Single-Facility Analysis of COVID-19 Status of Healthcare Employees during the Eighth and Ninth Pandemic Waves in Japan after Introducing Regular Rapid Antigen Testing
Abstract
:1. Introduction
2. Methods
2.1. Notification System
2.2. Regular Antigen Qualitative Test
2.3. Criteria for Release from Quarantine
2.4. Statistical Analysis
3. Results
3.1. Analysis from the Infectious Disease Notification Reporting System
3.2. Analysis of Regular Rapid Antigen Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Authorship Statement
Abbreviations
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health Law, Japan. 2023. Available online: https://covid19.mhlw.go.jp/ (accessed on 14 March 2024).
- Institute. APP. Long-Term Services and Supports and Family Caregiving. 2020. Available online: https://www.aarp.org/ppi/issues/caregiving/info-2020/nursing-home-coviddashboard.html (accessed on 14 March 2024).
- Kaiser Family Foundation. Coronavirus (COVID-19). Nursing Homes Experienced Steeper Increase in COVID-19 Cases and Deaths in August 2021 Than the Rest of the Country. 2023. Available online: https://www.kff.org/coronaviruscovid-19/issue-brief/nursing-homes-experienced-steeperincrease-in-covid--cases-and-deaths-in-august-2021-thanthe-rest-of-the-country (accessed on 14 March 2024).
- Roth, A.; Feller, S.; Ruhnau, A.; Plamp, L.; Viereck, U.; Weber, K.; Maertens, D.; Hoor, I.; Gamradt, R.; Freyer, P.; et al. Characterization of COVID-19 outbreaks in three nursing homes during the first wave in Berlin, Germany. Sci. Rep. 2021, 11, 24441. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.; Carter, R.J.; Lehnertz, N.; Kazazian, L.; Sullivan, M.; Wang, X.; Garfin, J.; Diekman, S.; Plumb, M.; Bennet, M.E.; et al. Serial Testing for SARS-CoV-2 and Virus Whole Genome Sequencing Inform Infection Risk at Two Skilled Nursing Facilities with COVID-19 Outbreaks—Minnesota, April-June 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1288–1295. [Google Scholar] [CrossRef] [PubMed]
- Dooling, K.; Marin, M.; Wallace, M.; McClung, N.; Chamberland, M.; Lee, G.M.; Talbot, H.K.; Romero, J.R.; Bell, B.P.; Oliver, S.E.; et al. The Advisory Committee on Immunization Practices’ Updated Interim Recommendation for Allocation of COVID-19 Vaccine—United States, December 2020. MMWR Morb. Mortal. Wkly. Rep. 2021, 69, 1657–1660. [Google Scholar] [CrossRef] [PubMed]
- WHO. NCP: Close Contact Management Protocol. 2020. Available online: https://www.who.int/docs/default-source/wpro---documents/countries/china/covid-19-briefing-nhc/6-annex-3-protocol-for-management-of-close-contacts-v5.pdf?sfvrsn=eb6bca3a_2 (accessed on 14 March 2024).
- Ministry of Health Law, Japan. 2022. Available online: https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000121431_00395.html#h2_free16 (accessed on 14 March 2024).
- Hayakawa, K.; Asai, Y.; Matsunaga, N.; Tsuzuki, S.; Terada, M.; Suzuki, S.; Kitajima, K.; Saito, S.; Ohmagari, N. Evaluation of the representativeness of data in the COVID-19 Registry Japan during the first six waves of the epidemic. Glob. Health Med. 2022, 4, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Liu, P.; Wang, N.; Wang, L.; Fan, K.; Zhu, Q.; Wang, K.; Chen, R.; Feng, R.; Jia, Z.; et al. Structural and functional characterizations of infectivity and immune evasion of SARS-CoV-2 Omicron. Cell 2022, 185, 860–871. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Guo, Y.; Iketani, S.; Nair, M.S.; Li, Z.; Mohri, H.; Wang, M.; Yu, J.; Bowen, A.D.; Chang, J.Y.; et al. Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5. Nature 2022, 608, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Feikin, D.R.; Higdon, M.M.; Andrews, N.; Collie, S.; Deloria Knoll, M.; Kwong, J.C.; Link-Gelles, R.; Pilishvili, T.; Patel, M.K. Assessing COVID-19 vaccine effectiveness against Omicron subvariants: Report from a meeting of the World Health Organization. Vaccine 2023, 41, 2329–2338. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, F.; Myers, J.; Basu, D.; Tintinger, G.; Ueckermann, V.; Mathebula, M.; Ramlall, R.; Spoor, S.; de Villiers, T.; Van der Walt, Z.; et al. Decreased severity of disease during the first global omicron variant covid-19 outbreak in a large hospital in tshwane, south africa. Int. J. Infect. Dis. 2022, 116, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Nagasawa, M.; Kato, T.; Yamaguchi, Y.; Sugita, Y.; Kajiwara, H. Rapid decrease of nasopharyngeal SARS-CoV-2 antigen in an outbreak of the Omicron strain. J. Med. Virol. 2023, 95, e28179. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, F.; Hanoun, C.; Turki, A.T.; Liebregts, T.; Breuckmann, K.; Alashkar, F.; Reinhardt, H.C.; von Tresckow, B.; von Tresckow, J. Early report on the severity of COVID-19 in hematologic patients infected with the SARS-CoV2 omicron variant. Eur. J. Haematol. 2022, 109, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Schuller, M.; Ginthör, N.E.; Paller, A.; Waller, M.; Köstenbauer, M.; Schreiber, N.G.O.; Schabhüttl, C.; Mischinger, K.; Hafner-Giessauf, H.; Rosenkranz, A.R.; et al. Reduced COVID-19 morbidity and mortality in hemodialysis patients across the various Omicron sublineages-A retrospective analysis. Front. Public Health 2023, 11, 1218188. [Google Scholar] [CrossRef] [PubMed]
- Di Chiara, C.; Boracchini, R.; Sturniolo, G.; Barbieri, A.; Costenaro, P.; Cozzani, S.; De Pieri, M.; Liberati, C.; Zin, A.; Padoan, A.; et al. Clinical features of COVID-19 in Italian outpatient children and adolescents during Parental, Delta, and Omicron waves: A prospective, observational, cohort study. Front. Pediatr. 2023, 11, 1193857. [Google Scholar] [CrossRef] [PubMed]
- Lauring, A.S.; Tenforde, M.W.; Chappell, J.D.; Gaglani, M.; Ginde, A.A.; McNeal, T.; Ghamande, S.; Douin, D.J.; Talbot, H.K.; Casey, J.D.; et al. Clinical severity of, and effectiveness of mRNA vaccines against, covid-19 from omicron, delta, and alpha SARS-CoV-2 variants in the United States: Prospective observational study. BMJ 2022, 376, e069761. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Liu, Y.K.; Sun, Q.D.; Du, Z.; Fang, Y.Q.; Guo, F.; Wang, Y.B.; He, Y.; Cen, Y.; Zeng, F. Clinical characteristics and risk factors for a prolonged length of stay of patients with asymptomatic and mild COVID-19 during the wave of Omicron from Shanghai, China. BMC Infect. Dis. 2022, 22, 947. [Google Scholar] [CrossRef] [PubMed]
Start | End | Period (Days) | Infected Staff/Day | Infected Staff | Registered Patients in Southern North- Tama Area | Infected Staff/Registered Patients × 1000 | |
---|---|---|---|---|---|---|---|
3rd wave | 20 November 2020 | 19 March 2021 | 120 | 0.14 | 17 | 4500 | 3.78 |
4th wave | 20 March 2021 | 30 June 2021 | 103 | 0.01 | 1 | 2939 | 0.34 |
5th wave | 3 July 2021 | 25 September 2021 | 85 | 0.12 | 10 | 10,434 | 0.96 |
6th wave | 1 January 2022 | 30 May 2022 | 150 | 0.65 | 98 | 60,061 | 1.63 |
7th wave | 25 June 2022 | 19 September 2022 | 87 | 1.46 | 127 | 84,532 | 1.50 |
8th wave | 20 September 2022 | 2 May 2023 | 225 | 1.42 | 320 | 68,744 * | 4.65 * |
9th wave | 8 May 2023 | 24 October 2023 | 170 | 1.76 | 299 | n.a. | n.a. |
Total | Fever | Sore Throat | Cough | Headache | Nothing | ||
---|---|---|---|---|---|---|---|
8th wave | Infected staff | 320 | 210 65.6% | 213 66.6% | 121 37.8% | 52 16.3% | 25 7.8% |
Close contact | 195 | ||||||
Close contact Infected | 56 | 25 | 28 | 18 | 9 | 19 | |
44.6% | 50.0% | 32.1% | 16.1% | 33.9% | |||
9th wave | Infected staff | 299 | 215 71.9% | 175 58.5% | 105 35.1% | 56 18.7% | 17 5.7% |
Close contact | 62 | ||||||
Close contact Infected | 26 | 13 | 10 | 5 | 2 | 4 | |
50.0% | 38.4% | 35.1% | 7.7% | 15.4% |
8th Wave | Infected Staff Registered | Ratio (%) * | Odds Ratio (vs. Doctor) | Positive Staff in Regular Ag Test | Ratio ** |
---|---|---|---|---|---|
Doctor | 35 | 13.3 | 1.00 | 16 | 0.46 |
Nurse | 168 | 20.8 | 1.57 # | 114 | 0.68 |
Administrative worker | 44 | 22.7 | 1.70 # | 27 | 0.61 |
Laboratory technician | 73 | 33.4 | 2.52 $ | 55 | 0.75 |
9th Wave | Infected Staff Registered | Ratio (%) * | Odds Ratio (vs. Doctor) | Positive Staff in Regular Ag Test | Ratio ** |
Doctor | 24 | 4.3 | 1.00 | 16 | 0.67 |
Nurse | 167 | 20.7 | 2.27 $ | 130 | 0.78 |
Administrative worker | 48 | 24.7 | 2.71 $ | 35 | 0.73 |
Laboratory technician | 56 | 25.7 | 2.81 $ | 48 | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagasawa, M.; Kato, T.; Sakaguchi, H.; Tanaka, I.; Watanabe, M.; Hiroshima, Y.; Sakurai, M. Single-Facility Analysis of COVID-19 Status of Healthcare Employees during the Eighth and Ninth Pandemic Waves in Japan after Introducing Regular Rapid Antigen Testing. Vaccines 2024, 12, 645. https://doi.org/10.3390/vaccines12060645
Nagasawa M, Kato T, Sakaguchi H, Tanaka I, Watanabe M, Hiroshima Y, Sakurai M. Single-Facility Analysis of COVID-19 Status of Healthcare Employees during the Eighth and Ninth Pandemic Waves in Japan after Introducing Regular Rapid Antigen Testing. Vaccines. 2024; 12(6):645. https://doi.org/10.3390/vaccines12060645
Chicago/Turabian StyleNagasawa, Masayuki, Tomoyuki Kato, Hayato Sakaguchi, Ippei Tanaka, Mami Watanabe, Yoko Hiroshima, and Mie Sakurai. 2024. "Single-Facility Analysis of COVID-19 Status of Healthcare Employees during the Eighth and Ninth Pandemic Waves in Japan after Introducing Regular Rapid Antigen Testing" Vaccines 12, no. 6: 645. https://doi.org/10.3390/vaccines12060645
APA StyleNagasawa, M., Kato, T., Sakaguchi, H., Tanaka, I., Watanabe, M., Hiroshima, Y., & Sakurai, M. (2024). Single-Facility Analysis of COVID-19 Status of Healthcare Employees during the Eighth and Ninth Pandemic Waves in Japan after Introducing Regular Rapid Antigen Testing. Vaccines, 12(6), 645. https://doi.org/10.3390/vaccines12060645