum, A.; van Schalkwyk, A.; Babiuk, S. Capripoxviruses, leporipoxviruses, and orthopoxviruses: Occurrences of recombination. Front. Microbio. 2022, 13, 978829. [Google Scholar] [CrossRef]
- Paoletti, E. Applications of pox virus vectors to vaccination: An update. Proc. Natl. Acad. Sci. USA 1996, 93, 11349–11353. [Google Scholar] [CrossRef]
- Moss, B. Poxvirus DNA replication. Cold Spring Harb. Perspect. Biol. 2013, 5, a010199. [Google Scholar] [CrossRef]
- Tartaglia, J.; Perkus, M.E.; Taylor, J.; Norton, E.K.; Audonnet, J.C.; Cox, W.I.; Davis, S.W.; van der Hoeven, J.; Meignier, B.; Riviere, M.; et al. NYVAC: A highly attenuated strain of vaccinia virus. Virology 1992, 188, 217–232. [Google Scholar] [CrossRef]
- Eldaghayes, I.; Rothwell, L.; Skinner, M.; Dayhum, A.; Kaiser, P. Efficacy of Fowlpox Virus Vector Vaccine Expressing VP2 and Chicken Interleukin-18 in the Protection against Infectious Bursal Disease Virus. Vaccines 2023, 11, 1716. [Google Scholar] [CrossRef]
- Zhao, Y.; Han, Z.; Zhang, X.; Zhang, X.; Sun, J.; Ma, D.; Liu, S. Construction and immune protection evaluation of recombinant virus expressing Newcastle disease virus F protein by the largest intergenic region of fowlpox virus NX10. Virus Genes 2020, 56, 734–748. [Google Scholar] [CrossRef]
- Okoli, A.; Okeke, M.I.; Tryland, M.; Moens, U. CRISPR/Cas9-Advancing Orthopoxvirus Genome Editing for Vaccine and Vector Development. Viruses 2018, 10, 50. [Google Scholar] [CrossRef]
- Gong, Y.; Chen, T.; Feng, N.; Meng, X.; Sun, W.; Wang, T.; Zhao, Y.; Yang, S.; Song, X.; Li, W.; et al. A highly efficient recombinant canarypox virus-based vaccine against canine distemper virus constructed using the CRISPR/Cas9 gene editing method. Vet. Microbiol. 2020, 251, 108920. [Google Scholar] [CrossRef]
- Taylor, J.; Weinberg, R.; Kawaoka, Y.; Webster, R.G.; Paoletti, E. Protective immunity against avian influenza induced by a fowlpox virus recombinant. Vaccine 1988, 6, 504–508. [Google Scholar] [CrossRef]
- Taylor, J.; Christensen, L.; Gettig, R.; Goebel, J.; Bouquet, J.F.; Mickle, T.R.; Paoletti, E. Efficacy of a recombinant fowl pox-based Newcastle disease virus vaccine candidate against velogenic and respiratory challenge. Avian Dis. 1996, 40, 173–180. [Google Scholar] [CrossRef]
- Webster, R.G.; Taylor, J.; Pearson, J.; Rivera, E.; Paoletti, E. Immunity to Mexican H5N2 avian influenza viruses induced by a fowl pox-H5 recombinant. Avian Dis. 1996, 40, 461–465. [Google Scholar] [CrossRef]
- Swayne, D.E.; Beck, J.R.; Mickle, T.R. Efficacy of recombinant fowl poxvirus vaccine in protecting chickens against a highly pathogenic Mexican-origin H5N2 avian influenza virus. Avian Dis. 1997, 41, 910–922. [Google Scholar] [CrossRef]
- Swayne, D.E.; Garcia, M.; Beck, J.R.; Kinney, N.; Suarez, D.L. Protection against diverse highly pathogenic H5 avian influenza viruses in chickens immunized with a recombinant fowlpox vaccine containing an H5 avian influenza hemagglutinin gene insert. Vaccine 2000, 18, 1088–1095. [Google Scholar] [CrossRef]
- Garcia-Garcia, J.; Rodriguez, H.; Hernandez, A.; Mickle, T.R.; Fernandez, R.; Tinoco-Garcia, H. Experimental studies and field trials with recombinant Fowlpox vaccine in broilers in Mexico. In Proceedings of the Forth International Symposium on Avian Influenza, Athens, GA, USA, 28–31 May 1998; pp. 245–252. [Google Scholar]
- Swayne, D.E.; Beck, J.R.; Kinney, N. Failure of a recombinant fowl poxvirus vaccine containing an avian influenza hemagglutinin gene to provide consistent protection against influenza in chickens preimmunized with a fowl pox vaccine. Avian Dis. 2000, 44, 132–137. [Google Scholar] [CrossRef]
- Mosad, S.M.; El-Tholoth, M.; El-Kenawy, A.A.; Abdel-Hafez, L.J.M.; El-Gohary, F.A.; El-Sharkawy, H.; Elsayed, M.M.; Saleh, A.A.; Elmahallawy, E.K. Molecular Detection of Reticuloendotheliosis Virus 5’ Long Terminal Repeat Integration in the Genome of Avipoxvirus Field Strains from Different Avian Species in Egypt. Biology 2020, 9, 257. [Google Scholar] [CrossRef]
- Matos, M.; Bilic, I.; Palmieri, N.; Mitsch, P.; Sommer, F.; Tvarogova, J.; Liebhart, D.; Hess, M. Epidemic of cutaneous fowlpox in a naive population of chickens and turkeys in Austria: Detailed phylogenetic analysis indicates co-evolution of fowlpox virus with reticuloendotheliosis virus. Transbound. Emerg. Dis. 2022, 69, 2913–2923. [Google Scholar] [CrossRef]
- Sarker, S.; Athukorala, A.; Bowden, T.R.; Boyle, D.B. Characterisation of an Australian fowlpox virus carrying a near-full-length provirus of reticuloendotheliosis virus. Arch. Virol. 2021, 166, 1485–1488. [Google Scholar] [CrossRef]
- Biswas, S.K.; Jana, C.; Chand, K.; Rehman, W.; Mondal, B. Detection of fowl poxvirus integrated with reticuloendotheliosis virus sequences from an outbreak in backyard chickens in India. Vet. Ital. 2011, 47, 147–153. [Google Scholar]
- Mzula, A.; Masola, S.N.; Kasanga, C.J.; Wambura, P.N. Existence of variant strains Fowlpox virus integrated with Reticuloendotheliosis virus in its genome in field isolates in Tanzania. Trop. Anim. Health Prod. 2014, 46, 711–716. [Google Scholar] [CrossRef]
- Singh, P.; Schnitzlein, W.M.; Tripathy, D.N. Construction and characterization of a fowlpox virus field isolate whose genome lacks reticuloendotheliosis provirus nucleotide sequences. Avian Dis. 2005, 49, 401–408. [Google Scholar] [CrossRef]
- Zhao, K.; He, W.; Xie, S.; Song, D.; Lu, H.; Pan, W.; Zhou, P.; Liu, W.; Lu, R.; Zhou, J.; et al. Highly pathogenic fowlpox virus in cutaneously infected chickens, China. Emerg. Infect. Dis. 2014, 20, 1208–1210. [Google Scholar] [CrossRef]
- Mao, Y.; Su, Q.; Li, J.; Jiang, T.; Wang, Y. Avian leukosis virus contamination in live vaccines: A retrospective investigation in China. Vet. Microbiol. 2020, 246, 108712. [Google Scholar] [CrossRef]
- Shittu, I.; Adedeji, A.J.; Luka, P.D.; Asala, O.O.; Sati, N.M.; Nwagbo, I.O.; Chinyere, C.N.; Arowolo, O.O.; Adole, J.A.; Emennaa, P.; et al. Avian leukosis virus subgroup—J as a contaminant in live commercially available poultry vaccines distributed in Nigeria. Biologicals 2019, 57, 29–33. [Google Scholar] [CrossRef]
- Chen, S.; Xu, N.; Ta, L.; Li, S.; Su, X.; Xue, J.; Du, Y.; Qin, T.; Peng, D. Recombinant Fowlpox Virus Expressing gB Gene from Predominantly Epidemic Infectious Larygnotracheitis Virus Strain Demonstrates Better Immune Protection in SPF Chickens. Vaccines 2020, 8, 623. [Google Scholar] [CrossRef]
- Leong, K.H.; Ramsay, A.J.; Boyle, D.B.; Ramshaw, I.A. Selective induction of immune responses by cytokines coexpressed in recombinant fowlpox virus. J. Virol. 1994, 68, 8125–8130. [Google Scholar] [CrossRef]
- Shi, X.M.; Zhao, Y.; Gao, H.B.; Jing, Z.; Wang, M.; Cui, H.Y.; Tong, G.Z.; Wang, Y.F. Evaluation of recombinant fowlpox virus expressing infectious bronchitis virus S1 gene and chicken interferon-gamma gene for immune protection against heterologous strains. Vaccine 2011, 29, 1576–1582. [Google Scholar] [CrossRef]
- Wang, Y.F.; Sun, Y.K.; Tian, Z.C.; Shi, X.M.; Tong, G.Z.; Liu, S.W.; Zhi, H.D.; Kong, X.G.; Wang, M. Protection of chickens against infectious bronchitis by a recombinant fowlpox virus co-expressing IBV-S1 and chicken IFNgamma. Vaccine 2009, 27, 7046–7052. [Google Scholar] [CrossRef]
- Chacon, R.D.; Astolfi-Ferreira, C.S.; Pereira, P.C.; Assayag, M.S., Jr.; Campos-Salazar, A.B.; De la Torre, D.; Sa, L.R.M.; Almeida, S.R.Y.; Rici, R.E.G.; Ferreira, A.J.P. Outbreaks of Avipoxvirus Clade E in Vaccinated Broiler Breeders with Exacerbated Beak Injuries and Sex Differences in Severity. Viruses 2022, 14, 773. [Google Scholar] [CrossRef]
- Le Loc’h, G.; Paul, M.C.; Camus-Bouclainville, C.; Bertagnoli, S. Outbreaks of Pox Disease Due to Canarypox-Like and Fowlpox-Like Viruses in Large-Scale Houbara Bustard Captive-Breeding Programmes, in Morocco and the United Arab Emirates. Transbound. Emerg. Dis. 2016, 63, E187–E196. [Google Scholar] [CrossRef]
- Shenk, T. Adenoviridae: The viruses and their replication. In Fundamental Virology; Lippincott-Raven: Philadelphia, PA, USA, 1996; Volume 2. [Google Scholar]
- Appaiahgari, M.B.; Vrati, S. Adenoviruses as gene/vaccine delivery vectors: Promises and pitfalls. Expert Opin. Biol. Ther. 2015, 15, 337–351. [Google Scholar] [CrossRef]
- Hess, M. Detection and differentiation of avian adenoviruses: A review. Avian Pathol. 2000, 29, 195–206. [Google Scholar] [CrossRef]
- Steer, P.A.; Kirkpatrick, N.C.; O’Rourke, D.; Noormohammadi, A.H. Classification of fowl adenovirus serotypes by use of high-resolution melting-curve analysis of the hexon gene region. J. Clin. Microbiol. 2009, 47, 311–321. [Google Scholar] [CrossRef]
- Li, P.H.; Zheng, P.P.; Zhang, T.F.; Wen, G.Y.; Shao, H.B.; Luo, Q.P. Fowl adenovirus serotype 4: Epidemiology, pathogenesis, diagnostic detection, and vaccine strategies. Poult. Sci. 2017, 96, 2630–2640. [Google Scholar] [CrossRef]
- Ishag, H.Z.A.; Terab, A.M.A.; El Tigani-Asil, E.T.A.; Bensalah, O.K.; Khalil, N.A.H.; Khalafalla, A.I.; Al Hammadi, Z.; Shah, A.A.M.; Al Muhairi, S.S.M. Pathology and Molecular Epidemiology of Fowl Adenovirus Serotype 4 Outbreaks in Broiler Chicken in Abu Dhabi Emirate, UAE. Vet. Sci. 2022, 9, 154. [Google Scholar] [CrossRef]
- El-Shall, N.A.; El-Hamid, H.S.A.; Elkady, M.F.; Ellakany, H.F.; Elbestawy, A.R.; Gado, A.R.; Geneedy, A.M.; Hasan, M.E.; Jaremko, M.; Selim, S.; et al. Epidemiology, pathology, prevention, and control strategies of inclusion body hepatitis and hepatitis-hydropericardium syndrome in poultry: A comprehensive review. Front. Vet. Sci. 2022, 9, 963199. [Google Scholar] [CrossRef]
- Tian, K.Y.; Guo, H.F.; Li, N.; Zhang, Y.H.; Wang, Z.; Wang, B.Y.; Yang, X.; Li, Y.T.; Zhao, J. Protection of chickens against hepatitis-hydropericardium syndrome and Newcastle disease with a recombinant Newcastle disease virus vaccine expressing the fowl adenovirus serotype 4 fiber-2 protein. Vaccine 2020, 38, 1989–1997. [Google Scholar] [CrossRef]
- Lu, Y.; Yuan, Y.; Jiang, H.; Xu, Z.; Guo, Y.; Cao, X.; Li, T.; Wan, Z.; Shao, H.; Qin, A.; et al. Efficient cross-protection against serotype 4/8a fowl adenoviruses (FAdVs): Recombinant FAdV-4 with FAdV-8a Fiber. Microbiol. Spectr. 2023, 11, e0246223. [Google Scholar] [CrossRef]
- Johnson, M.A.; Pooley, C.; Ignjatovic, J.; Tyack, S.G. A recombinant fowl adenovirus expressing the S1 gene of infectious bronchitis virus protects against challenge with infectious bronchitis virus. Vaccine 2003, 21, 2730–2736. [Google Scholar] [CrossRef]
- Pei, Y.; Griffin, B.; de Jong, J.; Krell, P.J.; Nagy, E. Rapid generation of fowl adenovirus 9 vectors. J. Virol. Methods 2015, 223, 75–81. [Google Scholar] [CrossRef]
- Sheppard, M.; Werner, W.; Tsatas, E.; McCoy, R.; Prowse, S.; Johnson, M. Fowl adenovirus recombinant expressing VP2 of infectious bursal disease virus induces protective immunity against bursal disease. Arch. Virol. 1998, 143, 915–930. [Google Scholar] [CrossRef]
- Xu, T.; Xiong, T.; Xie, W.; Wu, J.; Liu, X.; Li, G.; Lv, Y.; Li, L.; Yang, Z.; Wang, H.; et al. Construction and Evaluation of the Immunogenicity and Protective Efficacy of Recombinant Replication-Deficient Human Adenovirus-5 Expressing Genotype VII Newcastle Disease Virus F Protein and Infectious Bursal Disease Virus VP2 Protein. Vaccines 2023, 11, 1051. [Google Scholar] [CrossRef]
- Pei, Y.; Corredor, J.C.; Griffin, B.D.; Krell, P.J.; Nagy, E. Fowl Adenovirus 4 (FAdV-4)-Based Infectious Clone for Vaccine Vector Development and Viral Gene Function Studies. Viruses 2018, 10, 97. [Google Scholar] [CrossRef]
- Pan, Q.; Zhang, Y.; Liu, A.; Cui, H.; Gao, Y.; Qi, X.; Liu, C.; Zhang, Y.; Li, K.; Gao, L.; et al. Development of a Novel Avian Vaccine Vector Derived From the Emerging Fowl Adenovirus 4. Front. Microbiol. 2021, 12, 780978. [Google Scholar] [CrossRef]
- Lu, H.; Xie, Q.; Zhang, W.; Zhang, J.J.; Wang, W.K.; Lian, M.J.; Zhao, Z.H.; Ren, D.; Xie, S.H.; Lin, Y.; et al. A Novel Recombinant FAdV-4 Virus with Fiber of FAdV-8b Provides Efficient Protection against Both FAdV-4 and FAdV-8b. Viruses 2022, 14, 376. [Google Scholar] [CrossRef]
- Xie, Q.; Wang, W.K.; Kan, Q.Q.; Mu, Y.R.; Zhang, W.; Chen, J.; Li, L.Y.; Fu, H.; Li, T.F.; Li, T.F.; et al. FAdV-4 without Fiber-2 Is a Highly Attenuated and Protective Vaccine Candidate. Microbiol. Spectr. 2022, 10, e0143621. [Google Scholar] [CrossRef]
- Guo, Y.; Xu, Z.; Chao, Y.; Cao, X.; Jiang, H.; Li, H.; Li, T.; Wan, Z.; Shao, H.; Qin, A.; et al. An efficient double-fluorescence approach for generating fiber-2-edited recombinant serotype 4 fowl adenovirus expressing foreign gene. Front. Microbiol. 2023, 14, 1160031. [Google Scholar] [CrossRef]
- Xie, Q.; Cao, S.; Zhang, W.; Wang, W.; Li, L.; Kan, Q.; Fu, H.; Geng, T.; Li, T.; Wan, Z.; et al. A novel fiber-2-edited live attenuated vaccine candidate against the highly pathogenic serotype 4 fowl adenovirus. Vet. Res. 2021, 52, 35. [Google Scholar] [CrossRef]
- Mu, Y.; Xie, Q.; Wang, W.; Lu, H.; Lian, M.; Gao, W.; Li, T.; Wan, Z.; Shao, H.; Qin, A.; et al. A Novel Fiber-1-Edited and Highly Attenuated Recombinant Serotype 4 Fowl Adenovirus Confers Efficient Protection Against Lethal Challenge. Front. Vet. Sci. 2021, 8, 759418. [Google Scholar] [CrossRef]
- Zou, X.; Rong, Y.; Guo, X.; Hou, W.; Yan, B.; Hung, T.; Lu, Z. Fiber1, but not fiber2, is the essential fiber gene for fowl adenovirus 4 (FAdV-4). J. Gen. Virol. 2021, 102, 001559. [Google Scholar] [CrossRef]
- Guo, Y.; Lin, Y.; Xie, Q.; Zhang, W.; Xu, Z.; Chao, Y.; Cao, X.; Jiang, H.; Li, H.; Li, T.; et al. A novel recombinant serotype 4 fowl adenovirus expressing fiber-2 protein of duck adenovirus 3. Front. Cell. Infect. Microbiol. 2023, 13, 1177866. [Google Scholar] [CrossRef]
- Mak, T.W.; Saunders, M.E. Introduction to the Immune Response. In Immune Response: Basic and Clinical Principles; Elsevier: Amsterdam, The Netherlands, 2006; pp. 17–33. [Google Scholar]
- Ackford, J.G.; Corredor, J.C.; Pei, Y.; Krell, P.J.; Bedecarrats, G.; Nagy, E. Foreign gene expression and induction of antibody response by recombinant fowl adenovirus-9-based vectors with exogenous promoters. Vaccine 2017, 35, 4974–4982. [Google Scholar] [CrossRef]
- Francois, A.; Chevalier, C.; Delmas, B.; Eterradossi, N.; Toquin, D.; Rivallan, G.; Langlois, P. Avian adenovirus CELO recombinants expressing VP2 of infectious bursal disease virus induce protection against bursal disease in chickens. Vaccine 2004, 22, 2351–2360. [Google Scholar] [CrossRef]
- Ambriovic, A.; Adam, M.; Monteil, M.; Paulin, D.; Eloit, M. Efficacy of replication-defective adenovirus-vectored vaccines: Protection following intramuscular injection is linked to promoter efficiency in muscle representative cells. Virology 1997, 238, 327–335. [Google Scholar] [CrossRef]
- Havenga, M.; Vogels, R.; Zuijdgeest, D.; Radosevic, K.; Mueller, S.; Sieuwerts, M.; Weichold, F.; Damen, I.; Kaspers, J.; Lemckert, A.; et al. Novel replication-incompetent adenoviral B-group vectors: High vector stability and yield in PER.C6 cells. J. Gen. Virol. 2006, 87, 2135–2143. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Kong, W.P.; Huang, Y.; Roberts, A.; Murphy, B.R.; Subbarao, K.; Nabel, G.J. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 2004, 428, 561–564. [Google Scholar] [CrossRef]
- Imperiale, M.J.; Kochanek, S. Adenovirus vectors: Biology, design, and production. Curr. Top. Microbiol. Immunol. 2004, 273, 335–357. [Google Scholar]
- Zhang, D.; Long, Y.; Li, M.; Gong, J.; Li, X.; Lin, J.; Meng, J.; Gao, K.; Zhao, R.; Jin, T. Development and evaluation of novel recombinant adenovirus-based vaccine candidates for infectious bronchitis virus and Mycoplasma gallisepticum in chickens. Avian Pathol. 2018, 47, 213–222. [Google Scholar] [CrossRef]
- Qiu, C.; Zhou, J.; Cao, X.A.; Lin, G.; Zheng, F.; Gong, X. Immunization trials with an avian chlamydial MOMP gene recombinant adenovirus. Bioeng. Bugs 2010, 1, 267–273. [Google Scholar] [CrossRef]
- Zhu, J.; Grace, M.; Casale, J.; Chang, A.T.; Musco, M.L.; Bordens, R.; Greenberg, R.; Schaefer, E.; Indelicato, S.R. Characterization of replication-competent adenovirus isolates from large-scale production of a recombinant adenoviral vector. Hum. Gene Ther. 1999, 10, 113–121. [Google Scholar] [CrossRef]
- Mao, Q.; Ma, S.; Schrickel, P.L.; Zhao, P.; Wang, J.; Zhang, Y.; Li, S.; Wang, C. Review detection of Newcastle disease virus. Front. Vet. Sci. 2022, 9, 936251. [Google Scholar] [CrossRef]
- Rtishchev, A.; Treshchalina, A.; Shustova, E.; Boravleva, E.; Gambaryan, A. An Outbreak of Newcastle Disease Virus in the Moscow Region in the Summer of 2022. Vet. Sci. 2023, 10, 404. [Google Scholar] [CrossRef]
- Figueroa, A.; Escobedo, E.; Solis, M.; Rivera, C.; Ikelman, A.; Gallardo, R.A. Outreach Efforts to Prevent Newcastle Disease Outbreaks in Southern California. Viruses 2022, 14, 1509. [Google Scholar] [CrossRef]
- Amoia, C.F.; Hakizimana, J.N.; Duggal, N.K.; Chengula, A.A.; Rohaim, M.A.; Munir, M.; Weger-Lucarelli, J.; Misinzo, G. Genetic Diversity of Newcastle Disease Virus Involved in the 2021 Outbreaks in Backyard Poultry Farms in Tanzania. Vet. Sci. 2023, 10, 477. [Google Scholar] [CrossRef]
- Ge, J.Y.; Wang, X.J.; Tian, M.J.; Wen, Z.Y.; Feng, Q.L.; Qi, X.L.; Gao, H.L.; Wang, X.M.; Bu, Z.G. Novel in-ovo chimeric recombinant Newcastle disease vaccine protects against both Newcastle disease and infectious bursal disease. Vaccine 2014, 32, 1514–1521. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Q.; Song, M.; Song, C.; Zhang, Y.; Wang, X.; Huang, Q.; Wang, B.; Yang, P.; Zhao, S.; Li, Y.; et al. Single-Dose Vaccination of Recombinant Chimeric Newcastle Disease Virus (NDV) LaSota Vaccine Strain Expressing Infectious Bursal Disease Virus (IBDV) VP2 Gene Provides Full Protection against Genotype VII NDV and IBDV Challenge. Vaccines 2021, 9, 1483. [Google Scholar] [CrossRef]
- He, L.; Spatz, S.; Dunn, J.R.; Yu, Q.Z. Newcastle disease virus (NDV) recombinant expressing Marek’s disease virus (MDV) glycoprotein B significantly protects chickens against MDV and NDV challenges. Vaccine 2023, 41, 5884–5891. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, Z.Y.; Zsak, L.; Yu, Q.Z. P and M gene junction is the optimal insertion site in Newcastle disease virus vaccine vector for foreign gene expression. J. Gen. Virol. 2015, 96, 40–45. [Google Scholar] [CrossRef]
- Zhao, H.; Peeters, B.P.H. Recombinant Newcastle disease virus as a viral vector: Effect of genomic location of foreign gene on gene expression and virus replication. J. Gen. Virol. 2003, 84, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Bukreyev, A.; Skiadopoulos, M.H.; Murphy, B.R.; Collins, P.L. Nonsegmented negative-strand viruses as vaccine vectors. J. Virol. 2006, 80, 10293–10306. [Google Scholar] [CrossRef]
- Britton, P.; Green, P.; Kottier, S.; Mawditt, K.L.; Penzes, Z.; Cavanagh, D.; Skinner, M.A. Expression of bacteriophage T7 RNA polymerase in avian and mammalian cells by a recombinant fowlpox virus. J. Gen. Virol. 1996, 77 Pt 5, 963–967. [Google Scholar] [CrossRef] [PubMed]
- Peeters, B.P.H.; de Leeuw, O.S.; Koch, G.; Gielkens, A.L.J. Rescue of Newcastle disease virus from cloned cDNA: Evidence that cleavability of the fusion protein is a major determinant for virulence. J. Virol. 1999, 73, 5001–5009. [Google Scholar] [CrossRef]
- Sutter, G.; Moss, B. Nonreplicating Vaccinia Vector Efficiently Expresses Recombinant Genes. Proc. Natl. Acad. Sci. USA 1992, 89, 10847–10851. [Google Scholar] [CrossRef]
- He, L.; Wang, H.R.; Yu, Z.H.; Liao, C.S.; Ding, K.; Zhang, C.; Yu, C.; Zhang, C.J. Rescue of an enterotropic Newcastle disease virus strain ZM10 from cloned cDNA and stable expressing an inserted foreign gene. BMC Biotechnol. 2022, 22, 38. [Google Scholar] [CrossRef]
- Wyatt, L.S.; Moss, B.; Rozenblatt, S. Replication-Deficient Vaccinia Virus Encoding Bacteriophage T7 Rna-Polymerase for Transient Gene-Expression in Mammalian-Cells. Virology 1995, 210, 202–205. [Google Scholar] [CrossRef]
- Molouki, A.; Peeters, B. Rescue of recombinant Newcastle disease virus: A short history of how it all started. Arch. Virol. 2017, 162, 1845–1854. [Google Scholar] [CrossRef]
- Murulitharan, K.; Yusoff, K.; Omar, A.R.; Peeters, B.H.; Molouki, A. Rapid Generation of a Recombinant Genotype VIII Newcastle Disease Virus (NDV) Using Full-Length Synthetic cDNA. Curr. Microbiol. 2021, 78, 1458–1465. [Google Scholar] [CrossRef]
- Li, B.Y.; Li, X.R.; Lan, X.; Yin, X.P.; Li, Z.Y.; Yang, B.; Liu, J.X. Rescue of Newcastle disease virus from cloned cDNA using an RNA polymerase II promoter. Arch. Virol. 2011, 156, 979–986. [Google Scholar] [CrossRef]
- Zhao, W.; Hu, H.X.; Zsak, L.; Yu, Q.Z.; Yang, Z.Q. Application of the ligation-independent cloning (LIC) method for rapid construction of a minigenome rescue system for Newcastle disease virus VG/GA strain. Plasmid 2013, 70, 314–320. [Google Scholar] [CrossRef]
- Peeters, B.; de Leeuw, O. A single-plasmid reverse genetics system for the rescue of non-segmented negative-strand RNA viruses from cloned full-length cDNA. J. Virol. Methods 2017, 248, 187–190. [Google Scholar] [CrossRef]
- Lee, J.; Kim, D.H.; Noh, J.; Youk, S.; Jeong, J.H.; Lee, J.B.; Park, S.Y.; Choi, I.S.; Lee, S.W.; Song, C.S. Live Recombinant NDV-Vectored H5 Vaccine Protects Chickens and Domestic Ducks From Lethal Infection of the Highly Pathogenic H5N6 Avian Influenza Virus. Front. Vet. Sci. 2022, 8, 773715. [Google Scholar] [CrossRef]
- Lee, J.H.; Cho, A.Y.; Kim, D.H.; Lee, J.B.; Park, S.Y.; Choi, I.S.; Lee, S.W.; Song, C.S. Live recombinant Newcastle disease virus vectored vaccine expressing the haemagglutinin of H9N2 avian influenza virus suppresses viral replication in chickens. Avian Pathol. 2023, 52, 100–107. [Google Scholar] [CrossRef]
- Hu, Z.L.; Liu, X.W.; Jiao, X.N.; Liu, X.F. Newcastle disease virus (NDV) recombinant expressing the hemagglutinin of H7N9 avian influenza virus protects chickens against NDV and highly pathogenic avian influenza A (H7N9) virus challenges. Vaccine 2017, 35, 6585–6590. [Google Scholar] [CrossRef]
- Tan, L.; Wen, G.; Yuan, Y.; Huang, M.; Sun, Y.; Liao, Y.; Song, C.; Liu, W.; Shi, Y.; Shao, H.; et al. Development of a Recombinant Thermostable Newcastle Disease Virus (NDV) Vaccine Express Infectious Bronchitis Virus (IBV) Multiple Epitopes for Protecting against IBV and NDV Challenges. Vaccines 2020, 8, 564. [Google Scholar] [CrossRef]
- Tan, L.; Wen, G.; Qiu, X.; Yuan, Y.; Meng, C.; Sun, Y.; Liao, Y.; Song, C.; Liu, W.; Shi, Y.; et al. A Recombinant La Sota Vaccine Strain Expressing Multiple Epitopes of Infectious Bronchitis Virus (IBV) Protects Specific Pathogen-Free (SPF) Chickens against IBV and NDV Challenges. Vaccines 2019, 7, 170. [Google Scholar] [CrossRef]
- Abozeid, H.H.; Paldurai, A.; Varghese, B.P.; Khattar, S.K.; Afifi, M.A.; Zouelfakkar, S.; El-Deeb, A.H.; El-Kady, M.F.; Samal, S.K. Development of a recombinant Newcastle disease virus-vectored vaccine for infectious bronchitis virus variant strains circulating in Egypt. Vet. Res. 2019, 50, 12. [Google Scholar] [CrossRef]
- Swayne, D.E.; Suarez, D.L.; Schultz-Cherry, S.; Tumpey, T.M.; King, D.J.; Nakaya, T.; Palese, P.; Garcia-Sastre, A. Recombinant paramyxovirus type 1-avian influenza-H7 virus as a vaccine for protection of chickens against influenza and Newcastle disease. Avian Dis. 2003, 47, 1047–1050. [Google Scholar] [CrossRef]
- Basavarajappa, M.K.; Kumar, S.; Khattar, S.K.; Gebreluul, G.T.; Paldurai, A.; Samal, S.K. A recombinant Newcastle disease virus (NDV) expressing infectious laryngotracheitis virus (ILTV) surface glycoprotein D protects against highly virulent ILTV and NDV challenges in chickens. Vaccine 2014, 32, 3555–3563. [Google Scholar] [CrossRef]
- Saikia, D.P.; Yadav, K.; Pathak, D.C.; Ramamurthy, N.; D’Silva, A.L.; Marriappan, A.K.; Ramakrishnan, S.; Vakharia, V.N.; Chellappa, M.M.; Dey, S. Recombinant Newcastle Disease Virus (NDV) Expressing Sigma C Protein of Avian Reovirus (ARV) Protects against Both ARV and NDV in Chickens. Pathogens 2019, 8, 145. [Google Scholar] [CrossRef]
- Bu, Y.W.; Yang, H.M.; Jin, J.H.; Zhao, J.; Xue, J.; Zhang, G.Z. Recombinant Newcastle disease virus (NDV) La Sota expressing the haemagglutinin-neuraminidase protein of genotype VII NDV shows improved protection efficacy against NDV challenge. Avian Pathol. 2019, 48, 91–97. [Google Scholar] [CrossRef]
- Hu, Z.L.; Ni, J.; Cao, Y.Z.; Liu, X.F. Newcastle Disease Virus as a Vaccine Vector for 20 Years: A Focus on Maternally Derived Antibody Interference. Vaccines 2020, 8, 222. [Google Scholar] [CrossRef]
- Rafique, S.; Jabeen, Z.; Pervaiz, T.; Rashid, F.; Luo, S.; Xie, L.; Xie, Z. Avian infectious bronchitis virus (AIBV) review by continent. Front. Cell. Infect. Microbiol. 2024, 14, 1325346. [Google Scholar] [CrossRef]
- Bentley, K.; Armesto, M.; Britton, P. Infectious Bronchitis Virus as a Vector for the Expression of Heterologous Genes. PLoS ONE 2013, 8, e67875. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, Y.; Li, J.; Fu, L.; Ji, G.; Zeng, F.; Zhou, L.; Gao, W.; Wang, H. Recombinant infectious bronchitis virus (IBV) H120 vaccine strain expressing the hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) protects chickens against IBV and NDV challenge. Arch. Virol. 2016, 161, 1209–1216. [Google Scholar] [CrossRef]
- Ellis, S.; Keep, S.; Britton, P.; de Wit, S.; Bickerton, E.; Vervelde, L. Recombinant Infectious Bronchitis Viruses Expressing Chimeric Spike Glycoproteins Induce Partial Protective Immunity against Homologous Challenge despite Limited Replication In Vivo. J. Virol. 2018, 92, e01473-18. [Google Scholar] [CrossRef]
- Ting, X.; Xiang, C.; Liu, D.X.; Chen, R. Establishment and Cross-Protection Efficacy of a Recombinant Avian Gammacoronavirus Infectious Bronchitis Virus Harboring a Chimeric S1 Subunit. Front. Microbiol. 2022, 13, 897560. [Google Scholar] [CrossRef]
- Luschow, D.; Werner, O.; Mettenleiter, T.C.; Fuchs, W. Protection of chickens from lethal avian influenza A virus infection by live-virus vaccination with infectious laryngotracheitis virus recombinants expressing the hemagglutinin (H5) gene. Vaccine 2001, 19, 4249–4259. [Google Scholar] [CrossRef]
- Pavlova, S.P.; Veits, J.; Mettenleiter, T.C.; Fuchs, W. Live vaccination with an H5-hemagglutinin-expressing infectious laryngotracheitis virus recombinant protects chickens against different highly pathogenic avian influenza viruses of the H5 subtype. Vaccine 2009, 27, 5085–5090. [Google Scholar] [CrossRef]
- Veits, J.; Luschow, D.; Kindermann, K.; Werner, O.; Teifke, J.P.; Mettenleiter, T.C.; Fuchs, W. Deletion of the non-essential UL0 gene of infectious laryngotracheitis (ILT) virus leads to attenuation in chickens, and UL0 mutants expressing influenza virus haemagglutinin (H7) protect against ILT and fowl plague. J. Gen. Virol. 2003, 84, 3343–3352. [Google Scholar] [CrossRef]
- García, M.; Spatz, S. Infectious Laryngotracheitis. In Diseases of Poultry; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 189–209. [Google Scholar]
- Liu, J.; Chen, P.; Jiang, Y.; Wu, L.; Zeng, X.; Tian, G.; Ge, J.; Kawaoka, Y.; Bu, Z.; Chen, H. A duck enteritis virus-vectored bivalent live vaccine provides fast and complete protection against H5N1 avian influenza virus infection in ducks. J. Virol. 2011, 85, 10989–10998. [Google Scholar] [CrossRef]
- Apinda, N.; Muenthaisong, A.; Chomjit, P.; Sangkakam, K.; Nambooppha, B.; Rittipornlertrak, A.; Koonyosying, P.; Yao, Y.X.; Nair, V.; Sthitmatee, N. Simultaneous Protective Immune Responses of Ducks against Duck Plague and Fowl Cholera by Recombinant Duck Enteritis Virus Vector Expressing OmpH Gene. Vaccines 2022, 10, 1358. [Google Scholar] [CrossRef]
- Ding, L.; Chen, P.; Bao, X.; Li, A.; Jiang, Y.; Hu, Y.; Ge, J.; Zhao, Y.; Wang, B.; Liu, J.; et al. Recombinant duck enteritis viruses expressing the Newcastle disease virus (NDV) F gene protects chickens from lethal NDV challenge. Vet. Microbiol. 2019, 232, 146–150. [Google Scholar] [CrossRef]
- Zhao, Y.B.; Chen, P.C.; Hu, Y.Z.; Liu, J.; Jiang, Y.P.; Zeng, X.Y.; Deng, G.H.; Shi, J.Z.; Li, Y.B.; Tian, G.B.; et al. Recombinant duck enteritis virus bearing the hemagglutinin genes of H5 and H7 influenza viruses is an ideal multivalent live vaccine in ducks. Emerg. Microbes Infect. 2024, 13, 2284301. [Google Scholar] [CrossRef]
- Yang, F.; Liu, P.; Li, X.; Liu, R.; Gao, L.; Cui, H.; Zhang, Y.; Liu, C.; Qi, X.; Pan, Q.; et al. Recombinant Duck Enteritis Virus-Vectored Bivalent Vaccine Effectively Protects Against Duck Hepatitis A Virus Infection in Ducks. Front. Microbiol. 2021, 12, 813010. [Google Scholar] [CrossRef]
- Criado, M.F.; Bertran, K.; Lee, D.H.; Killmaster, L.; Stephens, C.B.; Spackman, E.; Sa, E.S.M.; Atkins, E.; Mebatsion, T.; Widener, J.; et al. Efficacy of novel recombinant fowlpox vaccine against recent Mexican H7N3 highly pathogenic avian influenza virus. Vaccine 2019, 37, 2232–2243. [Google Scholar] [CrossRef]
- Qiao, C.; Jiang, Y.; Tian, G.; Wang, X.; Li, C.; Xin, X.; Chen, H.; Yu, K. Recombinant fowlpox virus vector-based vaccine completely protects chickens from H5N1 avian influenza virus. Antivir. Res. 2009, 81, 234–238. [Google Scholar] [CrossRef]
- Chen, H.Y.; Shang, Y.H.; Yao, H.X.; Cui, B.A.; Zhang, H.Y.; Wang, Z.X.; Wang, Y.D.; Chao, A.J.; Duan, T.Y. Immune responses of chickens inoculated with a recombinant fowlpox vaccine coexpressing HA of H9N2 avain influenza virus and chicken IL-18. Antivir. Res. 2011, 91, 50–56. [Google Scholar] [CrossRef]
- Chen, H.Y.; Yang, M.F.; Cui, B.A.; Cui, P.; Sheng, M.; Chen, G.; Wang, S.J.; Geng, J.W. Construction and immunogenicity of a recombinant fowlpox vaccine coexpressing S1 glycoprotein of infectious bronchitis virus and chicken IL-18. Vaccine 2010, 28, 8112–8119. [Google Scholar] [CrossRef]
- Roh, J.H.; Kang, M.; Wei, B.; Yoon, R.H.; Seo, H.S.; Bahng, J.Y.; Kwon, J.T.; Cha, S.Y.; Jang, H.K. Efficacy of HVT-IBD vector vaccine compared to attenuated live vaccine using in-ovo vaccination against a Korean very virulent IBDV in commercial broiler chickens. Poult. Sci. 2016, 95, 1020–1024. [Google Scholar] [CrossRef]
- Liu, S.; Sun, W.; Chu, J.; Huang, X.; Wu, Z.; Yan, M.; Zhang, Q.; Zhao, P.; Igietseme, J.U.; Black, C.M.; et al. Construction of Recombinant HVT Expressing PmpD, and Immunological Evaluation against Chlamydia psittaci and Marek’s Disease Virus. PLoS ONE 2015, 10, e0124992. [Google Scholar] [CrossRef]
- Kapczynski, D.R.; Esaki, M.; Dorsey, K.M.; Jiang, H.J.; Jackwood, M.; Moraes, M.; Gardin, Y. Vaccine protection of chickens against antigenically diverse H5 highly pathogenic avian influenza isolates with a live HVT vector vaccine expressing the influenza hemagglutinin gene derived from a clade 2.2 avian influenza virus. Vaccine 2015, 33, 1197–1205. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Su, G.M.; Zhang, J.H.; Li, B.; Ma, K.X.; Zhang, X.; Huang, L.H.; Liao, M.; Qi, W.B. HVT-vectored H7 vaccine protects chickens from lethal infection with the highly pathogenic H7N9 Avian in fl uenza virus. Vet. Microbiol. 2023, 285, 109852. [Google Scholar] [CrossRef]
- Ferreira, H.L.; Reilley, A.M.; Goldenberg, D.; Ortiz, I.R.A.; Gallardo, R.A.; Suarez, D.L. Protection conferred by commercial NDV live attenuated and double recombinant HVT vaccines against virulent California 2018 Newcastle disease virus (NDV) in chickens. Vaccine 2020, 38, 5507–5515. [Google Scholar] [CrossRef]
- Smietanka, K.; Tyborowska, J.; Olszewska-Tomczyk, M.; Domanska-Blicharz, K.; Minta, Z.; Rabalski, L.; Czarnota, A.; Kucharczyk, K.; Szewczyk, B. A Recombinant Turkey Herpesvirus Expressing F and HN Genes of Avian Avulavirus-1 (AAvV-1) Genotype VI Confers Cross-Protection against Challenge with Virulent AAvV-1 Genotypes IV and VII in Chickens. Viruses 2019, 11, 784. [Google Scholar] [CrossRef]
- Palya, V.; Tatar-Kis, T.; Mato, T.; Felfoldi, B.; Kovacs, E.; Gardin, Y. Onset and long-term duration of immunity provided by a single vaccination with a turkey herpesvirus vector ND vaccine in commercial layers. Vet. Immunol. Immunopathol. 2014, 158, 105–115. [Google Scholar] [CrossRef]
Inactivated Vaccines | Attenuated Vaccines | Vector Vaccines | |
---|---|---|---|
Safety | The best security. | Some have potential risk of virulence reversion. | Some have potential risk of virulence reversion. |
Effect of the maternal antibody | Depending on the level of antibodies. | Depending on the level of antibodies. | Some can effectively avoid the interference of maternal antibodies, such as HVT-based vaccine. |
Duration of immunity | Can only induce a short period of immune protection and requires multiple immunizations. | Can induce a long period of immune protection. | Can induce a long period of immune protection. |
Immune response | The onset of protection was short but mainly induced humoral immunity. Some produced only a local response. | The onset of protection was long, but both humoral and cellular immunity could be induced. | The onset of protection was long, but both humoral and cellular immunity could be induced. |
Cost | Less expensive | More expensive | Variable |
Advantages | Disadvantages | |
---|---|---|
MDV and HVT |
|
|
FPV |
|
|
FAdV |
|
|
NDV |
|
|
Conventional Vaccines | Vector Vaccines | |
---|---|---|
NDV | AVINEW® (Merial, Live Newcastle disease vaccine, VG/GA strain) can achieve 100% protection through aerosol. Protection until the age of 6 weeks. | Vectormune® ND can provide protection against clinical signs, mortality, and drop in egg for layers until at least 72 weeks of age, following a single injection at day of hatch. |
IBV | Poulvac® IBMM (Zoetis, live infectious bronchitis vaccine, Massachusetts strain) can provide protection against Massachusetts serotype of IB for broilers and growing chicks. The duration of immunity may be 3–4 months. | There is no commercially available vaccine. |
AIV | Inactivated bird flu vaccine (Yebio Bioengineering, H9 subtype) can prevent avian influenza caused by H9 subtype avian influenza virus. The duration of immunity is 60 days. | Newflend® ND H9 can reduce mortality in the most susceptible period, clinical signs, lesions, and virus shedding caused by H9 subtype of low pathogenic avian influenza virus (LPAIV-H9). The duration of immunity is 9 weeks. |
IBDV | Poulvac® Bursa Plus (Zoetis, Live Infectious Bursal Disease Virus, strain V877) can reduce mortality and bursal lesions of Gumboro disease. The duration of immunity is 32 days. | VAXXITEK® HVT + IBD can provide 100% protection against IBDV AL2 challenge strain at 21 days and up to 10 weeks duration of immunity following a single injection at day-old or in ovo. Immune protection against classic, variant, and vvIBD from 14 days of age. |
MDV | Prevexxion® RN can provide at least 80% protection against very virulent Marek’s disease. A single vaccination is sufficient to provide protection for the entire risk period. | Not applicable * |
FPV | Yelive® POX can prevent fowl pox with 5-month immune period for adult chickens and 2-month immune period for newly hatched chicks. | Not applicable * |
ILTV | Rinbio® ILT can provide protection against Infectious Laryngotracheitis for healthy chickens. The immune period is 6 months. | Innovax®-ILT can provide protection against Marek’s Disease and Infectious Laryngotracheitis. The immune period is 60 weeks. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Tian, J.; Zhao, J.; Zhao, Y.; Yang, H.; Zhang, G. Current Status of Poultry Recombinant Virus Vector Vaccine Development. Vaccines 2024, 12, 630. https://doi.org/10.3390/vaccines12060630
Wang H, Tian J, Zhao J, Zhao Y, Yang H, Zhang G. Current Status of Poultry Recombinant Virus Vector Vaccine Development. Vaccines. 2024; 12(6):630. https://doi.org/10.3390/vaccines12060630
Chicago/Turabian StyleWang, Haoran, Jiaxin Tian, Jing Zhao, Ye Zhao, Huiming Yang, and Guozhong Zhang. 2024. "Current Status of Poultry Recombinant Virus Vector Vaccine Development" Vaccines 12, no. 6: 630. https://doi.org/10.3390/vaccines12060630
APA StyleWang, H., Tian, J., Zhao, J., Zhao, Y., Yang, H., & Zhang, G. (2024). Current Status of Poultry Recombinant Virus Vector Vaccine Development. Vaccines, 12(6), 630. https://doi.org/10.3390/vaccines12060630