Advancing Vaccinology Capacity: Education and Efforts in Vaccine Development and Manufacturing across Africa
Abstract
:1. Introduction
2. Methodology
3. The African Vaccinology Landscape
4. State of Vaccinology Training in Africa
4.1. Vaccinology Courses
4.2. Current State of Education in Vaccinology in Africa
5. The Technology Platforms
6. The WHO mRNA Technology Transfer Program
7. Current Efforts of Africa in Vaccine Manufacturing and Future Perspectives
8. Assessment of Current Vaccine Production Capacity in Africa
9. Post COVID-19 Initiatives to Build Development and Manufacturing Capacity in Africa
10. Enhancing Vaccine Manufacturing Capacity through Capacity Building, International Collaboration, and Investment in Africa
11. Global Collaborations and Regional Agreements
12. Challenges and Future Considerations
13. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mihigo, R.; Anya, B.; Okeibunor, J.; Poy, A.; Machingaidze, S.; Wiysonge, C.J. Routine immunization in the WHO African region: Progress, challenges and way forward. Afr. Health Monit. 2015, 19, 2–7. [Google Scholar]
- Wright, C.Y.; Kapwata, T.; Naidoo, N.; Asante, K.P.; Arku, R.E.; Cissé, G.; Simane, B.; Atuyambe, L.; Berhane, K. Climate Change and Human Health in Africa in Relation to Opportunities to Strengthen Mitigating Potential and Adaptive Capacity: Strategies to Inform an African “Brains Trust”. Ann. Glob. Health 2024, 90, 7. [Google Scholar] [CrossRef]
- Nyaruwata, C. International Responses to Health Epidemics: An Analysis of Global Health Actors’ Responses to Persistent Cholera Outbreaks in Harare, Zimbabwe. BMJ Glob. Health 2022, 7, e009667. [Google Scholar]
- Zewude, B.; Habtegiorgis, T. Willingness to take COVID-19 vaccine among people most at risk of exposure in Southern Ethiopia. Pragmatic Obs. Res. 2021, 12, 37. [Google Scholar] [CrossRef] [PubMed]
- Josephson, A.; Kilic, T.; Michler, J.D. Socioeconomic impacts of COVID-19 in low-income countries. Nat. Hum. Behav. 2021, 5, 557–565. [Google Scholar] [CrossRef]
- Rice, B.L.; Annapragada, A.; Baker, R.E.; Bruijning, M.; Dotse-Gborgbortsi, W.; Mensah, K.; Miller, I.F.; Motaze, N.V.; Raherinandrasana, A.; Rajeev, M.J. Variation in SARS-CoV-2 outbreaks across sub-Saharan Africa. Nat. Med. 2021, 27, 447–453. [Google Scholar] [CrossRef]
- Britton, T.; Ball, F.; Trapman, P.J. A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2. Science 2020, 369, 846–849. [Google Scholar] [CrossRef]
- Aschwanden, C. Five reasons why COVID herd immunity is probably impossible. Nature 2021, 591, 520–522. [Google Scholar] [CrossRef] [PubMed]
- Schellekens, P. For Greater Vaccine Equity, First Fix These Misconceptions; Brookings Institution: Washington, DC, USA, 2021. [Google Scholar]
- Abiodun, T.A.H.; Mamo, L.T.; Sisay, O.B. Vaccine Manufacturing in Africa: What It Takes and Why It Matters. 2021. Available online: https://institute.global/advisory/vaccine-manufacturing-africa-what-it-takes-and-why-it-matters (accessed on 15 February 2023).
- Nkengasong, J.N.; Tessema, S.K. Africa needs a new public health order to tackle infectious disease threats. Cell 2020, 183, 296–300. [Google Scholar] [CrossRef]
- McKinsey. Evaluating the Sub-Saharan African Pharmaceutical Market. 2019. Available online: https://www.mckinsey.com/industries/public-and-social-sector/our-insights/should-sub-saharan-africa-make-its-own-drugs (accessed on 2 June 2024).
- Chaudhuri, S.; West, A. Can local producers compete with low-cost imports? A simulation study of pharmaceutical industry in low-income Africa. Innov. Dev. 2015, 5, 23–38. [Google Scholar] [CrossRef]
- Kumraj, G.; Pathak, S.; Shah, S.; Majumder, P.; Jain, J.; Bhati, D.; Hanif, S.; Mukherjee, S.; Ahmed, S. Capacity building for vaccine manufacturing across developing countries: The way forward. Hum. Vaccines Immunother. 2022, 18, 2020529. [Google Scholar] [CrossRef] [PubMed]
- Akegbe, H.; Onyeaka, H.; Mazi, I.M.; Olowolafe, O.A.; Omotosho, A.D.; Oladunjoye, I.O.; Tajudeen, Y.A.; Ofeh, A.S. The need for Africa to develop capacity for vaccinology as a means of curbing antimicrobial resistance. Vaccine X 2023, 14, 100320. [Google Scholar] [CrossRef]
- Nwaiwu, A.U.; Musekiwa, A.; Tamuzi, J.L.; Sambala, E.Z.; Nyasulu, P.S. The incidence and mortality of yellow fever in Africa: A systematic review and meta-analysis. BMC Infect. Dis. 2021, 21, 1089. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.T.; Crozier, I.; Fischer, W.A., 2nd; Hewlett, A.; Kraft, C.S.; Vega, M.A.; Soka, M.J.; Wahl, V.; Griffiths, A.; Bollinger, L.; et al. Ebola virus disease. Nat. Rev. Dis. Primers 2020, 6, 13. [Google Scholar] [CrossRef] [PubMed]
- Coulborn, R.M.; Bastard, M.; Peyraud, N.; Gignoux, E.; Luquero, F.; Guai, B.; Bateyi Mustafa, S.H.; Mukamba Musenga, E.; Ahuka-Mundeke, S. Case fatality risk among individuals vaccinated with rVSVΔG-ZEBOV-GP: A retrospective cohort analysis of patients with confirmed Ebola virus disease in the Democratic Republic of the Congo. Lancet Infect Dis. 2024, 24, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Duclos, P.; Martinez, L.; MacDonald, N.; Asturias, E.; Nohynek, H.; Lambert, P.H. Global vaccinology training: Report from an ADVAC workshop. Vaccine 2019, 37, 2871–2881. [Google Scholar] [CrossRef] [PubMed]
- Asturias, E.J.; Duclos, P.; MacDonald, N.E.; Nohynek, H.; Lambert, P.H.; Global Vaccinology Training, C. Advanced vaccinology education: Landscaping its growth and global footprint. Vaccine 2020, 38, 4664–4670. [Google Scholar] [CrossRef] [PubMed]
- Dochez, C.; Duclos, P.; MacDonald, N.; Steffen, C.; Lambert, P.H.; Global Vaccinology Training, C. Advanced vaccinology training globally: Update and impact of the COVID-19 crisis. Vaccine 2022, 40, 5683–5690. [Google Scholar] [CrossRef]
- Available online: https://noguchi.ug.edu.gh/call-for-applications-short-course-in-vaccine-biomanufacturing/ (accessed on 5 May 2023).
- MacDonald, N.; Mohsni, E.; Al-Mazrou, Y.; Kim Andrus, J.; Arora, N.; Elden, S.; Madrid, M.Y.; Martin, R.; Mahmoud Mustafa, A.; Rees, H.; et al. Global vaccine action plan lessons learned I: Recommendations for the next decade. Vaccine 2020, 38, 5364–5371. [Google Scholar] [CrossRef]
- Available online: https://www.e-cavi.com/ (accessed on 3 May 2023).
- Available online: https://www.afro.who.int/health-topics/immunization/avaref/training (accessed on 3 May 2023).
- Nofal, A.; AlFayyad, I.; AlJerian, N.; Alowais, J.; AlMarshady, M.; Khan, A.; Heena, H.; AlSarheed, A.S.; Abu-Shaheen, A. Knowledge and preparedness of healthcare providers towards bioterrorism. BMC Health Serv. Res. 2021, 21, 426. [Google Scholar] [CrossRef]
- Amponsah-Dacosta, E.; Muloiwa, R.; Wiysonge, C.S.; Gold, M.; Hussey, G.; Kagina, B.M. Developing vaccinology expertise for Africa: Fifteen years and counting. Pan. Afr. Med. J. 2021, 38, 313. [Google Scholar] [CrossRef] [PubMed]
- Wiysonge, C.S.; Waggie, Z.; Mahomed, H.; Hawkridge, A.; Hatherill, M.; Hanekom, W.A.; Hussey, G.D. Developing vaccinology expertise for Africa: Six years and counting. Vaccine 2011, 29, 5821–5823. [Google Scholar] [CrossRef] [PubMed]
- Moïsi, J.; Madhi, S.A.; Rees, H. Vaccinology in sub-saharan Africa. BMJ Glob. Health 2019, 4, e001363. [Google Scholar] [CrossRef] [PubMed]
- East African Community. Ordinary meeting of the EAC Sectoral Council of Ministers of Health. In Proceedings of the 9th Ordinary Meeting of the EAC Sectoral Council of Ministers of Health, Zanzibar, Tanzania, 17 April 2014.
- Niyitegeka, J.D. The Centre of Excellence for Vaccines, Immunisation Set to Graduate the First Cohort of Master’s Program; University of Rwanda, Huye Campus: Butare, RW, USA, 2019. [Google Scholar]
- Mamo, L.T.; Bradshaw, A. The Africa Vaccines Programme: How African Countries Have Mobilised Communities for COVID-19 Vaccinations; Tony Blair Institute for Global Change: London, UK, 2022. [Google Scholar]
- CDC, A. African Union and Africa CDC launches Partnerships for African Vaccine Manufacturing (PAVM), Framework to Achieve It and Signs 2 MoUs. 2021. Available online: https://africacdc.org (accessed on 3 May 2023).
- Kadanali, A.; Karagoz, G. An overview of Ebola virus disease. N. Clin. Istanb. 2015, 2, 81–86. [Google Scholar] [CrossRef]
- Kieh, M.; Richert, L.; Beavogui, A.H.; Grund, B.; Leigh, B.; D’Ortenzio, E.; Doumbia, S.; Lhomme, E.; Sow, S.; Vatrinet, R.; et al. Randomized Trial of Vaccines for Zaire Ebola Virus Disease. N. Engl. J. Med. 2022, 387, 2411–2424. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Ebola Virus Disease; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Matarazzo, L.; Bettencourt, P.J.G. mRNA vaccines: A new opportunity for malaria, tuberculosis and HIV. Front. Immunol. 2023, 14, 1172691. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Tang, T.; Chen, Y.; Huang, X.; Liang, T. mRNA vaccines in disease prevention and treatment. Signal Transduct. Target. Ther. 2023, 8, 365. [Google Scholar] [CrossRef] [PubMed]
- Makenga, G.; Bonoli, S.; Montomoli, E.; Carrier, T.; Auerbach, J. Vaccine Production in Africa: A Feasible Business Model for Capacity Building and Sustainable New Vaccine Introduction. Front. Public Health 2019, 7, 56. [Google Scholar] [CrossRef]
- Plotkin, S.; Robinson, J.M.; Cunningham, G.; Iqbal, R.; Larsen, S. The complexity and cost of vaccine manufacturing—An overview. Vaccine 2017, 35, 4064–4071. [Google Scholar] [CrossRef]
- Nyaruaba, R.; Okoye, C.O.; Akan, O.D.; Mwaliko, C.; Ebido, C.C.; Ayoola, A.; Ayeni, E.A.; Odoh, C.K.; Abi, M.-E.; Adebanjo, O. Socio-Economic Impacts of Emerging Infectious Diseases in Africa; Taylor & Francis: Abingdon, UK, 2022; Volume 54, pp. 315–324. [Google Scholar]
- GAVI. A New Era of Vaccine Manufacturing in Africa. 2022. Available online: https://www.gavi.org/news-resources/knowledge-products/new-era-vaccine-manufacturing-africa (accessed on 3 May 2023).
- Ozioko, K.U.; Okoye, C.I.; Obiezue, R.N.; Idika, I.K.; Awudu, R.A.; Ezewudo, B.I.; Ezea, C.O. Accelerating towards human African trypanosomiasis elimination: Issues and opportunities. J. Vector Borne Dis. 2020, 57, 105–113. [Google Scholar] [CrossRef]
- Büscher, P.; Cecchi, G.; Jamonneau, V.; Priotto, G. Human African trypanosomiasis. Lancet 2017, 390, 2397–2409. [Google Scholar] [CrossRef] [PubMed]
- WHO. Trypanosomiasis, Human African (Sleeping Sickness); World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Baden, L.R.; Stieh, D.J.; Sarnecki, M.; Walsh, S.R.; Tomaras, G.D.; Kublin, J.G.; McElrath, M.J.; Alter, G.; Ferrari, G.; Montefiori, D.; et al. Safety and immunogenicity of two heterologous HIV vaccine regimens in healthy, HIV-uninfected adults (TRAVERSE): A randomised, parallel-group, placebo-controlled, double-blind, phase 1/2a study. Lancet HIV 2020, 7, e688–e698. [Google Scholar] [CrossRef] [PubMed]
- Chu, K.; Hu, J.; Meng, F.; Li, J.; Luo, L.; Xu, J.; Yuan, Z.; Li, Z.; Chen, W.; Jiao, L.; et al. Immunogenicity and safety of subunit plague vaccine: A randomized phase 2a clinical trial. Hum. Vaccin. Immunother. 2016, 12, 2334–2340. [Google Scholar] [CrossRef]
- Frey, S.E.; Lottenbach, K.; Graham, I.; Anderson, E.; Bajwa, K.; May, R.C.; Mizel, S.B.; Graff, A.; Belshe, R.B. A phase I safety and immunogenicity dose escalation trial of plague vaccine, Flagellin/F1/V, in healthy adult volunteers (DMID 08-0066). Vaccine 2017, 35, 6759–6765. [Google Scholar] [CrossRef] [PubMed]
- Karoney, M.J.; Siika, A.M. Hepatitis C virus (HCV) infection in Africa: A review. Pan Afr. Med. J. 2013, 14, 44. [Google Scholar] [CrossRef] [PubMed]
- Page, K.; Melia, M.T.; Veenhuis, R.T.; Winter, M.; Rousseau, K.E.; Massaccesi, G.; Osburn, W.O.; Forman, M.; Thomas, E.; Thornton, K.; et al. Randomized Trial of a Vaccine Regimen to Prevent Chronic HCV Infection. N. Engl. J. Med. 2021, 384, 541–549. [Google Scholar] [CrossRef]
- Sissoko, M.S.; Healy, S.A.; Katile, A.; Zaidi, I.; Hu, Z.; Kamate, B.; Samake, Y.; Sissoko, K.; Mwakingwe-Omari, A.; Lane, J.; et al. Safety and efficacy of a three-dose regimen of Plasmodium falciparum sporozoite vaccine in adults during an intense malaria transmission season in Mali: A randomised, controlled phase 1 trial. Lancet Infect Dis. 2022, 22, 377–389. [Google Scholar] [CrossRef]
- Datoo, M.S.; Natama, H.M.; Somé, A.; Bellamy, D.; Traoré, O.; Rouamba, T.; Tahita, M.C.; Ido, N.F.A.; Yameogo, P.; Valia, D.; et al. Efficacy and immunogenicity of R21/Matrix-M vaccine against clinical malaria after 2 years’ follow-up in children in Burkina Faso: A phase 1/2b randomised controlled trial. Lancet Infect Dis. 2022, 22, 1728–1736. [Google Scholar] [CrossRef]
- Uwishema, O.; Chalhoub, E.; Torbati, T.; David, S.C.; Khoury, C.; Ribeiro, L.L.P.A.; Nasrallah, Y.; Bekele, B.K.; Onyeaka, H. Rift Valley fever during the COVID-19 pandemic in Africa: A double burden for Africa’s healthcare system. Health Sci. Rep. 2022, 5, e468. [Google Scholar] [CrossRef]
- Kitandwe, P.K.; McKay, P.F.; Kaleebu, P.; Shattock, R.J. An Overview of Rift Valley Fever Vaccine Development Strategies. Vaccines 2022, 10, 1794. [Google Scholar] [CrossRef]
- Ronchi, G.F.; Testa, L.; Iorio, M.; Pinoni, C.; Bortone, G.; Dondona, A.C.; Rossi, E.; Capista, S.; Mercante, M.T.; Morelli, D.; et al. Immunogenicity and safety studies of an inactivated vaccine against Rift Valley fever. Acta Trop. 2022, 232, 106498. [Google Scholar] [CrossRef] [PubMed]
- Aubry, F.; Jacobs, S.; Darmuzey, M.; Lequime, S.; Delang, L.; Fontaine, A.; Jupatanakul, N.; Miot, E.F.; Dabo, S.; Manet, C.; et al. Recent African strains of Zika virus display higher transmissibility and fetal pathogenicity than Asian strains. Nat. Commun. 2021, 12, 916. [Google Scholar] [CrossRef] [PubMed]
- Gaudinski, M.R.; Houser, K.V.; Morabito, K.M.; Hu, Z.; Yamshchikov, G.; Rothwell, R.S.; Berkowitz, N.; Mendoza, F.; Saunders, J.G.; Novik, L.; et al. Safety, tolerability, and immunogenicity of two Zika virus DNA vaccine candidates in healthy adults: Randomised, open-label, phase 1 clinical trials. Lancet 2018, 391, 552–562. [Google Scholar] [CrossRef] [PubMed]
- Han, H.H.; Diaz, C.; Acosta, C.J.; Liu, M.; Borkowski, A. Safety and immunogenicity of a purified inactivated Zika virus vaccine candidate in healthy adults: An observer-blind, randomised, phase 1 trial. Lancet Infect Dis. 2021, 21, 1282–1292. [Google Scholar] [CrossRef] [PubMed]
- Garry, R.F. Lassa fever—The road ahead. Nat. Rev. Microbiol. 2022, 22, 87–96. [Google Scholar] [CrossRef]
- Organization, W.H. Lassa Fever. Available online: https://www.who.int/health-topics/lassa-fever#tab=tab_1 (accessed on 25 February 2023).
- Shifflett, K.; Marzi, A. Marburg virus pathogenesis—Differences and similarities in humans and animal models. Virol. J. 2019, 16, 165. [Google Scholar] [CrossRef]
- Zhao, F.; He, Y.; Lu, H. Marburg virus disease: A deadly rare virus is coming. Biosci. Trends 2022, 16, 312–316. [Google Scholar] [CrossRef]
- Longini, I.M.; Yang, Y.; Fleming, T.R.; Muñoz-Fontela, C.; Wang, R.; Ellenberg, S.S.; Qian, G.; Halloran, M.E.; Nason, M.; Gruttola, V.; et al. A platform trial design for preventive vaccines against Marburg virus and other emerging infectious disease threats. Clin. Trials 2022, 19, 647–654. [Google Scholar] [CrossRef]
- Lehrer, A.T.; Chuang, E.; Namekar, M.; Williams, C.A.; Wong, T.A.S.; Lieberman, M.M.; Granados, A.; Misamore, J.; Yalley-Ogunro, J.; Andersen, H.; et al. Recombinant Protein Filovirus Vaccines Protect Cynomolgus Macaques From Ebola, Sudan, and Marburg Viruses. Front. Immunol. 2021, 12, 703986. [Google Scholar] [CrossRef]
- Yinka-Ogunleye, A.; Aruna, O.; Dalhat, M.; Ogoina, D.; McCollum, A.; Disu, Y.; Mamadu, I.; Akinpelu, A.; Ahmad, A.; Burga, J.; et al. Outbreak of human monkeypox in Nigeria in 2017-18: A clinical and epidemiological report. Lancet Infect Dis. 2019, 19, 872–879. [Google Scholar] [CrossRef]
- Turner Overton, E.; Schmidt, D.; Vidojkovic, S.; Menius, E.; Nopora, K.; Maclennan, J.; Weidenthaler, H. A randomized phase 3 trial to assess the immunogenicity and safety of 3 consecutively produced lots of freeze-dried MVA-BN® vaccine in healthy adults. Vaccine 2023, 41, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.; Wang, C.; Chuai, X.; Chiu, S. Monkeypox virus: A re-emergent threat to humans. Virol. Sin. 2022, 37, 477–482. [Google Scholar] [CrossRef]
- Ismail, N.; Omar, S.V.; Ismail, F.; Blows, L.; Koornhof, H.; Onyebujoh, P.C.; Gardee, Y. Drug resistant tuberculosis in Africa: Current status, gaps and opportunities. Afr. J. Lab. Med. 2018, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Manjelievskaia, J.; Erck, D.; Piracha, S.; Schrager, L. Drug-resistant TB: Deadly, costly and in need of a vaccine. Trans. R. Soc. Trop. Med. Hyg. 2016, 110, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Shiromwar, S.S.; Khan, A.H.; Chidrawar, V. A systematic review on extensively drug-resistant tuberculosis from 2009 to 2020: Special emphases on treatment outcomes. Rev. Espanola Quimioter. 2023, 36, 30–44. [Google Scholar] [CrossRef]
- Ou, Z.-J.; Yu, D.-F.; Liang, Y.-H.; He, W.-Q.; Li, Y.-Z.; Meng, Y.-X.; Xiong, H.-S.; Zhang, M.-Y.; He, H.; Gao, Y.-H. Trends in burden of multidrug-resistant tuberculosis in countries, regions, and worldwide from 1990 to 2017: Results from the Global Burden of Disease study. Infect. Dis. Poverty 2021, 10, 24. [Google Scholar] [CrossRef] [PubMed]
- Abdul, J.B.P.A.A.; Adegbite, B.R.; Ndanga, M.E.D.; Edoa, J.R.; Mevyann, R.C.; Mfoumbi, G.R.A.I.; de Dieu, T.J.; Mahoumbou, J.; Biyogho, C.M.; Jeyaraj, S. Resistance patterns among drug-resistant tuberculosis patients and trends-over-time analysis of national surveillance data in Gabon, Central Africa. Infection 2022, 51, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Legros, D. Global cholera epidemiology: Opportunities to reduce the burden of cholera by 2030. J. Infect. Dis. 2018, 218 (Suppl. S3), S137–S140. [Google Scholar] [CrossRef]
- Mengel, M.A.; Delrieu, I.; Heyerdahl, L.; Gessner, B.D. Cholera outbreaks in Africa. Cholera Outbreaks 2014, 379, 117–144. [Google Scholar]
- Bwire, G.; Mwesawina, M.; Baluku, Y.; Kanyanda, S.S.; Orach, C.G. Cross-border cholera outbreaks in sub-Saharan Africa, the mystery behind the silent illness: What needs to be done? PLoS ONE 2016, 11, e0156674. [Google Scholar] [CrossRef]
- Shaikh, H.; Lynch, J.; Kim, J.; Excler, J.-L. Current and future cholera vaccines. Vaccine 2020, 38, A118–A126. [Google Scholar] [CrossRef] [PubMed]
- Clemens, J.D.; Shin, S.; Sah, B.K.; Sack, D.A. Cholera vaccines. In Vaccines, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2012; pp. 141–152. [Google Scholar]
- Clemens, J.; Harris, J.; Khan, M.R.; Kay, B.; Yunus, M.; Svennerholm, A.-M.; Sack, D.; Chakraborty, J.; Stanton, B.; Khan, M. Field trial of oral cholera vaccines in Bangladesh. Lancet 1986, 328, 124–127. [Google Scholar] [CrossRef]
- Hansen, C.L.; Chaves, S.S.; Demont, C.; Viboud, C.C. Mortality associated with influenza and respiratory syncytial virus in the US, 1999-2018. J JAMA Netw. Open 2022, 5, e220527. [Google Scholar] [CrossRef]
- Que, T.; Li, J.; He, Y.; Chen, P.; Lin, W.; He, M.; Yu, L.; Wu, A.; Tan, L.; Li, Y.; et al. Human parainfluenza 3 and respiratory syncytial viruses detected in pangolins. J. Emerg. Microbes 2022, 11, 1657–1663. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Paulson, K.R.; Pease, S.A.; Watson, S.; Comfort, H.; Zheng, P.; Aravkin, A.Y.; Bisignano, C.; Barber, R.M.; Alam, T.J.T.L. Estimating excess mortality due to the COVID-19 pandemic: A systematic analysis of COVID-19-related mortality, 2020–2021. Lancet 2022, 399, 1513–1536. [Google Scholar] [CrossRef]
- Li, C.; Sampene, A.K.; Agyeman, F.O.; Robert, B.; Ayisi, A.L. Forecasting the severity of COVID-19 pandemic amidst the emerging SARS-CoV-2 variants: Adoption of ARIMA model. J. Comput. Math. Methods Med. 2022, 2022, 3163854. [Google Scholar] [CrossRef]
- Tellier, R. COVID-19: The case for aerosol transmission. Interface Focus 2022, 12, 20210072. [Google Scholar] [CrossRef] [PubMed]
- Marks, G.; Beatty, W.K. Epidemics; Scribner: Hunter, NY, USA, 1976; Volume 808. [Google Scholar]
- Høiby, N. Pandemics: Past, present, future: That is like choosing between cholera and plague. APMIS 2021, 129, 352–371. [Google Scholar] [CrossRef]
- Bertherat, E.; Bertherat, É. Plague around the world in 2019. Wkly. Epidemiol. Rec. 2019, 94, 289–292. [Google Scholar]
- Banda, A.; Gandiwa, E.; Muposhi, V.K.; Muboko, N. Ecological interactions, local people awareness and practices on rodent-borne diseases in Africa: A review. Acta Trop. 2022, 238, 106743. [Google Scholar] [CrossRef]
- Sun, W.; Singh, A.K. Plague vaccine: Recent progress and prospects. NPJ Vaccines 2019, 4, 11. [Google Scholar] [CrossRef] [PubMed]
- Adam, A.; Jassoy, C. Epidemiology and laboratory diagnostics of dengue, yellow fever, zika, and chikungunya virus infections in Africa. Pathogens 2021, 10, 1324. [Google Scholar] [CrossRef] [PubMed]
- Zurbia-Flores, G.M.; Reyes-Sandoval, A.; Kim, Y.C. Chikungunya Virus: Priority Pathogen or Passing Trend? Vaccines 2023, 11, 568. [Google Scholar] [CrossRef] [PubMed]
- Russo, G.; Subissi, L.; Rezza, G. Chikungunya fever in Africa: A systematic review. Pathog. Glob. Health 2020, 114, 111–119. [Google Scholar] [CrossRef]
- Vasconcelos de Lima Cavalcanti, T.Y.; Pereira, M.R.; de Paula, S.O.; de Oliveira Franca, R.F. A Review on Chikungunya Virus Epidemiology, Pathogenesis and Current Vaccine Development. Viruses 2022, 14, 969. [Google Scholar] [CrossRef] [PubMed]
- Renault, P.; Josseran, L.; Pierre, V. Chikungunya-related fatality rates, mauritius, India, and Reunion Island. Emerg. Infect. Dis. 2008, 14, 1327. [Google Scholar] [CrossRef]
- Lamptey, E.; Senkyire, E.K.; Benita, D.A.; Boakye, E.O. COVID-19 vaccines development in Africa: A review of current situation and existing challenges of vaccine production. Clin. Exp. Vaccine Res. 2022, 11, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Zaid, M.A. Egypt produces 30m doses of Vaccera-Sinovac Vaccine. Arab. News 2022. Available online: https://arab.news/p8gxb (accessed on 4 June 2024).
- Editorial. Africa is bringing vaccine manufacturing home. Nature 2022, 602, 184. [Google Scholar] [CrossRef] [PubMed]
- Jaime, G.; Hobeika, A.; Figuié, M. Access to veterinary drugs in sub-saharan Africa: Roadblocks and current solutions. Front. Vet. Sci. 2022, 8, 558973. [Google Scholar] [CrossRef]
- Available online: https://www.nvri.gov.ng/bacterial-vaccine-production (accessed on 20 April 2023).
- Endalew, M.A.; Wakene, F.S. Retrospective study on livestock vaccine coverage and trends in Digelu-tijo district, Arsi zone. Int. J. Agric. Ext. 2021, 8, 219–224. [Google Scholar] [CrossRef]
- Bertram, M.R.; Delgado, A.; Pauszek, S.J.; Smoliga, G.R.; Brito, B.; Stenfeldt, C.; Hartwig, E.J.; Jumbo, S.D.; Abdoulmoumini, M.; Marie, A.A.O. Effect of vaccination on cattle subclinically infected with foot-and-mouth disease virus in Cameroon. Prev. Vet. Med. 2018, 155, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://kevevapi.or.ke/our-products/ (accessed on 4 June 2024).
- Gatticchi, G.R.a.G. How Africa Plans to Make 60% of the Vaccines Needed on the Continent. BHEKISISA, Special Reports: COVID-19 Vaccines. 2021. Available online: https://bhekisisa.org/article/2021-11-04-how-africa-plans-to-make-60-of-the-vaccines-needed-on-the-continent/ (accessed on 3 June 2024).
- McCarthy, N. The Countries Dominating Covid-19 Vaccine Production, in Statista. 2021. Available online: https://www.statista.com/chart/24492/total-covid-19-vaccine-production-by-country/ (accessed on 5 June 2024).
- Africa CDC. Africa CDC Consortium for COVID-19 Vaccine Clinical Trials (CONCVACT) 2022. Available online: https://au.int/sites/default/files/documents/39350-doc-africa_cdc_consortium_for_covid-19_clinical_trials_-_eng.pdf (accessed on 25 May 2023).
- African CDC. 2021. Available online: https://africacdc.org/event/partnership-for-african-vaccine-manufacturing-pavm-from-aspiration-to-action/ (accessed on 25 May 2023).
- Maiga, A. IFC and Partners Support New COVID-19 Vaccine Manufacturing Facility of Institut Pasteur de Dakar in Senegal. Creating Markets, Creating Opportunities. 2021. Available online: https://pressroom.ifc.org/all/pages/PressDetail.aspx?ID=26493 (accessed on 2 June 2024).
- Biovac and Development Partners Collaborate to Support South Africa’s Vaccine Manufacturing Expansion and Advance Long-Term Health Security Across Africa. African Development Bank Group. 2022. Available online: https://www.afdb.org/ar/news-and-events/press-releases/biovac-and-development-partners-collaborate-support-south-africas-vaccine-manufacturing-expansion-and-advance-long-term-health-security-across-africa-49641 (accessed on 2 June 2024).
- BioNTech and CEPI Expand Partnership to Strengthen Africa’s mRNA Vaccine Ecosystem. GlobeNewswire. Available online: https://www.morningstar.com/news/globe-newswire/1000963437/biontech-and-cepi-expand-partnership-to-strengthen-africas-mrna-vaccine-ecosystem (accessed on 2 June 2024).
- Roelf, W. Afrigen Gears Up to Deliver Africa’s First COVID-19 mRNA Vaccine. Reuters. 2023. Available online: https://www.reuters.com/world/africa/afrigen-gears-up-deliver-africas-first-covid-19-mrna-vaccine-2021-06-24/ (accessed on 2 June 2024).
- World Bank Gives $120m for Kenya’s Vaccine Facility. The East African. 2024. Available online: https://www.theeastafrican.co.ke/tea/business/world-bank-gives-120m-for-kenya-s-vaccine-facility-4519140 (accessed on 4 June 2024).
- Xinhua. Ethiopia Launches Construction of Local Vaccine Manufacturing Company. Africa. 2024. Available online: https://english.news.cn/africa/20240131/4916d119fc1d496291609957c0206f56/c.html (accessed on 4 June 2024).
- Egypt’s VACSERA in Talks with China’s SINOVAC over vaccines plant construction. Arab Finance, Pharmaceutical. 2023. Available online: https://www.zawya.com/en/economy/north-africa/egypts-vacsera-in-talks-with-chinas-sinovac-over-vaccines-plant-construction-emequi1p (accessed on 4 June 2024).
- Gennecs to Inaugurate US$150M Vaccine Production Facility, Vaccine Research Unit in Egypt. Healthcare Middle East & Africa. 2022. Available online: https://www.healthcaremea.com/gennecs-to-inaugurate-us150m-vaccine-production-facility-vaccine-research-unit-in-egypt/ (accessed on 4 June 2024).
- South Africa’s Aspen Receives $30 Mln Grant for Vaccine Manufacturing. Reuters. 2022. Available online: https://health.economictimes.indiatimes.com/news/policy/south-africas-aspen-receives-30-mln-grant-for-vaccine-manufacturing/96173187 (accessed on 5 June 2024).
- Shoshana, K. Morocco Starts Construction of $562m Covid-19 Vaccine Plant, in African Business. 2022. Available online: https://african.business/2022/02/energy-resources/morocco-starts-construction-of-562m-covid19-vaccine-plant (accessed on 5 June 2024).
- African Vaccine Manufacturing Initiative. Available online: https://www.avmi-africa.org/ (accessed on 25 May 2023).
- Available online: https://sites.google.com/view/avpa-project/home?pli=1 (accessed on 25 May 2023).
- A Breakthrough for the African Vaccine Manufacturing. Centres for Disease Control and Prevention. Available online: https://africacdc.org/news-item/a-breakthrough-for-the-african-vaccine-manufacturing/ (accessed on 3 June 2024).
- Establishment of Regional Capability and Capacity Networks for Biomanufacturing Workforce Development. Africa Center for Disease Control and Prevention. Available online: https://tools.africacdc.org/africacdcrc/surveys/?s=H7L7Y7CDH98CH4KJ (accessed on 4 June 2024).
- Aspen Inks. COVID-19 Vaccine Manufacturing Deal with J&J. India Diagnistics Summit 2024. ETHealthworld. 2020. Available online: https://health.economictimes.indiatimes.com/news/pharma/aspen-inks-covid-19-vaccine-manufacturing-deal-with-jj/79021314 (accessed on 20 February 2023).
- A, S. SA’s BioVac to Use Deal with US-Based ImmunityBio to Boost Local VACCINE creation, CEO Says. Fin24 [Internet] 2021 Mars 20. Available online: https://www.reuters.com/article/healthcoronavirus-safrica-aspen-pharmaca-idUSL1N2LA0N4 (accessed on 20 February 2023).
- Maas, S.; Alatovic, J. BioNTech Starts Construction of First mRNA Vaccine Manufacturing Facility in Africa; BioNTech: Mainz, Germany, 2022. [Google Scholar]
- Ssebwami, J. HAPPENING NOW: Museveni is set to commission DEI Biopharma huge vaccines facility today. UG Stand. 2022. Available online: https://www.ugstandard.com/happening-now-museveni-is-set-to-commission-dei-biopharma-huge-vaccines-facility-today (accessed on 20 February 2023).
- Tillman, H.; Zheng, J.; Jian, Y. BRI Vaccine Partnership: The Local Production of Chinese Vaccines and the Future Network of Providing mRNA Vaccines. 31 May 2022. Available online: https://ssrn.com/abstract= (accessed on 20 February 2023). [CrossRef]
- BioNTech mRNA Vaccine Manufacturing Facility, Rwanda. BioNTech Inaugurated the Kigali Site in December 2023. Pharmaceutical Technology. 2024. Available online: https://www.pharmaceutical-technology.com/projects/biontech-mrna-facility-rwanda/ (accessed on 2 June 2024).
- Egypt Approves Emergency Use of Locally Manufactured Sinovac/VACSERA COVID-19 Vaccine. Ahram Online. 2021. Available online: https://english.ahram.org.eg/NewsContent/1/64/419641/Egypt/Politics-/Egypt-approves-emergency-use-of-locally-manufactur.aspx (accessed on 2 June 2024).
- New Vaccine Plant in Senegal Gets 75 Million Euros from EIB. Reuters, Healthcare & Pharmaceuticals. 2022. Available online: https://www.reuters.com/business/healthcare-pharmaceuticals/new-vaccine-plant-senegal-gets-75-million-euros-eib-2022-06-02/ (accessed on 2 June 2024).
- Matsoso, S. IFC Partners with South Africa’s Biovac to Expand Vaccine Manufacturing in Africa. Creating Markets, Creating Opportunities. Available online: https://pressroom.ifc.org/all/pages/PressDetail.aspx?ID=27938 (accessed on 2 June 2024).
- Mohammed, Z. Tracking The Progress Of Covid-19 Vaccines Development in Kenya. International Women’s Media Foundation. 2023. Available online: https://www.iwmf.org/reporting/tracking-the-progress-of-covid-19-vaccines-development-in-kenya/ (accessed on 4 June 2024).
- African Medicines Agency (AMA), in African Union Development Agency. Available online: https://www.nepad.org/microsite/african-medicines-agency-ama (accessed on 3 June 2024).
SN | Region | Number of Countries | Number of Countries with Vaccines Related Programs | Number of Countries without Vaccines Related Programs | Number of Programs | |||
---|---|---|---|---|---|---|---|---|
n | n | % | n | % | n | % | ||
1 | Western Africa | 16 | 5 | 31.3 | 11 | 68.8 | 10 | 62.5 |
2 | Northern Africa | 7 | 5 | 71.4 | 2 | 28.6 | 5 | 71.4 |
3 | Eastern Africa | 19 | 4 | 21.1 | 15 | 78.9 | 5 | 26.3 |
4 | Southern Africa | 5 | 2 | 40.0 | 3 | 60.0 | 6 | 120.0 |
5 | Central Africa | 9 | 4 | 44.4 | 5 | 55.6 | 5 | 55.6 |
Total | 56 | 20 | 35.7 | 36 | 64.3 | 31 | 55.4 |
Disease | Cause | Most Affected Country in Last 5 Years | Available Vaccine | Mortality Rate | Refs. |
---|---|---|---|---|---|
Human African trypanosomiasis | Parasites of genus Trypanosoma and transmitted by infected tsetse flies. | 70% of reported cases occurred in the Democratic Republic of the Congo, with an average of less than 1000 cases declared annually. It is still reported endemic in Central Africa. | No | Human African trypanosomiasis (sleeping sickness) was the first or second greatest cause of mortality in the affected communities, even ahead of HIV/AIDS. | [43,44,45] |
HIV | The human immunodeficiency virus (HIV) | Eswatini | In progress | 25% | [46] |
Plague | Bacteria Yersinia pestis, a zoonotic bacteria, usually found in small mammals and their fleas. | Madagascar | Yes: A whole organism and subunits | 30–100% if left untreated. | [47,48] |
Hepatitis C | Hepatitis C virus | Egypt has the highest prevalence (17.5%) of HCV in the world | There is no effective vaccine against hepatitis C | 5.3% | [49,50] |
Malaria | Parasites that are transmitted to people through the bites of infected female Anopheles mosquitoes | Nigeria (31.3%) | Available | 12% | [51,52] |
Rift Valley fever | Mosquitoes and blood feeding flies | Egypt | An inactivated vaccine has been developed for human use, but it is not licensed and or commercially available. | <1% | [53,54,55] |
Zika viruses | Parasites that are transmitted to people through the bites of infected Aedes species. | Cape Verde | Inactivated and DNA vaccine candidates under clinical trials. | [56,57,58] | |
Lassa fever | Lassa virus transmitted by rodent. | Benin, Ghana, Guinea, Liberia, Mali, Sierra Leone, Togo, and Nigeria. | Although promising candidates are being evaluated, as yet there are no approved vaccines or therapeutics for human use. | Diagnosis and prompt treatment are essential. The overall case-fatality rate is 1%. Among patients who are hospitalized with severe clinical presentation of Lassa fever, case-fatality is estimated at around 15%. Early supportive care with rehydration and symptomatic treatment improves survival. | [59,60] |
Marburg virus infection or hemorrhagic fever | Marburg virus | Ghana, Guinea, and Uganda. | There are several candidates, but no approved vaccines or therapeutics for human use | 90% | [61,62,63] |
Ebola virus disease | Ebola virus | Democratic Republic of Congo (Zaire), Uganda (Sudan species), Guinea (Zaire species). | There are several candidates, but no approved vaccines or therapeutics for human use. | Zaire Ebola virus species (60–90%); Sudan Ebola virus species (40–60%). | [34,35,64] |
Human monkey pox | Monkey pox virus | Nigeria | In progress at randomized phase 3 trial. | 1–10% | [65,66,67] |
Extensively drug-resistant tuberculosis (XDR TB)/multidrug-resistant tuberculosis (MDR TB) | Mycobacterium tuberculosis | Nigeria, South Africa Democratic Republic of Congo, Mozambique, Ethiopia, Angola, Kenya, United Republic of Tanzania. | Yes. Bacille Calmette-Guérin (BCG) is a vaccine for tuberculosis (TB) disease particularly in infants and small children. There is no current information on TB vaccines trials in Africa. | 1.5 million deaths occurred worldwide; 3.3% being MDR-TB and XDR-TB strains in 2014 yet there is no accurate data estimating the current situation in Africa. | [68,69,70,71,72] |
Cholera | Vibrio cholerae | Angola, Democratic Republic of the Congo, Mozambique, Ethiopia, Somalia, South Sudan, Sudan, and Zambia. Others are Nigeria, Somalia, Tanzania, and South Africa. | Yes. Oral cholera vaccines are available for the management of the disease. | 160,930 deaths (52.6% of 2,548,227 estimated cases and 79.6% of 209,216 estimated deaths worldwide). Another estimates 1,411,453 cases and 53,632 deaths per year, respectively (50% of 2,836,669 estimated cases and 58.6% of 91,490 estimated deaths worldwide). | [73,74,75,76,77,78] |
Respiratory syncytial virus (RSV) | Respiratory syncytial virus spread from person to person. | Globally but varies with season and weather conditions. | In Progress | 1.0% for children younger than 1 year and 73.4% for adults aged 65 years or older. | [79,80] |
Recently emerged COVID-19 pandemic | COVID-19 virus transmitted through contact (direct and through fomites), large droplets and aerosols. | China, USA, Italy, and Brazil in the first wave, while Brazil South Africa consistently reported more than 100,000 cases in 2022. | Yes | The global all-age rate of excess mortality due to the COVID-19 pandemic was 120.3 deaths (113.1–129.3) per 100,000 of the population. | [81,82,83] |
Plague | Yersinia pestis | Madagascar, Democratic Republic of the Congo, Uganda, Malawi and Zambia. Sporadic cases have also occurred in Tanzania, Mozambique and Kenya. | The vaccine is given intramuscularly and comprises inactivated Yersinia pestis cells. For the purpose of maintaining long-term immunity, booster doses are necessary. Immunity is provided for around 6 to 12 months. Live attenuated vaccine: Given orally, this vaccine comprises weakened Yersinia pestis cells. It offers prolonged immunity and does not need booster doses. | There are three types of plague: Bubonic 50–60% without treatment, ˂5% with antibiotics. Septicemic 30–50% without treatment, ˂5% with antibiotics and pneumonic mortality rate almost 100% without intervention and ˂15% with antibiotics. | [84,85,86,87,88] |
Chikungunya fever | Chikungunya virus (CHIKV) | Kenya, Tanzania, Madagascar, Comoros and Mozambique. Sporadic cases have also occurred in Uganda, Nigeria, and Senegal. | Currently no vaccine available for commercial use, however, some are currently in development and undergoing clinical trial (VLA1553). | Less than 0.1% (self-limited illness). | [89,90,91,92,93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinumvayo, J.P.; Munezero, P.C.; Tope, A.T.; Adeyemo, R.O.; Bale, M.I.; Nyandwi, J.B.; Haakuria, V.M.; Mutesa, L.; Adedeji, A.A. Advancing Vaccinology Capacity: Education and Efforts in Vaccine Development and Manufacturing across Africa. Vaccines 2024, 12, 741. https://doi.org/10.3390/vaccines12070741
Sinumvayo JP, Munezero PC, Tope AT, Adeyemo RO, Bale MI, Nyandwi JB, Haakuria VM, Mutesa L, Adedeji AA. Advancing Vaccinology Capacity: Education and Efforts in Vaccine Development and Manufacturing across Africa. Vaccines. 2024; 12(7):741. https://doi.org/10.3390/vaccines12070741
Chicago/Turabian StyleSinumvayo, Jean Paul, Pierre Celestin Munezero, Adegboyega Taofeek Tope, Rasheed Omotayo Adeyemo, Muritala Issa Bale, Jean Baptiste Nyandwi, Vetjaera Mekupi Haakuria, Leon Mutesa, and Ahmed Adebowale Adedeji. 2024. "Advancing Vaccinology Capacity: Education and Efforts in Vaccine Development and Manufacturing across Africa" Vaccines 12, no. 7: 741. https://doi.org/10.3390/vaccines12070741
APA StyleSinumvayo, J. P., Munezero, P. C., Tope, A. T., Adeyemo, R. O., Bale, M. I., Nyandwi, J. B., Haakuria, V. M., Mutesa, L., & Adedeji, A. A. (2024). Advancing Vaccinology Capacity: Education and Efforts in Vaccine Development and Manufacturing across Africa. Vaccines, 12(7), 741. https://doi.org/10.3390/vaccines12070741