A Serum Multi-Parametric Analysis Identifies an Early Innate Immune Signature Associated to Increased Vaccine-Specific Antibody Production and Seroconversion in Simultaneous COVID-19 mRNA and Cell-Based Quadrivalent Influenza Vaccination
Abstract
:1. Introduction
2. Material and Methods
2.1. Subjects’ Enrollment
2.2. Serum Collection and Storage
2.3. SARS-CoV-2 IgG Immunoassay
2.4. Hemagglutination Inhibition (HAI) Assay
2.5. Serum Cytokine and Chemokine Quantification
2.6. PTX3 Quantification
2.7. NMR Metabolomics Analysis
2.8. Statistical Analysis
3. Results
3.1. Study Participants and Design
3.2. Humoral Immune Response Induced by Flu Flucelvax and COVID-19 Comirnaty Vaccines
3.3. Innate Immune Cytokine/Chemokine Profile Induced by Flu Flucelvax and COVID-19 Comirnaty Vaccines
3.4. Early Serum Metabolome Changes Induced by Flu Flucelvax and COVID-19 Comirnaty Vaccines
3.5. Early Vaccine-Induced Immune Module Predictive of Protective Antibody Response
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Townsend, J.P.; Hassler, H.B.; Lamb, A.D.; Sah, P.; Nishio, A.A.; Nguyen, C.; Tew, A.D.; Galvani, A.P.; Dornburg, A. Seasonality of endemic COVID-19. mBio 2023, 14, e0142623. [Google Scholar] [CrossRef]
- CDC. Factsheet about Seasonal Influenza. Available online: https://www.ecdc.europa.eu/en/seasonal-influenza/facts/factsheet (accessed on 28 August 2024).
- Hause, A.M.; Zhang, B.; Yue, X.; Marquez, P.; Myers, T.R.; Parker, C.; Gee, J.; Su, J.; Shimabukuro, T.T.; Shay, D.K. Reactogenicity of Simultaneous COVID-19 mRNA Booster and Influenza Vaccination in the US. JAMA Netw. Open 2022, 5, e2222241. [Google Scholar] [CrossRef] [PubMed]
- Kenigsberg, T.A.; Goddard, K.; Hanson, K.E.; Lewis, N.; Klein, N.; Irving, S.A.; Naleway, A.L.; Crane, B.; Kauffman, T.L.; Xu, S.; et al. Simultaneous administration of mRNA COVID-19 bivalent booster and influenza vaccines. Vaccine 2023, 41, 5678–5682. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, R.; Baos, S.; Cappel-Porter, H.; Carson-Stevens, A.; Clout, M.; Culliford, L.; Emmett, S.R.; Garstang, J.; Gbadamoshi, L.; Hallis, B.; et al. Safety and immunogenicity of concomitant administration of COVID-19 vaccines (ChAdOx1 or BNT162b2) with seasonal influenza vaccines in adults in the UK (ComFluCOV): A multicentre, randomised, controlled, phase 4 trial. Lancet 2021, 398, 2277–2287. [Google Scholar] [CrossRef] [PubMed]
- Stuart, A.S.V.; Shaw, R.H.; Liu, X.; Greenland, M.; Aley, P.K.; Andrews, N.J.; Cameron, J.C.; Charlton, S.; A Clutterbuck, E.; Collins, A.M.; et al. Immunogenicity, safety, and reactogenicity of heterologous COVID-19 primary vaccination incorporating mRNA, viral-vector, and protein-adjuvant vaccines in the UK (Com-COV2): A single-blind, randomised, phase 2, non-inferiority trial. Lancet 2022, 399, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Toback, S.; Galiza, E.; Cosgrove, C.; Galloway, J.; Goodman, A.L.; Swift, P.A.; Rajaram, S.; Graves-Jones, A.; Edelman, J.; Burns, F.; et al. Safety, immunogenicity, and efficacy of a COVID-19 vaccine (NVX-CoV2373) co-administered with seasonal influenza vaccines: An exploratory substudy of a randomised, observer-blinded, placebo-controlled, phase 3 trial. Lancet Respir. Med. 2022, 10, 167–179. [Google Scholar] [CrossRef]
- Izikson, R.; Brune, D.; Bolduc, J.S.; Bourron, P.; Fournier, M.; Moore, T.M.; Pandey, A.; Perez, L.; Sater, N.; Shrestha, A.; et al. Safety and immunogenicity of a high-dose quadrivalent influenza vaccine administered concomitantly with a third dose of the mRNA-1273 SARS-CoV-2 vaccine in adults aged ≥ 65 years: A phase 2, randomised, open-label study. Lancet Respir. Med. 2022, 10, 392–402. [Google Scholar] [CrossRef]
- Marín-Hernández, D.; Nixon, D.F.; Hupert, N. Heterologous vaccine interventions: Boosting immunity against future pandemics. Mol. Med. 2021, 27, 54. [Google Scholar] [CrossRef]
- Domnich, A.; Orsi, A.; Trombetta, C.-S.; Guarona, G.; Panatto, D.; Icardi, G. COVID-19 and Seasonal Influenza Vaccination: Cross-Protection, Co-Administration, Combination Vaccines, and Hesitancy. Pharmaceuticals 2022, 15, 322. [Google Scholar] [CrossRef]
- Severa, M.; Rizzo, F.; Sinigaglia, A.; Ricci, D.; Etna, M.P.; Cola, G.; Landi, D.; Buscarinu, M.C.; Valdarchi, C.; Ristori, G.; et al. A specific anti-COVID-19 BNT162b2 vaccine-induced early innate immune signature positively correlates with the humoral protective response in healthy and multiple sclerosis vaccine recipients. Clin. Transl. Immunol. 2023, 12, e1434. [Google Scholar] [CrossRef]
- Arunachalam, P.S.; Scott, M.K.D.; Hagan, T.; Li, C.; Feng, Y.; Wimmers, F.; Grigoryan, L.; Trisal, M.; Edara, V.V.; Lai, L.; et al. Systems vaccinology of the BNT162b2 mRNA vaccine in humans. Nature 2021, 596, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Bergamaschi, C.; Terpos, E.; Rosati, M.; Angel, M.; Bear, J.; Stellas, D.; Karaliota, S.; Apostolakou, F.; Bagratuni, T.; Patseas, D.; et al. Systemic IL-15, IFN-gamma, and IP-10/CXCL10 signature associated with effective immune response to SARS-CoV-2 in BNT162b2 mRNA vaccine recipients. Cell Rep. 2021, 36, 109504. [Google Scholar] [CrossRef] [PubMed]
- Bucasas, K.L.; Franco, L.M.; Shaw, C.A.; Bray, M.S.; Wells, J.M.; Niño, D.; Arden, N.; Quarles, J.M.; Couch, R.B.; Belmont, J.W. Early patterns of gene expression correlate with the humoral immune response to influenza vaccination in humans. J. Infect. Dis. 2011, 203, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Rouphael, N.; Duraisingham, S.; Romero-Steiner, S.; Presnell, S.; Davis, C.; Schmidt, D.S.; E Johnson, S.; Milton, A.; Rajam, G.; et al. Molecular signatures of antibody responses derived from a systems biology study of five human vaccines. Nat. Immunol. 2014, 15, 195–204. [Google Scholar] [CrossRef]
- I Nakaya, H.; Wrammert, J.; Lee, E.K.; Racioppi, L.; Marie-Kunze, S.; Haining, W.N.; Means, A.R.; Kasturi, S.P.; Khan, N.; Li, G.-M.; et al. Systems biology of vaccination for seasonal influenza in humans. Nat. Immunol. 2011, 12, 786–795. [Google Scholar] [CrossRef]
- Rosati, M.; Terpos, E.; Homan, P.; Bergamaschi, C.; Karaliota, S.; Ntanasis-Stathopoulos, I.; Devasundaram, S.; Bear, J.; Burns, R.; Bagratuni, T.; et al. Rapid transient and longer-lasting innate cytokine changes associated with adaptive immunity after repeated SARS-CoV-2 BNT162b2 mRNA vaccinations. Front. Immunol. 2023, 14, 1292568. [Google Scholar] [CrossRef]
- Available online: https://cdn.who.int/media/docs/default-source/influenza/who-influenza-recommendations/vcm-northern-hemisphere-recommendation-2021-2022/202102_recommendation.pdf (accessed on 28 August 2024).
- Fedele, G.; Trentini, F.; Schiavoni, I.; Abrignani, S.; Antonelli, G.; Baldo, V.; Baldovin, T.; Bandera, A.; Bonura, F.; Clerici, P.; et al. Evaluation of humoral and cellular response to four vaccines against COVID-19 in different age groups: A longitudinal study. Front. Immunol. 2022, 13, 1021396. [Google Scholar] [CrossRef]
- World Health Organization. Global Influenza Surveillance Network. In Manual for the Laboratory Diagnosis and Virological Surveillance of Influenza; World Health Organization: Geneva, Switzerland, 2011; Available online: http://whqlibdoc.who.int/publications/2011/9789241548090_eng.pdf (accessed on 23 August 2012).
- The European Agency for the Evaluation of Medicinal Products (EMEA)-Committee for Proprietary Medicinal Products (CPMP). Cell Cultured Inactivated Influenza Vaccines. Annex to Note for Guidance on Harmonization of Requirements for Influenza Vaccines (CPMP/BWP/214/96); CPMP/BWP/2490/00; EMEA: London, UK, 2002. [Google Scholar]
- The European Agency for the Evaluation of Medicinal Products (EMEA)-Committee for Proprietary Medicinal Products (CPMP). Note for Guidance on Harmonization of Requirements for Influenza Vaccines; CPMP/BWP/214/96; EMEA: London, UK, 1997. [Google Scholar]
- Brunetta, E.; Folci, M.; Bottazzi, B.; De Santis, M.; Gritti, G.; Protti, A.; Mapelli, S.N.; Bonovas, S.; Piovani, D.; Leone, R.; et al. Macrophage expression and prognostic significance of the long pentraxin PTX3 in COVID-19. Nat. Immunol. 2021, 22, 19–24. [Google Scholar] [CrossRef]
- Palleschi, S.; Guglielmi, V.; Nisticò, L.; Ferreri, C.; Tabolacci, C.; Facchiano, F.; Iorio, E.; Giuliani, A.; Brescianini, S.; Medda, E.; et al. A multi-marker integrative analysis reveals benefits and risks of bariatric surgery. Sci. Rep. 2022, 12, 18877. [Google Scholar] [CrossRef]
- Bottazzi, B.; Santini, L.; Savino, S.; Giuliani, M.M.; Díez, A.I.D.; Mancuso, G.; Beninati, C.; Sironi, M.; Valentino, S.; Deban, L.; et al. Recognition of Neisseria meningitidis by the long pentraxin PTX3 and its role as an endogenous adjuvant. PLoS ONE 2015, 10, e0120807. [Google Scholar] [CrossRef]
- Garlanda, C.; Bottazzi, B.; Magrini, E.; Inforzato, A.; Mantovani, A. PTX3, a Humoral Pattern Recognition Molecule, in Innate Immunity, Tissue Repair, and Cancer. Physiol. Rev. 2018, 98, 623–639. [Google Scholar] [CrossRef] [PubMed]
- Weiner, J.; Lewis, D.J.M.; Maertzdorf, J.; Mollenkopf, H.-J.; Bodinham, C.; Pizzoferro, K.; Linley, C.; Greenwood, A.; Mantovani, A.; Bottazzi, B.; et al. Characterization of potential biomarkers of reactogenicity of licensed antiviral vaccines: Randomized controlled clinical trials conducted by the BIOVACSAFE consortium. Sci. Rep. 2019, 9, 20362. [Google Scholar] [CrossRef] [PubMed]
- Bonanni, P.; Steffen, R.; Schelling, J.; Balaisyte-Jazone, L.; Posiuniene, I.; Zatoński, M.; Van Damme, P. Vaccine co-administration in adults: An effective way to improve vaccination coverage. Hum. Vaccines Immunother. 2023, 19, 2195786. [Google Scholar] [CrossRef] [PubMed]
- Dolhain, J.; Janssens, W.; Dindore, V.; Mihalyi, A. Infant vaccine co-administration: Review of 18 years of experience with GSK’s hexavalent vaccine co-administered with routine childhood vaccines. Expert. Rev. Vaccines 2020, 19, 419–443. [Google Scholar] [CrossRef] [PubMed]
- Börner, N.; Mühlberger, N.; Jelinek, T. Tolerability of multiple vaccinations in travel medicine. J. Travel. Med. 2003, 10, 112–116. [Google Scholar] [CrossRef]
- WHO. Coadministration of Seasonal Inactivated Influenza and COVID-19 Vaccines: Interim Guidance. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-vaccines-SAGE_recommendation-coadministration-influenza-vaccines (accessed on 8 August 2021).
- Focosi, D. From Co-Administration to Co-Formulation: The Race for New Vaccines against COVID-19 and Other Respiratory Viruses. Vaccines 2023, 11, 109. [Google Scholar] [CrossRef]
- Circular of the Italian Ministry of Health. In Prevenzione e controllo Dell’influenza: Raccomandazioni per la Stagione 2023–2024. Available online: https://www.trovanorme.salute.gov.it/norme/renderNormsanPdf?anno=2023&codLeg=93294&parte=1%20&serie=null (accessed on 28 August 2024).
- Janssen, C.; Mosnier, A.; Gavazzi, G.; Combadière, B.; Crépey, P.; Gaillat, J.; Launay, O.; Botelho-Nevers, E. Coadministration of seasonal influenza and COVID-19 vaccines: A systematic review of clinical studies. Hum. Vaccines Immunother. 2022, 18, 2131166. [Google Scholar] [CrossRef]
- Verket, M.; Jacobsen, M.; Schütt, K.; Marx, N.; Müller-Wieland, D. Influenza vaccination in patients affected by diabetes. Eur. Heart J. Suppl. 2023, 25, A36–A41. [Google Scholar] [CrossRef]
- Warpechowski, J.; Leszczyńska, P.; Juchnicka, D.; Olichwier, A.; Szczerbiński, Ł.; Krętowski, A.J. Assessment of the Immune Response in Patients with Insulin Resistance, Obesity, and Diabetes to COVID-19 Vaccination. Vaccines 2023, 11, 1203. [Google Scholar] [CrossRef]
- Frasca, D.; Diaz, A.; Romero, M.; Mendez, N.V.; Landin, A.M.; Ryan, J.G.; Blomberg, B.B. Young and elderly patients with type 2 diabetes have optimal B cell responses to the seasonal influenza vaccine. Vaccine 2013, 31, 3603–3610. [Google Scholar] [CrossRef]
- Ruiz, P.L.D.; Bakken, I.J.; Håberg, S.E.; Tapia, G.; Hauge, S.H.; Birkeland, K.I.; Gulseth, H.L.; Stene, L.C. Higher frequency of hospitalization but lower relative mortality for pandemic influenza in people with type 2 diabetes. J. Intern. Med. 2020, 287, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Remschmidt, C.; Wichmann, O.; Harder, T. Vaccines for the prevention of seasonal influenza in patients with diabetes: Systematic review and meta-analysis. BMC Med. 2015, 13, 53. [Google Scholar] [CrossRef] [PubMed]
- Soetedjo, N.N.M.; Iryaningrum, M.R.; Lawrensia, S.; Permana, H. Antibody response following SARS-CoV-2 vaccination among patients with type 2 diabetes mellitus: A systematic review. Diabetes Metab. Syndr. Clin. Res. Rev. 2022, 16, 102406. [Google Scholar] [CrossRef] [PubMed]
- Pal, R.; Sachdeva, N.; Mukherjee, S.; Suri, V.; Zohmangaihi, D.; Ram, S.; Puri, G.D.; Bhalla, A.; Soni, S.L.; Pandey, N.; et al. Impaired anti-SARS-CoV-2 antibody response in non-severe COVID-19 patients with diabetes mellitus: A preliminary report. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 193–196. [Google Scholar] [CrossRef]
- Virgilio, E.; Trevisan, C.; Abbatecola, A.; Malara, A.; Palmieri, A.; Fedele, G.; Stefanelli, P.; Leone, P.; Schiavoni, I.; Maggi, S.; et al. Diabetes Affects Antibody Response to SARS-CoV-2 Vaccination in Older Residents of Long-term Care Facilities: Data From the GeroCovid Vax Study. Diabetes Care 2022, 45, 2935–2942. [Google Scholar] [CrossRef]
- Mochida, Y.; Uchida, S. mRNA vaccine designs for optimal adjuvanticity and delivery. RNA Biol. 2024, 21, 1–27. [Google Scholar] [CrossRef]
- Karikó, K.; Buckstein, M.; Ni, H.; Weissman, D. Suppression of RNA recognition by toll-like receptors: The impact of nucleoside modification and the evolutionary origin of RNA. Immunity 2005, 23, 165–175. [Google Scholar] [CrossRef]
- Alameh, M.-G.; Tombácz, I.; Bettini, E.; Lederer, K.; Ndeupen, S.; Sittplangkoon, C.; Wilmore, J.R.; Gaudette, B.T.; Soliman, O.Y.; Pine, M.; et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 2021, 54, 2877–2892. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, H.; Gan, J.; Liang, G.; Li, L.; Zhao, Y. Engineered mRNA Delivery Systems for Biomedical Applications. Adv. Mater. 2023, 36, e2308029. [Google Scholar] [CrossRef]
- Amato, M.; Werba, J.P.; Frigerio, B.; Coggi, D.; Sansaro, D.; Ravani, A.; Ferrante, P.; Veglia, F.; Tremoli, E.; Baldassarre, D. Relationship between Influenza Vaccination Coverage Rate and COVID-19 Outbreak: An Italian Ecological Study. Vaccines 2020, 8, 535. [Google Scholar] [CrossRef]
- Marín-Hernández, D.; Schwartz, R.E.; Nixon, D.F. Epidemiological evidence for association between higher influenza vaccine uptake in the elderly and lower COVID-19 deaths in Italy. J. Med. Virol. 2021, 93, 64–65. [Google Scholar] [CrossRef] [PubMed]
- Debisarun, P.A.; Gössling, K.L.; Bulut, O.; Kilic, G.; Zoodsma, M.; Liu, Z.; Oldenburg, M.; Rüchel, N.; Zhang, B.; Xu, C.-J.; et al. Induction of trained immunity by influenza vaccination—Impact on COVID-19. PLOS Pathog. 2021, 17, e1009928. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Liu, M.; Liu, J. The Association between Influenza Vaccination and COVID-19 and Its Outcomes: A Systematic Review and Meta-Analysis of Observational Studies. Vaccines 2021, 9, 529. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Ramón, S.; Conejero, L.; Netea, M.G.; Sancho, D.; Palomares, O.; Subiza, J.L. Trained Immunity-Based Vaccines: A New Paradigm for the Development of Broad-Spectrum Anti-infectious Formulations. Front. Immunol. 2018, 9, 2936. [Google Scholar] [CrossRef]
- Bekkering, S.; Domínguez-Andrés, J.; Joosten, L.A.; Riksen, N.P.; Netea, M.G. Trained Immunity: Reprogramming Innate Immunity in Health and Disease. Annu. Rev. Immunol. 2021, 39, 667–693. [Google Scholar] [CrossRef]
- Esser, N.; Legrand-Poels, S.; Piette, J.; Scheen, A.J.; Paquot, N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res. Clin. Pr. 2014, 105, 141–150. [Google Scholar] [CrossRef]
- Akbari, M.; Hassan-Zadeh, V. IL-6 signalling pathways and the development of type 2 diabetes. Inflammopharmacology 2018, 26, 685–698. [Google Scholar] [CrossRef]
- Mosca, F.; Tritto, E.; Muzzi, A.; Monaci, E.; Bagnoli, F.; Iavarone, C.; O’Hagan, D.; Rappuoli, R.; De Gregorio, E. Molecular and cellular signatures of human vaccine adjuvants. Proc. Natl. Acad. Sci. USA 2008, 105, 10501–10506. [Google Scholar] [CrossRef]
- Chorny, A.; Casas-Recasens, S.; Sintes, J.; Shan, M.; Polentarutti, N.; García-Escudero, R.; Walland, A.C.; Yeiser, J.R.; Cassis, L.; Carrillo, J.; et al. The soluble pattern recognition receptor PTX3 links humoral innate and adaptive immune responses by helping marginal zone B cells. J. Exp. Med. 2016, 213, 2167–2185. [Google Scholar] [CrossRef]
- Li, S.; Sullivan, N.L.; Rouphael, N.; Yu, T.; Banton, S.; Maddur, M.S.; McCausland, M.; Chiu, C.; Canniff, J.; Dubey, S.; et al. Metabolic Phenotypes of Response to Vaccination in Humans. Cell 2017, 169, 862–877. [Google Scholar] [CrossRef]
- Dagla, I.; Iliou, A.; Benaki, D.; Gikas, E.; Mikros, E.; Bagratuni, T.; Kastritis, E.; Dimopoulos, M.A.; Terpos, E.; Tsarbopoulos, A. Plasma Metabolomic Alterations Induced by COVID-19 Vaccination Reveal Putative Biomarkers Reflecting the Immune Response. Cells 2022, 11, 1241. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.; Mohanty, S.; Kang, H.A.; Kong, L.; Avila-Pacheco, J.; Joshi, S.R.; Ueda, I.; Devine, L.; Raddassi, K.; Pierce, K.; et al. Metabolomic and transcriptomic signatures of influenza vaccine response in healthy young and older adults. Aging Cell 2022, 21, e13682. [Google Scholar] [CrossRef] [PubMed]
- Wensveen, F.M.; Šestan, M.; Wensveen, T.T.; Polić, B. Beauty and the beast’ in infection: How immune–endocrine interactions regulate systemic metabolism in the context of infection. Eur. J. Immunol. 2019, 49, 982–995. [Google Scholar] [CrossRef] [PubMed]
FOR T2D ONLY | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Code | Sex | Age | Comorbidity | Therapy | Lifestyle (Sedentary or Sporty) | Administration of Flu Vaccine in Previous Vaccination Seasons | Confirmed SARS-CoV-2 Infection | Post-COVID-19 III DOSE Vaccination Side Effects | GLYCATED HEMOGLOBIN (AT DAY 0) | LDL (mg/dL) (AT DAY 0) | |
FlubeforeCoV group (HS, n = 18) | Co C1 | F | 59 | mild hypercholesterolemia | n.r. | sporty | yes | NO | n.r. | ||
Co C2 | M | 49 | n.r. | n.r. | not sedentary, physically inactive | yes | NO | n.r. | |||
Co C3 | F | 42 | hypothyroidism | eutirox | not sedentary, physically inactive | yes | NO | pain at the inoculum site, fever, asthenia | |||
Co C5 | F | 30 | n.r. | n.r. | sporty | yes | NO | pain at the inoculum site, fever, asthenia | |||
Co_C6 | F | 65 | n.r. | n.r. | not sedentary, physically inactive | yes | NO | n.r. | |||
Co_C9 | M | 58 | n.r. | n.r. | sedentary, physically inactive | yes | NO | n.r. | |||
Co_C10 | M | 65 | n.r. | n.r. | sedentary, physically inactive | yes | NO | n.r. | |||
Co_C16 | F | 52 | n.r. | n.r. | not sedentary, physically inactive | yes | NO | n.r. | |||
Co_C17 | F | 49 | n.r. | n.r. | not sedentary, physically inactive | yes | NO | n.r. | |||
CO_C_204 | M | 48 | n.r. | n.r. | not sedentary, physically inactive | yes | NO | n.r. | |||
CO_C_205 | F | 29 | n.r. | n.r. | sporty | yes | NO | n.r. | |||
CO_C_206 | F | 47 | n.r. | n.r. | not sedentary, physically inactive | yes | NO | n.r. | |||
CO_C_210 | F | 51 | n.r. | n.r. | not sedentary, physically inactive | yes | NO | n.r. | |||
CO_C_211 | M | 31 | n.r. | n.r. | sporty | no | NO | pain at the inoculum site, fever, asthenia | |||
CO_C_212 | F | 32 | n.r. | n.r. | sporty | yes | NO | n.r. | |||
CO_C_213 | F | 38 | n.r. | n.r. | not sedentary, physically inactive | no | NO | n.r. | |||
CO_C_214 | M | 48 | n.r. | n.r. | sedentary, physically inactive | yes | NO | n.r. | |||
CO_C_215 | M | 28 | n.r. | n.r. | not sedentary, physically inactive | no | NO | swelling at the inoculum site, asthenia | |||
FluplusCoV group (HS, n = 19) | CoFlu C1 | M | 60 | n.r. | n.r. | sedentary, physically inactive | yes | NO | n.r. | ||
CoFlu C2 | F | 63 | hypercholesterolemia, hypertension | losartan, rosuvastatina | sedentary, physically inactive | yes | yes | asthenia | |||
CoFlu C3 | F | 59 | hypothyroidism | eutirox | sporty | yes | NO | n.r. | |||
CoFlu C4 | M | 65 | n.r. | n.r. | sedentary, physically inactive | yes | NO | pain at the inoculum site | |||
CoFlu C7 | M | 64 | n.r. | n.r. | sedentary, physically inactive | yes | NO | fever | |||
CoFlu C8 | M | 60 | n.r. | n.r. | sporty | yes | NO | myalgia, fever | |||
CoFlu C9 | F | 58 | n.r. | n.r. | sedentary, physically inactive | yes | NO | none | |||
CoFlu C10 | F | 65 | n.r. | n.r. | sedentary, physically inactive | yes | NO | athralgia | |||
CoFlu C11 | F | 33 | n.r. | n.r. | sporty | yes | NO | pain at the inoculum site | |||
CoFlu C12 | M | 65 | n.r. | n.r. | not sedentary, physically inactive | yes | NO | n.r. | |||
CoFlu C13 | M | 62 | n.r. | n.r. | not sedentary, physically inactive | yes | NO | n.r. | |||
CoFlu C14 | F | 51 | n.r. | n.r. | not sedentary, physically inactive | yes | NO | asthenia, myalgia, headache, fever | |||
CoFlu C15 | M | 56 | hypertension | norvasc | sedentary, physically inactive | yes | NO | n.r. | |||
CoFlu C16 | F | 53 | n.r. | n.r. | sporty | yes | NO | n.r. | |||
CoFlu C17 | F | 58 | n.r. | n.r. | not sedentary, physically inactive | yes | NO | n.r. | |||
CoFlu C18 | F | 59 | asthma | relvar | not sedentary, physically inactive | yes | NO | asthenia, headache, pain at the inoculum site | |||
CoFlu C19 | M | 63 | not sedentary, physically inactive | yes | NO | asthenia | |||||
CoFlu C20 | F | 46 | hypothyroidism | eutirox | not sedentary, physically inactive | yes | NO | headache, fever | |||
CoFlu C21 | F | 56 | mild tachycardia | cardicor | not sedentary, physically inactive | yes | NO | none | |||
FluplusCoV group (T2D, n = 6) | CoFlu D1 | M | 55 | hypertension | metformin, blopress | sedentary, physically inactive | yes | NO | fever, asthenia, headache | 5,5% | 98 |
CoFlu D2 | F | 63 | hypertension, hypothyroidism | metformin, cacit, janumet, triveram, eutirox | sedentary, physically inactive | yes | NO | asthenia | 6% | 97 | |
CoFlu D3 | M | 52 | hypercholesterolemia | metformin, simvastin | not sedentary, physically inactive | yes | yes | n.r. | 6,1% | 114,8 | |
CoFlu D4 | M | 64 | retinopathy, neuropathy, vasculopathy | metformin, SGLT2-inhibitor | not sedentary, physically inactive | no | yes | n.r. | 5,7% | 67 | |
CoFlu D201 | F | 57 | hypercholesterolemia, hypertension | pioglitazone, irbesartan | sedentary, physically inactive | yes | NO | swelling at the inoculation site, fever | 6,7% | 98 | |
CoFlu D202 | M | 64 | hypercholesterolemia | metformin, statins | not sedentary, physically inactive | yes | NO | asthenia | 6% | 98 | |
CoVonly group (HS, n = 24) | Co C4 | F | 42 | n.r. | n.r. | not sedentary, physically inactive | yes | NO | swelling at the inoculum site, asthenia | ||
Co_C7 | M | 59 | n.r. | n.r. | sedentary, physically inactive | NO | NO | n.r. | |||
Co_C8 | M | 60 | n.r. | n.r. | sedentary, physically inactive | NO | NO | n.r. | |||
Co_C11 | F | 48 | n.r. | n.r. | sedentary, physically inactive | NO | NO | n.r. | |||
Co_C12 | F | 31 | n.r. | n.r. | NO | NO | n.r. | ||||
Co_C13 | F | 42 | n.r. | n.r. | not sedentary, physically inactive | yes | NO | swelling at the inoculum site, fever, asthenia | |||
Co_C14 | F | 36 | n.r. | n.r. | sporty | NO | NO | n.r. | |||
Co_C15 | F | 41 | n.r. | n.r. | not sedentary, physically inactive | NO | NO | n.r. | |||
CO_C_101 | F | 52 | n.r. | n.r. | not sedentary, physically inactive | NO | NO | n.r. | |||
CO_C_102 | F | 50 | n.r. | n.r. | not sedentary, physically inactive | NO | NO | n.r. | |||
CO_C_103 | F | 22 | n.r. | n.r. | sporty | NO | NO | swelling at the inoculum site, fever, asthenia | |||
CO_C_104 | M | 60 | n.r. | n.r. | not sedentary, physically inactive | yes | NO | n.r. | |||
CO_C_105 | M | 45 | n.r. | n.r. | not sedentary, physically inactive | NO | NO | n.r. | |||
CO_C_106 | F | 52 | n.r. | n.r. | not sedentary, physically inactive | NO | NO | n.r. | |||
CO_C_107 | F | 50 | n.r. | n.r. | sporty | NO | NO | n.r. | |||
CO_C_108 | F | 22 | n.r. | n.r. | sporty | NO | NO | n.r. | |||
CO_C_109 | F | 42 | n.r. | n.r. | sporty | NO | NO | n.r. | |||
CO_C_201 | F | 44 | n.r. | n.r. | sedentary, physically inactive | NO | NO | n.r. | |||
CO_C_202 | M | 47 | n.r. | n.r. | not sedentary, physically inactive | NO | NO | n.r. | |||
CO_C_203 | M | 41 | n.r. | n.r. | not sedentary, physically inactive | NO | NO | n.r. | |||
CO_C_207 | M | 31 | n.r. | n.r. | sporty | NO | NO | asthenia, myalgia, headache, fever | |||
CO_C_208 | F | 41 | n.r. | n.r. | sporty | NO | NO | asthenia | |||
CO_C_209 | F | 31 | n.r. | n.r. | sporty | NO | NO | n.r. | |||
CO_C_216 | M | 52 | n.r. | n.r. | not sedentary, physically inactive | NO | yes | n.r. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Severa, M.; Ricci, D.; Etna, M.P.; Facchini, M.; Puzelli, S.; Fedele, G.; Iorio, E.; Cairo, G.; Castrechini, S.; Ungari, V.; et al. A Serum Multi-Parametric Analysis Identifies an Early Innate Immune Signature Associated to Increased Vaccine-Specific Antibody Production and Seroconversion in Simultaneous COVID-19 mRNA and Cell-Based Quadrivalent Influenza Vaccination. Vaccines 2024, 12, 1050. https://doi.org/10.3390/vaccines12091050
Severa M, Ricci D, Etna MP, Facchini M, Puzelli S, Fedele G, Iorio E, Cairo G, Castrechini S, Ungari V, et al. A Serum Multi-Parametric Analysis Identifies an Early Innate Immune Signature Associated to Increased Vaccine-Specific Antibody Production and Seroconversion in Simultaneous COVID-19 mRNA and Cell-Based Quadrivalent Influenza Vaccination. Vaccines. 2024; 12(9):1050. https://doi.org/10.3390/vaccines12091050
Chicago/Turabian StyleSevera, Martina, Daniela Ricci, Marilena Paola Etna, Marzia Facchini, Simona Puzelli, Giorgio Fedele, Egidio Iorio, Giada Cairo, Sara Castrechini, Valentina Ungari, and et al. 2024. "A Serum Multi-Parametric Analysis Identifies an Early Innate Immune Signature Associated to Increased Vaccine-Specific Antibody Production and Seroconversion in Simultaneous COVID-19 mRNA and Cell-Based Quadrivalent Influenza Vaccination" Vaccines 12, no. 9: 1050. https://doi.org/10.3390/vaccines12091050
APA StyleSevera, M., Ricci, D., Etna, M. P., Facchini, M., Puzelli, S., Fedele, G., Iorio, E., Cairo, G., Castrechini, S., Ungari, V., Iannetta, M., Leone, P., Chirico, M., Pisanu, M. E., Bottazzi, B., Benedetti, L., Sali, M., Bartolomucci, R., Balducci, S., ... Coccia, E. M. (2024). A Serum Multi-Parametric Analysis Identifies an Early Innate Immune Signature Associated to Increased Vaccine-Specific Antibody Production and Seroconversion in Simultaneous COVID-19 mRNA and Cell-Based Quadrivalent Influenza Vaccination. Vaccines, 12(9), 1050. https://doi.org/10.3390/vaccines12091050