A Cross-Sectional Study of Measles-Specific Antibody Levels in Australian Blood Donors—Implications for Measles Post-Elimination Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Sample Size Calculation
2.3. Laboratory Testing
2.4. Data Analysis
3. Results
3.1. Measles-Specific IgG Antibody Levels by Subgroup
3.2. Multivariate Analysis
3.3. Plaque Reduction Neutralisation Testing (PRNT)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
(A) Age and Gender | (B) State/Territory | ||||
---|---|---|---|---|---|
Age Group | Gender | No. by Age & Gender | No. by Age (%) | State/Territory | No. (%) |
18–29 years | Female | 1954 | 3565 (28.5%) | ACT | 636 (5.1%) |
Male | 1611 | ||||
30–39 years | Female | 1351 | 2880 (23.0%) | NSW | 3237 (25.9%) |
Male | 1529 | NT | 168 (1.3%) | ||
40–49 years | Female | 1059 | 2217 (17.7%) | QLD | 2595 (20.8%) |
Male | 1158 | SA | 1014 (8.1%) | ||
50–59 years | Female | 900 | 2022 (16.2%) | TAS | 451 (3.6%) |
Male | 1122 | VIC | 3079 (24.6%) | ||
60+ years | Female | 749 | 1820 (14.6%) | WA | 1324 (10.6%) |
Male | 1071 | ||||
All Ages | Female | 6013 (48.1%) | 12,504 (100%) | All States/Territories | 12,504 (100%) |
Male | 6491 (51.9%) |
All Study Subjects | Subset of Subjects Who Underwent PRNT | |||||
---|---|---|---|---|---|---|
n (%) | Total n (%) | ELISA Negative n (%) | ELISA Equivocal n (%) | ELISA Low Positive n (%) | ELISA Positive n (%) | |
Total | 1199 | 149 (100) | 66 (100) | 63 (100) | 10 (100) | 10 (100) |
Birth Year Cohort (Age) | ||||||
1940–1959 (60+ years) | 232 (19.4) | 7 (4.7) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 7 (70.0) |
1960–1969 (50–59 years) | 239 (19.9) | 6 (4.0) | 2 (3.0) | 1 (1.6) | 0 (0.0) | 3 (30.0) |
1970–1979 (40–49 years) | 241 (20.1) | 30 (20.1) | 14 (21.2) | 14 (22.2) | 2 (20.0) | 0 (0.0) |
1980–1989 (30–39 years) | 242 (20.2) | 49 (32.9) | 20 (30.3) | 24 (38.1) | 5 (50.0) | 0 (0.0) |
1990–2001 (18–29 years) | 245 (20.4) | 57 (38.3) | 30 (45.5) | 24 (38.1) | 3 (30.0) | 0 (0.0) |
Gender | ||||||
Female | 565 (47.1) | 55 (36.9) | 17 (25.8) | 30 (47.6) | 3 (30.0) | 5 (50.0) |
Male | 634 (52.9) | 94 (63.1) | 49 (74.2) | 33 (52.4) | 7 (70.0) | 5 (50.0) |
Appendix B. Estimation of Levels in Current and Future Australian Donor Populations
- The distribution of whole blood and plasma donations across age groups in the future will be similar to that of the Australian donations in 2019.
- The current age groups in this study and their corresponding age-specific mean antibody level will become the next consecutive age group and antibody level in ten years’ time; that is, the current 30–39-year age group in 2019 with mean antibody level = X will become the 40–49-year age group in 2029 whose mean antibody level = X, and the 50–59-year age group in 2039 whose mean antibody level = X.
- There is no decay of antibody levels within donors as they age; that is, the mean antibody level = X for 30–39-year-olds in 2019 will become the mean antibody level = X for 40–49-year-olds in 2029 without any waning.
- As the antibody levels of youngest donors (18–29-year-olds) in future cohorts cannot be predicted, the mean antibody level for 18–29-year-olds in 2019 is used for 18–29-year-olds in 2029 and 2039, acknowledging that this may be an overestimate.
Age Group (Years) | Number of Total Blood Donations (Plasma + Whole Blood) in 2019 | % | Mean Measles-Specific IgG Antibody Levels in 2019 [95% CI] | Estimated Mean Antibody Levels in 2029 * | Estimated Mean Antibody Levels in 2039 * |
---|---|---|---|---|---|
18–29 | 327,130 | 22.14% | 0.58 [0.52–0.64] | 0.58 | 0.58 |
30–39 | 278,054 | 18.81% | 0.74 [0.65–0.83] | 0.58 | 0.58 |
40–49 | 258,875 | 17.52% | 1.18 [1.06–1.29] | 0.74 | 0.58 |
50–59 | 291,846 | 19.75% | 1.87 [1.76–1.97] | 1.18 | 0.74 |
60+ | 321,959 | 21.79% | 2.09 [2.00–2.18] | 1.87 | 1.18 |
Total | 1,477,864 | 100.00% | |||
Age-adjusted mean antibody level for annual total Australian blood donations | 1.30 | 1.01 | 0.74 |
References
- Chiew, M.; Dey, A.; Martin, N.; Wang, H.; Davis, S.; McIntyre, P.B. Australian vaccine preventable disease epidemiological review series: Measles 2000–2011. Commun. Dis. Intell. 2015, 39, E1–E9. [Google Scholar]
- Viana, P.O.; Ono, E.; Miyamoto, M.; Salomao, R.; Costa-Carvalho, B.T.; Weckx, L.Y.; de Moraes-Pinto, M.I. Humoral and cellular immune responses to measles and tetanus: The importance of elapsed time since last exposure and the nature of the antigen. J. Clin. Immunol. 2010, 30, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Davidkin, I.; Jokinen, S.; Broman, M.; Leinikki, P.; Peltola, H. Persistence of measles, mumps, and rubella antibodies in an MMR-vaccinated cohort: A 20-year follow-up. J. Infect. Dis. 2008, 197, 950–956. [Google Scholar] [CrossRef]
- Waaijenborg, S.; Hahné, S.J.M.; Mollema, L.; Smits, G.P.; Berbers, G.A.M.; van der Klis, F.R.M.; de Melker, H.E.; Wallinga, J. Waning of maternal antibodies against measles, mumps, rubella, and varicella in communities with contrasting vaccination coverage. J. Infect. Dis. 2013, 208, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Australian Technical Advisory Group on Immunisation. Australian Immunisation Handbook; Australian Government Department of Health: Canberra, ACT, Australia, 2018.
- Communicable Diseases Network Australia. National Guidelines for Public Health Units: Measles; Communicable Diseases Network Australia: Canberra, ACT, Australia, 2019. Available online: https://www1.health.gov.au/internet/main/publishing.nsf/Content/cdna-song-measles.htm (accessed on 17 December 2019).
- CSL Behring. Australian Product Information—Normal Immunoglobulin-VF (Human Normal Immunoglobulin); CSL Behring: Broadmeadows, VIC, Australia, 2020. [Google Scholar]
- Keller, M.A.; Stiehm, E.R. Passive immunity in prevention and treatment of infectious diseases. Clin. Microbiol. Rev. 2000, 13, 602–614. [Google Scholar] [CrossRef]
- National Blood Authority Australia. Annual Report 2017–2018; National Blood Authority Australia: Lyneham, ACT, Australia, 2018.
- Australian Red Cross Lifeblood. How Does Age Affect My Ability to Donate? 2020. Available online: https://www.donateblood.com.au/faq/age (accessed on 16 September 2020).
- Endo, A.; Izumi, H.; Miyashita, M.; Taniguchi, K.; Okubo, O.; Harada, K. Current efficacy of post exposure prophylaxis against measles with immunoglobulin. J. Pediatr. 2001, 138, 926–928. [Google Scholar] [CrossRef] [PubMed]
- Young, M.K.; Cripps, A.W.; Nimmo, G.R. The use of normal human immunoglobulin (NHIG) for public health purposes in Queensland 2004–2014 and Australia 2014–2016. Commun. Dis. Intell. 2019, 43. [Google Scholar] [CrossRef]
- Young, M.K.; Nimmo, G.R.; Cripps, A.W.; Jones, M.A. Post-exposure passive immunisation for preventing measles. In Cochrane Database of Systematic Reviews; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Simon, T.L.; FitzGerald, P.; Kühne, M.; Farrar, C.; Knowles, J.; Bycholski, K.; Zenker, O. Longitudinal changes in measles antibody titers in plasma donors and minimum antibody levels of immunoglobulin products for treatment of primary immunodeficiency. Transfusion 2018, 58 (Suppl. S3), 3065–3071. [Google Scholar] [CrossRef]
- Modrof, J.; Tille, B.; Farcet, M.R.; McVey, J.; Schreiner, J.A.; Borders, C.M.; Gudino, M.; Fitzgerald, P.; Simon, T.L.; Kreil, T.R. Measles virus neutralizing antibodies in intravenous immunoglobulins: Is an increase by revaccination of plasma donors possible? J. Infect. Dis. 2017, 216, 977–980. [Google Scholar] [CrossRef]
- Audet, S.; Virata-Theimer, M.L.; Beeler, J.A.; Scott, D.E.; Frazier, D.J.; Mikolajczyk, M.G.; Eller, N.; Chen, F.; Yu, M.Y.W. Measles-Virus–Neutralizing Antibodies in Intravenous Immunoglobulins. J. Infect. Dis. 2006, 194, 781–789. [Google Scholar] [CrossRef]
- Sinden, J. Post Exposure Prophylaxis for Measles; New Zealand Blood Service: Auckland, New Zealand, 2012. [Google Scholar]
- Matysiak-Klose, D.; Santibanez, S.; Schwerdtfeger, C.; Koch, J.; von Bernuth, H.; Hengel, H.; Littmann, M.; Terhardt, M.; Wicker, S.; Mankertz, A.; et al. Post-exposure prophylaxis for measles with immunoglobulins revised recommendations of the standing committee on vaccination in Germany. Vaccine 2018, 36, 7916–7922. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, M.; Manikkavasagan, G.; Brown, K.; Craig, L. Post Exposure Prophylaxis for Measles: Revised Guidance; Health Protection Agency: London, UK, 2009.
- Tunis, M.C.; Salvadori, M.I.; Dubey, V.; Baclic, O.; National Advisory Committee on Immunization. Updated NACI recommendations for measles post-exposure prophylaxis. Can. Commun. Dis. Rep. 2018, 44, 226–230. [Google Scholar] [CrossRef] [PubMed]
- McLean, H.Q.; Fiebelkorn, A.P.; Temte, J.L.; Wallace, G.S.; Centers for Disease Control & Prevention. Prevention of measles, rubella, congenital rubella syndrome, and mumps, 2013: Summary recommendations of the Advisory Committee on Immunization Practices (ACIP). In Morbidity and Mortality Weekly Report (MMWR); Centers for Disease Control and Prevention: Atlanta, GA, USA, 2013; Volume 62, pp. 1–34. [Google Scholar]
- US Food and Drug Administration. Code of Federal Regulations Title 21, Volume 7, Part 640, Subpart J, Section 640.104: Additional Standards for Human Blood and Blood Products, Immune Globulin (Human), Potency; US Food and Drug Administration: Silver Spring, MD, USA, 2019.
- Hajian-Tilaki, K. Sample size estimation in epidemiologic studies. Caspian J. Intern. Med. 2011, 2, 289–298. [Google Scholar] [PubMed]
- Kirby Institute; UNSW Sydney; Australian Red Cross Lifeblood. Transfusion-Transmissible Infections in Australia: 2019 Surveillance Report; Kirby Institute: Kensington, NSW, Australia, 2019. [Google Scholar]
- Cohen, B.J.; Doblas, D.; Andrews, N. Comparison of plaque reduction neutralisation test (PRNT) and measles virus-specific IgG ELISA for assessing immunogenicity of measles vaccination. Vaccine 2008, 26, 6392–6397. [Google Scholar] [CrossRef] [PubMed]
- Cohen, B.; Parry, R.; Doblas, D.; Samuel, D.; Warrener, L.; Andrews, N.; Brown, D. Measles immunity testing: Comparison of two measles IgG ELISAs with plaque reduction neutralisation assay. J. Virol. Methods 2006, 131, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Ratnam, S.; Gadag, V.; West, R.; Burris, J.; Oates, E.; Stead, F.; Bouilianne, N. Comparison of commercial enzyme immunoassay kits with plaque reduction neutralization test for detection of measles virus antibody. J. Clin. Microbiol. 1995, 33, 811–815. [Google Scholar] [CrossRef]
- Tischer, A.; Andrews, N.; Kafatos, G.; Nardone, A.; Berbers, G.; Davidkin, I.; Aboudy, Y.; Backhouse, J.; Barbara, C.; Miller, E.; et al. Standardization of measles, mumps and rubella assays to enable comparisons of seroprevalence data across 21 European countries and Australia. Epidemiol. Infect. 2007, 135, 787–797. [Google Scholar] [CrossRef] [PubMed]
- Tischer, A.; Gassner, M.; Richard, J.L.; Suter-Riniker, F.; Mankertz, A.; Heininger, U. Vaccinated students with negative enzyme immunoassay results show positive measles virus-specific antibody levels by immunofluorescence and plaque neutralisation tests. J. Clin. Virol. 2007, 38, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.T.; Markowitz, L.E.; Albrecht, P.; Stewart, J.A.; Mofenson, L.M.; Preblud, S.R.; Orenstein, W.A. Measles antibody: Reevaluation of protective titers. J. Infect. Dis. 1990, 162, 1036–1042. [Google Scholar] [CrossRef]
- Cohen, B.J.; Audet, S.; Andrews, N.; Beeler, J.; WHO Working Group on Measles Plaque Reduction Neutralization Test. Plaque reduction neutralization test for measles antibodies: Description of a standardised laboratory method for use in immunogenicity studies of aerosol vaccination. Vaccine 2007, 26, 59–66. [Google Scholar] [CrossRef]
- Albrecht, P.; Herrmann, K.; Burns, G.R. Role of virus strain in conventional and enhanced measles plaque neutralization test. J. Virol. Methods 1981, 3, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Pennsylvania State University. STAT 500 Applied Statistics: 10.2.1.—ANOVA Assumptions. 2022. Available online: https://online.stat.psu.edu/stat500/lesson/10/10.2/10.2.1 (accessed on 23 February 2022).
- Sullivan, M. Fundamentals of Statistics; Pearson Prentice Hall: London, UK, 2011. [Google Scholar]
- National Centre for Immunisation Research and Surveillance. Significant Events in Measles, Mumps and Rubella Vaccination Practice in Australia. December 2019. Available online: http://ncirs.org.au/sites/default/files/2019-12/Measles-mumps-rubella-history-Dec%202019.pdf (accessed on 28 April 2020).
- Australian Government Department of Health. Measles—Elimination Achieved in Australia. 20 March 2014. Available online: https://www1.health.gov.au/internet/main/publishing.nsf/Content/ohp-measles-elim-announce-2014.htm (accessed on 2 August 2020).
- Gidding, H.F.; Martin, N.V.; Stambos, V.; Tran, T.; Dey, A.; Dowse, G.K.; Kelly, H.A.; Durrheim, D.N.; Lambert, S.B. Verification of measles elimination in Australia: Application of World Health Organization regional guidelines. J. Epidemiol. Glob. Health 2016, 6, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Edirisuriya, C.; Beard, F.H.; Hendry, A.J.; Dey, A.; Gidding, H.F.; Hueston, L.; Dwyer, D.E.; Wood, J.G.; Macartney, K.K.; McIntyre, P.B. Australian rubella serosurvey 2012–2013: On track for elimination? Vaccine 2018, 36, 2794–2798. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.L.; Marriott, I.; Fish, E.N. Sex-based differences in immune function and responses to vaccination. Trans. R. Soc. Trop. Med. Hyg. 2015, 109, 9–15. [Google Scholar] [CrossRef]
- Fischinger, S.; Boudreau, C.M.; Butler, A.L.; Streeck, H.; Alter, G. Sex differences in vaccine-induced humoral immunity. Semin. Immunopathol. 2019, 41, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Mossong, J.; O’Callaghan, C.J.; Ratnam, S. Modelling antibody response to measles vaccine and subsequent waning of immunity in a low exposure population. Vaccine 2000, 19, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Young, M.K.; Bertolini, J.; Kotharu, P.; Maher, D.; Cripps, A.W. Do Australian immunoglobulin products meet international measles antibody titre standards? Hum. Vaccines Immunother. 2017, 13, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Young, M.K.; Ng, S.K.; Nimmo, G.R.; Cripps, A.W. The optimal dose of disease-specific antibodies for post-exposure prophylaxis of measles and rubella in Australia: New guidelines recommended. Expert Opin. Drug Metab. Toxicol. 2018, 14, 663–669. [Google Scholar] [CrossRef]
- Public Health England. Guidelines on Post-Exposure Prophylaxis for Measles June 2019; Wellington House: London, UK, 2019. [Google Scholar]
- Galardi, D.A.; Herson, N. Pricing of blood products. Am. J. Health-Syst. Pharm. 2000, 57, 2061. [Google Scholar] [CrossRef]
- Hoad, V.C.; Castrén, J.; Norda, R.; Pink, J. A donor safety evidence literature review of the short- and long-term effects of plasmapheresis. Vox Sang. 2024, 119, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Siennicka, J.; Czescik, A.; Trzcinska, A. The significance for epidemiological studies anti-measles antibody detection examined by enzyme immunoassay (EIA) and plaque reduction neutralization test (PRNT). Prz. Epidemiol. 2014, 68, 417–420, 527–529. [Google Scholar]
- Terletskaia-Ladwig, E.; Enders, G.; Meier, S.; Dietz, K.; Enders, M. Development and evaluation of an automatable focus reduction neutralisation test for the detection of measles virus antibodies using imaging analysis. J. Virol. Methods 2011, 178, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.J.; Han, Y.W.; Kim, S.J.; Kim, Y.-J.; Kim, A.-R.; Kim, J.A.; Jung, H.-D.; Eom, H.E.; Park, O.; Kim, S.S. An increasing, potentially measles-susceptible population over time after vaccination in Korea. Vaccine 2017, 35, 4126–4132. [Google Scholar] [CrossRef] [PubMed]
n (%) | Mean OD [95% CI] | Standard Deviation | Range | p-Value | |
---|---|---|---|---|---|
Total | 1199 | 1.28 [1.23–1.33] | 0.00–3.52 | ||
Birth Year Cohort (Age) | |||||
1940–1959 (60+ years) | 232 (19.4) | 2.09 [2.00–2.18] | 0.71 | 0.36–3.52 | <0.0001 |
1960–1969 (50–59 years) | 239 (19.9) | 1.87 [1.76–1.97] | 0.82 | 0.05–3.17 | |
1970–1979 (40–49 years) | 241 (20.1) | 1.18 [1.06–1.29] | 0.90 | 0.00–3.22 | |
1980–1989 (30–39 years) | 242 (20.2) | 0.74 [0.65–0.83] # | 0.72 | 0.00–3.00 | |
1990–2001 (18–29 years) | 245 (20.4) | 0.58 [0.52–0.64] # | 0.47 | 0.00–2.79 | |
Gender | |||||
Female | 565 (47.1) | 1.32 [1.24–1.40] | 0.95 | 0.00–3.52 | 0.179 |
Male | 634 (52.9) | 1.25 [1.17–1.32] | 0.95 | 0.00–3.33 | |
Donation Type | |||||
Source plasma | 1142 (95.3) | 1.28 [1.23–1.34] | 0.95 | 0.00–3.52 | 0.840 |
Clinical apheresis | 57 (4.7) | 1.26 [1.01–1.51] | 0.96 | 0.04–3.17 | |
Donation Frequency | |||||
First-time apheresis donor | 440 (36.7) | 1.09 [1.01–1.18] | 0.90 | 0.00–3.52 | <0.0001 |
Repeat apheresis donor | 759 (63.3) | 1.39 [1.32–1.46] | 0.96 | 0.00–3.40 | |
n(%) | Median OD | Interquartile Range | Range | p-Value | |
State/Territory | |||||
Australian Capital Territory | 46 (3.8) | 1.24 | 0.54–2.13 | 0.07–3.00 | 0.112 |
New South Wales | 275 (22.9) | 1.03 | 0.39–1.98 | 0.00–3.52 | |
Northern Territory | 3 (0.3) | 2.55 | 1.03–3.00 | 1.03–3.00 | |
Queensland | 261 (21.8) | 1.01 | 0.45–2.10 | 0.00–3.33 | |
South Australia | 104 (8.7) | 1.44 | 0.58–2.31 | 0.09–3.12 | |
Tasmania | 41 (3.4) | 1.34 | 0.61–2.34 | 0.03–3.00 | |
Victoria | 315 (26.3) | 0.98 | 0.42–1.88 | 0.00–3.40 | |
Western Australia | 154 (12.8) | 1.18 | 0.37–2.14 | 0.00–3.15 |
ELISA Result | PRNT Result | ||
---|---|---|---|
Above Correlate of Protection ≥120 mIU/mL n (%) | Below Correlate of Protection <120 mIU/mL n (%) | Total | |
Negative | 37 (56.1) | 29 (43.9) | 66 |
Equivocal | 61 (96.8) | 2 (3.2) | 63 |
Low-positive | 10 (100.0) | 0 (0.0%) | 10 |
Positive | 10 (100.0) | 0 (0.0%) | 10 |
Total | 118 (79.2) | 31 (20.8) | 149 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williamson, K.M.; Faddy, H.; Nicholson, S.; Stambos, V.; Hoad, V.; Butler, M.; Housen, T.; Merritt, T.; Durrheim, D.N. A Cross-Sectional Study of Measles-Specific Antibody Levels in Australian Blood Donors—Implications for Measles Post-Elimination Countries. Vaccines 2024, 12, 818. https://doi.org/10.3390/vaccines12070818
Williamson KM, Faddy H, Nicholson S, Stambos V, Hoad V, Butler M, Housen T, Merritt T, Durrheim DN. A Cross-Sectional Study of Measles-Specific Antibody Levels in Australian Blood Donors—Implications for Measles Post-Elimination Countries. Vaccines. 2024; 12(7):818. https://doi.org/10.3390/vaccines12070818
Chicago/Turabian StyleWilliamson, Kirsten M., Helen Faddy, Suellen Nicholson, Vicki Stambos, Veronica Hoad, Michelle Butler, Tambri Housen, Tony Merritt, and David N. Durrheim. 2024. "A Cross-Sectional Study of Measles-Specific Antibody Levels in Australian Blood Donors—Implications for Measles Post-Elimination Countries" Vaccines 12, no. 7: 818. https://doi.org/10.3390/vaccines12070818