Immunogenicity, Safety and Efficacy of the Dengue Vaccine TAK-003: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy, Selection Criteria and Methodological Quality
2.2. Primary Outcome: Immunogenicity
2.3. Secondary Outcomes: Clinical Efficacy and Serious Adverse Events
2.4. Data Analysis
3. Results
3.1. Characteristics of Included Studies
3.2. Study Quality
3.3. Immunogenicity 30 Days after the First Dose
3.4. Immunogenicity 30 Days after the Second Dose
3.5. Efficacy
3.6. Safety–Adverse Events
3.7. Safety Small-Study Effects (Publication Bias)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tricou, V.; Saez-Llorens, X.; Yu, D.; Rivera, L.; Jimeno, J.; Villarreal, A.C.; Dato, E.; Saldana de Suman, O.; Montenegro, N.; DeAntonio, R.; et al. Safety and immunogenicity of a tetravalent dengue vaccine in children aged 2-17 years: A randomised, placebo-controlled, phase 2 trial. Lancet 2020, 395, 1434–1443. [Google Scholar] [CrossRef] [PubMed]
- Wilder-Smith, A. TAK-003 dengue vaccine as a new tool to mitigate dengue in countries with a high disease burden. Lancet Glob. Health 2024, 12, e179–e180. [Google Scholar] [CrossRef] [PubMed]
- Paz-Bailey, G.; Adams, L.E.; Deen, J.; Anderson, K.B.; Katzelnick, L.C. Dengue. Lancet 2024, 403, 667–682. [Google Scholar] [CrossRef] [PubMed]
- Tricou, V.; Yu, D.; Reynales, H.; Biswal, S.; Saez-Llorens, X.; Sirivichayakul, C.; Lopez, P.; Borja-Tabora, C.; Bravo, L.; Kosalaraksa, P.; et al. Long-term efficacy and safety of a tetravalent dengue vaccine (TAK-003): 4.5-year results from a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Glob. Health 2024, 12, e257–e270. [Google Scholar] [CrossRef] [PubMed]
- Saez-Llorens, X.; Tricou, V.; Yu, D.; Rivera, L.; Jimeno, J.; Villarreal, A.C.; Dato, E.; Mazara, S.; Vargas, M.; Brose, M.; et al. Immunogenicity and safety of one versus two doses of tetravalent dengue vaccine in healthy children aged 2–17 years in Asia and Latin America: 18-month interim data from a phase 2, randomised, placebo-controlled study. Lancet Infect. Dis. 2018, 18, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Halstead, S.; Wilder-Smith, A. Severe dengue in travellers: Pathogenesis, risk and clinical management. J. Travel Med. 2019, 26, taz062. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Ahsan, O.; Mumtaz, H.; Tahir Khan, M.; Sah, R.; Waheed, Y. Tracing down the Updates on Dengue Virus-Molecular Biology, Antivirals, and Vaccine Strategies. Vaccines 2023, 11, 1328. [Google Scholar] [CrossRef] [PubMed]
- Principi, N.; Esposito, S. Development of Vaccines against Emerging Mosquito-Vectored Arbovirus Infections. Vaccines 2024, 12, 87. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Dengue Tetravalent Vaccine (Live, Attenuated) Takeda-Opinion on Medicine for Use Outside EU; European Medicines Agency: Amsterdam, The Netherlands, 2022.
- Belgium Superior Health Council. Vaccination against Dengue; Report 9739; SHC: Brussels, Belgium, 2023. [Google Scholar]
- Osorio, J.E.; Velez, I.D.; Thomson, C.; Lopez, L.; Jimenez, A.; Haller, A.A.; Silengo, S.; Scott, J.; Boroughs, K.L.; Stovall, J.L.; et al. Safety and immunogenicity of a recombinant live attenuated tetravalent dengue vaccine (DENVax) in flavivirus-naive healthy adults in Colombia: A randomised, placebo-controlled, phase 1 study. Lancet Infect. Dis. 2014, 14, 830–838. [Google Scholar] [CrossRef]
- George, S.L.; Wong, M.A.; Dube, T.J.; Boroughs, K.L.; Stovall, J.L.; Luy, B.E.; Haller, A.A.; Osorio, J.E.; Eggemeyer, L.M.; Irby-Moore, S.; et al. Safety and Immunogenicity of a Live Attenuated Tetravalent Dengue Vaccine Candidate in Flavivirus-Naive Adults: A Randomized, Double-Blinded Phase 1 Clinical Trial. J. Infect. Dis. 2015, 212, 1032–1041. [Google Scholar] [CrossRef]
- Rupp, R.; Luckasen, G.J.; Kirstein, J.L.; Osorio, J.E.; Santangelo, J.D.; Raanan, M.; Smith, M.K.; Wallace, D.; Gordon, G.S.; Stinchcomb, D.T. Safety and immunogenicity of different doses and schedules of a live attenuated tetravalent dengue vaccine (TDV) in healthy adults: A Phase 1b randomized study. Vaccine 2015, 33, 6351–6359. [Google Scholar] [CrossRef] [PubMed]
- Sirivichayakul, C.; Barranco-Santana, E.A.; Esquilin-Rivera, I.; Oh, H.M.; Raanan, M.; Sariol, C.A.; Shek, L.P.; Simasathien, S.; Smith, M.K.; Velez, I.D.; et al. Safety and Immunogenicity of a Tetravalent Dengue Vaccine Candidate in Healthy Children and Adults in Dengue-Endemic Regions: A Randomized, Placebo-Controlled Phase 2 Study. J. Infect. Dis. 2016, 213, 1562–1572. [Google Scholar] [CrossRef] [PubMed]
- Takeda NCT02948829. Safety and Immunogenicity of Takeda’s Tetravalent Dengue Vaccine (TDV) in Healthy Children. 2017. Available online: https://clinicaltrials.gov/study/NCT02948829 (accessed on 8 July 2024).
- Biswal, S.; Mendez Galvan, J.F.; Macias Parra, M.; Galan-Herrera, J.F.; Carrascal Rodriguez, M.B.; Rodriguez Bueno, E.P.; Brose, M.; Rauscher, M.; LeFevre, I.; Wallace, D.; et al. Immunogenicity and safety of a tetravalent dengue vaccine in dengue-naive adolescents in Mexico City. Rev. Panam. Salud Publica 2021, 45, e67. [Google Scholar] [CrossRef] [PubMed]
- Takeda NCT04313244. Immunogenicity and Safety of Dengue Tetravalent Vaccine (TDV) and Recombinant 9-Valent Human Papillomavirus Vaccine (9vHPV) in Participants Aged ≥9 to <15 Years. 2021. Available online: https://clinicaltrials.gov/study/NCT04313244 (accessed on 8 July 2024).
- López-Medina, E.; Biswal, S.; Saez-Llorens, X.; Borja-Tabora, C.; Bravo, L.; Sirivichayakul, C.; Vargas, L.M.; Alera, M.T.; Velásquez, H.; Reynales, H.; et al. Efficacy of a Dengue Vaccine Candidate (TAK-003) in Healthy Children and Adolescents 2 Years after Vaccination. J. Infect. Dis. 2022, 225, 1521–1532. [Google Scholar] [CrossRef] [PubMed]
- Sirivichayakul, C.; Barranco-Santana, E.A.; Rivera, I.E.; Kilbury, J.; Raanan, M.; Borkowski, A.; Papadimitriou, A.; Wallace, D. Long-term Safety and Immunogenicity of a Tetravalent Dengue Vaccine Candidate in Children and Adults: A Randomized, Placebo-Controlled, Phase 2 Study. J. Infect. Dis. 2022, 225, 1513–1520. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.S.; Winkle, P.; Faccin, A.; Nordio, F.; LeFevre, I.; Tsoukas, C.G. An open-label, Phase 3 trial of TAK-003, a live attenuated dengue tetravalent vaccine, in healthy US adults: Immunogenicity and safety when administered during the second half of a 24-month shelf-life. Hum. Vaccines Immunother. 2023, 19, 2254964. [Google Scholar] [CrossRef] [PubMed]
- Tricou, V.; Essink, B.; Ervin, J.E.; Turner, M.; Escudero, I.; Rauscher, M.; Brose, M.; Lefevre, I.; Borkowski, A.; Wallace, D. Immunogenicity and safety of concomitant and sequential administration of yellow fever YF-17D vaccine and tetravalent dengue vaccine candidate TAK-003: A phase 3 randomized, controlled study. PLoS Neglected Trop. Dis. 2023, 17, e0011124. [Google Scholar] [CrossRef] [PubMed]
- Tricou, V.; Eyre, S.; Ramjee, M.; Collini, P.; Mojares, Z.; Loeliger, E.; Mandaric, S.; Rauscher, M.; Brose, M.; Lefevre, I.; et al. A randomized phase 3 trial of the immunogenicity and safety of coadministration of a live-attenuated tetravalent dengue vaccine (TAK-003) and an inactivated hepatitis a (HAV) virus vaccine in a dengue non-endemic country. Vaccine 2023, 41, 1398–1407. [Google Scholar] [CrossRef]
- Tricou, V.; Winkle, P.J.; Tharenos, L.M.; Rauscher, M.; Escudero, I.; Hoffman, E.; LeFevre, I.; Borkowski, A.; Wallace, D. Consistency of immunogenicity in three consecutive lots of a tetravalent dengue vaccine candidate (TAK-003): A randomized placebo-controlled trial in US adults. Vaccine 2023, 41, 6999–7006. [Google Scholar] [CrossRef]
- Flacco, M.E.; Manzoli, L.; Rosso, A.; Marzuillo, C.; Bergamini, M.; Stefanati, A.; Cultrera, R.; Villari, P.; Ricciardi, W.; Ioannidis, J.P.A.; et al. Immunogenicity and safety of the multicomponent meningococcal B vaccine (4CMenB) in children and adolescents: A systematic review and meta-analysis. Lancet Infect. Dis. 2018, 18, 461–472. [Google Scholar] [CrossRef]
- Higgins, J.P.; Altman, D.G.; Gotzsche, P.C.; Juni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed]
- Torres-Flores, J.M.; Reyes-Sandoval, A.; Salazar, M.I. Dengue Vaccines: An Update. BioDrugs 2022, 36, 325–336. [Google Scholar] [CrossRef]
- Roehrig, J.T.; Hombach, J.; Barrett, A.D. Guidelines for Plaque-Reduction Neutralization Testing of Human Antibodies to Dengue Viruses. Viral Immunol. 2008, 21, 123–132. [Google Scholar] [CrossRef] [PubMed]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Takeda NCT03423173. Lot-to-Lot Consistency of 3 Lots of Tetravalent Dengue Vaccine (TDV) in Non-Endemic Country(Ies) for Dengue. 2018. Available online: https://clinicaltrials.gov/study/NCT03423173 (accessed on 8 July 2024).
- Tricou, V.; Low, J.G.; Oh, H.M.; Leo, Y.S.; Kalimuddin, S.; Wijaya, L.; Pang, J.; Ling, L.M.; Lee, T.H.; Brose, M.; et al. Safety and immunogenicity of a single dose of a tetravalent dengue vaccine with two different serotype-2 potencies in adults in Singapore: A phase 2, double-blind, randomised, controlled trial. Vaccine 2020, 38, 1513–1519. [Google Scholar] [CrossRef]
- Turner, M.; Papadimitriou, A.; Winkle, P.; Segall, N.; Levin, M.; Doust, M.; Johnson, C.; Lucksinger, G.; Fierro, C.; Pickrell, P.; et al. Immunogenicity and safety of lyophilized and liquid dengue tetravalent vaccine candidate formulations in healthy adults: A randomized, phase 2 clinical trial. Hum. Vaccines Immunother. 2020, 16, 2456–2464. [Google Scholar] [CrossRef]
- Biswal, S.; Borja-Tabora, C.; Martinez Vargas, L.; Velasquez, H.; Theresa Alera, M.; Sierra, V.; Johana Rodriguez-Arenales, E.; Yu, D.; Wickramasinghe, V.P.; Duarte Moreira, E., Jr.; et al. Efficacy of a tetravalent dengue vaccine in healthy children aged 4-16 years: A randomised, placebo-controlled, phase 3 trial. Lancet 2020, 395, 1423–1433. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions; The Cochrane Collaboration: London, UK, 2011. [Google Scholar]
- Sridhar, S.; Luedtke, A.; Langevin, E.; Zhu, M.; Bonaparte, M.; Machabert, T.; Savarino, S.; Zambrano, B.; Moureau, A.; Khromava, A.; et al. Effect of Dengue Serostatus on Dengue Vaccine Safety and Efficacy. N. Engl. J. Med. 2018, 379, 327–340. [Google Scholar] [CrossRef]
- World Health Organization. Dengue vaccine: WHO position paper, September 2018-Recommendations. Vaccine 2019, 37, 4848–4849. [Google Scholar] [CrossRef]
- Kallas, E.G.; Precioso, A.R.; Palacios, R.; Thome, B.; Braga, P.E.; Vanni, T.; Campos, L.M.A.; Ferrari, L.; Mondini, G.; da Graca Salomao, M.; et al. Safety and immunogenicity of the tetravalent, live-attenuated dengue vaccine Butantan-DV in adults in Brazil: A two-step, double-blind, randomised placebo-controlled phase 2 trial. Lancet Infect. Dis. 2020, 20, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Furuya-Kanamori, L.; Xu, C.; Doi, S.A.R.; Clark, J.; Wangdi, K.; Mills, D.J.; Lau, C.L. Comparison of immunogenicity and safety of licensed Japanese encephalitis vaccines: A systematic review and network meta-analysis. Vaccine 2021, 39, 4429–4436. [Google Scholar] [CrossRef] [PubMed]
- da Costa, V.G.; Marques-Silva, A.C.; Floriano, V.G.; Moreli, M.L. Safety, immunogenicity and efficacy of a recombinant tetravalent dengue vaccine: A meta-analysis of randomized trials. Vaccine 2014, 32, 4885–4892. [Google Scholar] [CrossRef] [PubMed]
- Joint Committee on Vaccination and Immunisation (JCVI). Qdenga® Dengue Vaccine Guidance; NaTHNaC: London, UK, 2024. [Google Scholar]
- Lin, R.J.; Lee, T.H.; Leo, Y.S. Dengue in the elderly: A review. Expert Rev. Anti-Infect. Ther. 2017, 15, 729–735. [Google Scholar] [CrossRef]
- Badawi, A.; Velummailum, R.; Ryoo, S.G.; Senthinathan, A.; Yaghoubi, S.; Vasileva, D.; Ostermeier, E.; Plishka, M.; Soosaipillai, M.; Arora, P. Prevalence of chronic comorbidities in dengue fever and West Nile virus: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0200200. [Google Scholar] [CrossRef]
- European Medicines Agency. Qdenga: EPAR-Medicine Overview; European Medicines Agency: Amsterdam, The Netherlands, 2022.
- Tricou, V.; Gottardo, R.; Egan, M.A.; Clement, F.; Leroux-Roels, G.; Sáez-Llorens, X.; Borkowski, A.; Wallace, D.; Dean, H.J. Characterization of the cell-mediated immune response to Takeda’s live-attenuated tetravalent dengue vaccine in adolescents participating in a phase 2 randomized controlled trial conducted in a dengue-endemic setting. Vaccine 2022, 40, 1143–1151. [Google Scholar] [CrossRef] [PubMed]
- Rivera, L.; Biswal, S.; Sáez-Llorens, X.; Reynales, H.; López-Medina, E.; Borja-Tabora, C.; Bravo, L.; Sirivichayakul, C.; Kosalaraksa, P.; Martinez Vargas, L.; et al. Three-year efficacy and safety of Takeda’s dengue vaccine candidate (TAK-003). Clin. Infect. Dis. 2022, 75, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Biswal, S.; Reynales, H.; Saez-Llorens, X.; Lopez, P.; Borja-Tabora, C.; Kosalaraksa, P.; Sirivichayakul, C.; Watanaveeradej, V.; Rivera, L.; Espinoza, F.; et al. Efficacy of a tetravalent dengue vaccine in healthy children and adolescents. N. Engl. J. Med. 2019, 381, 2009–2019. [Google Scholar] [CrossRef]
- Sáez-Llorens, X.; Tricou, V.; Yu, D.; Rivera, L.; Tuboi, S.; Garbes, P.; Borkowski, A.; Wallace, D. Safety and immunogenicity of one versus two doses of Takeda’s tetravalent dengue vaccine in children in Asia and Latin America: Interim results from a phase 2, randomised, placebo-controlled study. Lancet Infect. Dis. 2017, 17, 615–625. [Google Scholar] [CrossRef]
Id | First Author | Journal | Year | Age Range in Years; Mean | % Females | Country | Design | Blinding | Intervention | Control(s) | Outcome(s) Extracted | Sponsor | ClinicalTrials.gov ID |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Osorio [11] | Lancet Infect Dis | 2014 | 18–45; 20.5 | 70.0 | Colombia | RCT | Double | 2d (0.5 mL) SC or 2d (0.1 mL) ID M0-M3 | Placebo | I | Takeda | NCT01224639 |
2 | George [12] | J Infect Dis | 2015 | 18–45; 31.5 | 46.0 | USA | RCT | Double | 2d (0.1 mL) SC M0-M3 | Placebo | I; S | NIAIDS + Takeda | NCT01110551 |
3 | Rupp [13] | Vaccine | 2015 | 19–43; 30.0 | 60.0 | Puerto Rico | RCT | Double | 2d (0.5 mL) SC M0-M3 | Placebo | I | Takeda | NCT01511250 |
4 | Sirivichayakul [14] | J Infect Dis | 2016 | 1.5–45; 9.8 | 47.8 | Multi- country | RCT | Double | 2d (0.5 mL) SC M0-M3 | Placebo | I | Takeda | NCT01511250 |
5 | Tricou [31] | Vaccine | 2020 | 21–45; 30.9 | 52.3 | Singapore | RCT * | Double | 1d 0.5 mL SC | No controls, high vs. low vaccine dose * | I | Takeda | NCT02425098 |
6 | Turner [32] | Hum Vaccin Immunother | 2020 | 18–49; 32.1 | 49.4 | USA | RCT * | Double | 2d (0.5 mL) SC M0-M3 | Liquid vs. lyophilized vaccine * | I | Takeda | NCT02193087 |
7 | NCT02948829 [15] | ClinicalTrials.gov | 2020 | 4–16; 6.7 | 50.5 | Panama, Philippines | Single- arm trial | Open label | 2d (0.5 mL) SC M0-M3 | No control | I | Takeda | NCT02948829 |
8 | Tricou [1] | Lancet | 2020 | 2–18; 7.3 | 49.0 | Multi- country | RCT | Double | 2d (0.5 mL) SC M0-M3 | Placebo | I; E; S | Takeda | NCT02302066 |
9 | Patel [20] | Hum Vaccin Immunother | 2020 | 18–60; 40.3 | 50.5 | USA | Single- arm trial | Open label | 2d (0.5 mL) SC M0-M3 | No control | I | Takeda | NCT03771963 |
10 | NCT04313244 [17] | ClinicalTrials.gov | 2021 | 9–15; 11.2 | 49.8 | Thailand | RCT | Double | 2d (0.5 mL) SC M0-M3 | 9vHPV | I; S | Takeda | NCT04313244 |
11 | Biswal [16] | Rev Panam Salud Publica | 2021 | 12–17; 14.3 | 56.8 | Mexico | RCT | Double | 2d (0.5 mL) SC M0-M3 | Placebo | I; S | Takeda | NCT03341637 |
12 | Sirivichayakul [19] | J Infect Dis | 2022 | 1.5–45; 9.8 | 47.8 | Multi- country | RCT | Double | 2d (0.5 mL) SC M0-M3 | Placebo | E; S | Takeda | NCT01511250 |
13 | López-Medina [18] and | J Infect Dis | 2022 | 4–16; 9.6 | 49.7 | Multi- country | RCT | Double | 2d (0.5 mL) SC M0-M3 | Placebo | I | Takeda | NCT02747927 |
14 | Tricou [4] | Lancet Global Health | 2024 | E; S | |||||||||
15 | Tricou (A) [22] | Vaccine | 2023 | 18–60; 35.4 | 35.3 | UK | RCT | Double | 2d (0.5 mL) SC M0-M3 | HAV vaccine + placebo | I; S | Takeda | NCT03525119 |
16 | Tricou [21] | PLos Negl Trp Dis | 2023 | 18–60; 40.0 | 56.7 | USA | RCT | Double | 2d (0.5 mL) SC M0-M3 | YF-17D + placebo | I | Takeda | NCT03342898 |
17 | Tricou (B) [23,30] ** | Vaccine | 2023 | 18–60; 41.4 | 53.8 | USA | RCT | Double | 2d (0.5 mL) SC M0-M3 | Placebo | I; S | Takeda | NCT03423173 |
Study ID | Randomization Process | Deviations from Intended Interventions | Missing Outcome Data | Measurement of the Outcome | Selection of Reported Results | Overall Bias |
---|---|---|---|---|---|---|
Osorio (2014) [11] | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
George (2015) [12] | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Rupp (2015) [13] | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Sirivichayakul (2016) [14] | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Tricou Vac (2020) [31] | Low risk * | Low risk | Low risk | Low risk | Low risk | Low risk |
Turner (2020) [32] | Low risk * | Low risk | Low risk | Low risk | Low risk | Low risk |
Tricou Lan (2020) [1] | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
NCT04313244 (2021) [17] | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Biswal (2021) [16] | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Sirivichayakul (2022) [19] | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
López-Medina (2022) [18] | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Tricou (A) (2023) [22] | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Tricou Plos (2023) [21] | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Tricou (B) (2023) [23] | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Tricou (2024) [4] | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
30 Days after the 1st Dose | 30 Days after the 2nd Dose | |||
---|---|---|---|---|
N. Studies (Sample) | Seroconversion *, % (95% CI) | N. Studies (Sample) | Seroconversion *, % (95% CI) | |
All ages | ||||
Seronegative subjects only | ||||
-All serotypes | 4 (741) | 85.2 (67.4–97.0) | 6 (1278) | 91.0 (82.2–97.2) |
-DENV-1 | 6 (1533) | 91.7 (86.4–95.8) | 6 (1932) | 99.9 (98.9–100) |
-DENV-2 | 6 (1533) | 90.9 (81.0–97.6) | 6 (1932) | 99.8 (98.6–100) |
-DENV-3 | 6 (1533) | 82.5 (69.9–92.5) | 6 (1932) | 99.0 (96.6–100) |
-DENV-4 | 6 (1533) | 78.5 (68.2–87.3) | 6 (1932) | 98.8 (96.4–100) |
Seropositive subjects only | ||||
-All serotypes | 2 (150) | 90.3 (84.9–94.7) | 1 (41) | 97.6 (87.4–99.6) |
-DENV-1 | 2 (1990) | 99.9 (99.7–100) | 1 (1816) | 100 (99.8–100) |
-DENV-2 | 2 (1990) | 99.9 (99.6–100) | 1 (1816) | 100 (99.8–100) |
-DENV-3 | 2 (1990) | 100 (99.8–100) | 1 (1816) | 100 (99.8–100) |
-DENV-4 | 2 (1990) | 100 (99.8–100) | 1 (1816) | 100 (99.8–100) |
Mixed samples (seropositive and seronegative or serological status not assessed) | ||||
-All serotypes | 4 (527) | 81.2 (64.9–93.3) | 4 (505) | 93.7 (88.9–97.3) |
-DENV-1 | 7 (3592) | 96.1 (92.2–98.8) | 8 (3789) | 100 (99.1–100) |
-DENV-2 | 7 (3592) | 97.8 (94.0–99.9) | 8 (3789) | 100 (100–100) |
-DENV-3 | 7 (3592) | 93.0 (84.7–98.5) | 8 (3789) | 100 (99.5–100) |
-DENV-4 | 7 (3592) | 83.7 (70.7–93.7) | 8 (3789) | 96.7 (88.3–100) |
Overall Sample | Minors (2–18 y) | |||||
---|---|---|---|---|---|---|
Vaccine vs. Control, 2 Doses | N. Studies (Sample) | RR (95% CI) | p | N. Studies (Sample) | RR (95% CI) | p |
Virologically confirmed dengue fever | ||||||
Seronegative subjects only | ||||||
-All viral serotypes | 1 (5546) | 0.47 (0.38–0.59) | <0.001 | 1 (5546) | 0.47 (0.38–0.59) | <0.001 |
-DENV-1 | 1 (5546) | 0.56 (0.41–0.75) | <0.001 | 1 (5546) | 0.56 (0.41–0.75) | <0.001 |
-DENV-2 | 1 (5546) | 0.12 (0.07–0.21) | <0.001 | 1 (5546) | 0.12 (0.07–0.21) | <0.001 |
-DENV-3 | 1 (5546) | 1.11 (0.62–1.99) | 0.73 | 1 (5546) | 1.11 (0.62–1.99) | 0.73 |
-DENV-4 | 1 (5546) | 1.97 (0.56–6.98) | 0.29 | 1 (5546) | 1.97 (0.56–6.98) | 0.29 |
Seropositive subjects only | ||||||
-All viral serotypes | 1 (14,517) | 0.38 (0.32–0.44) | <0.001 | 1 (14,517) | 0.38 (0.32–0.44) | <0.001 |
-DENV-1 | 1 (14,517) | 0.44 (0.35–0.56) | <0.001 | 1 (14,517) | 0.44 (0.35–0.56) | <0.001 |
-DENV-2 | 1 (14,517) | 0.20 (0.15–0.27) | <0.001 | 1 (14,517) | 0.20 (0.15–0.27) | <0.001 |
-DENV-3 | 1 (14,517) | 0.50 (0.38–0.66) | <0.001 | 1 (14,517) | 0.50 (0.38–0.66) | <0.001 |
-DENV-4 | 1 (14,517) | 0.30 (0.15–0.62) | <0.001 | 1 (14,517) | 0.30 (0.15–0.62) | <0.001 |
Mixed samples (seropositive and seronegative or serological status not assessed) | ||||||
-All viral serotypes | 4 (20,825) | 0.41 (0.36–0.46) | <0.001 | 3 (20,751) | 0.41 (0.36–0.46) | <0.001 |
-DENV-1 | 2 (20,464) | 0.53 (0.33–0.85) | <0.001 | 2 (20,464) | 0.53 (0.33–0.85) | <0.001 |
-DENV-2 | 2 (20,464) | 0.18 (0.13–0.23) | <0.001 | 2 (20,464) | 0.18 (0.13–0.23) | <0.001 |
-DENV-3 | 2 (20,461) | 0.58 (0.45–0.74) | <0.001 | 2 (20,461) | 0.58 (0.45–0.74) | <0.001 |
-DENV-4 | 2 (20,461) | 0.54 (0.31–0.94) | <0.001 | 2 (20,461) | 0.54 (0.31–0.94) | <0.001 |
Product-related SAEs | ||||||
-All serotypes | 6 (22,465) | 0.36 (0.12–1.06) | 0.06 | 3 (20,873) | 0.29 (0.07–1.26) | 0.10 |
Any SAEs | ||||||
-All serotypes | 9 (23,381) | 1.15 (0.77–1.71) | 0.50 | 5 (21,765) | 1.01 (0.70–1.44) | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flacco, M.E.; Bianconi, A.; Cioni, G.; Fiore, M.; Calò, G.L.; Imperiali, G.; Orazi, V.; Tiseo, M.; Troia, A.; Rosso, A.; et al. Immunogenicity, Safety and Efficacy of the Dengue Vaccine TAK-003: A Meta-Analysis. Vaccines 2024, 12, 770. https://doi.org/10.3390/vaccines12070770
Flacco ME, Bianconi A, Cioni G, Fiore M, Calò GL, Imperiali G, Orazi V, Tiseo M, Troia A, Rosso A, et al. Immunogenicity, Safety and Efficacy of the Dengue Vaccine TAK-003: A Meta-Analysis. Vaccines. 2024; 12(7):770. https://doi.org/10.3390/vaccines12070770
Chicago/Turabian StyleFlacco, Maria Elena, Alessandro Bianconi, Giovanni Cioni, Matteo Fiore, Giovanna Letizia Calò, Gianmarco Imperiali, Vittorio Orazi, Marco Tiseo, Anastasia Troia, Annalisa Rosso, and et al. 2024. "Immunogenicity, Safety and Efficacy of the Dengue Vaccine TAK-003: A Meta-Analysis" Vaccines 12, no. 7: 770. https://doi.org/10.3390/vaccines12070770
APA StyleFlacco, M. E., Bianconi, A., Cioni, G., Fiore, M., Calò, G. L., Imperiali, G., Orazi, V., Tiseo, M., Troia, A., Rosso, A., & Manzoli, L. (2024). Immunogenicity, Safety and Efficacy of the Dengue Vaccine TAK-003: A Meta-Analysis. Vaccines, 12(7), 770. https://doi.org/10.3390/vaccines12070770