Label-Free Quantitative Proteomics Analysis of COVID-19 Vaccines by Nano LC-HRMS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vaccine Samples and Standard Substance
2.2. Reagents and Materials
2.3. Instruments
2.4. Enzymolysis of Vaccine Samples and Standard Substance
2.5. Chromatography
2.6. Mass Spectrometry
2.7. LC-MS Data Analysis
3. Results and Discussion
3.1. Method Validation
3.1.1. Selectivity
3.1.2. Repeatability
3.1.3. Accuracy
3.1.4. Sensitivity
3.2. Quantification of COVID-19 Structural Proteins
3.3. Quantification of Non-COVID-19 Proteins
3.4. Comparing the Vaccines of Different Mutant of COVID-19
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, Q.; Bao, L.; Mao, H.; Wang, L.; Xu, K.; Yang, M.; Li, Y.; Zhu, L.; Wang, N.; Lv, Z.; et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020, 369, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Doherty, M.; Buchy, P.; Standaert, B.; Giaquinto, C.; Prado-Cohrs, D. Vaccine impact: Benefits for human health. Vaccine 2016, 34, 6707–6714. [Google Scholar] [CrossRef] [PubMed]
- García-Sastre, A.; Mena, I. Novel vaccine strategies against emerging viruses. Curr. Opin. Virol. 2013, 3, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Savina, K.; Sreekumar, R.; Soonu, V.K.; Variyar, E.J. Various vaccine platforms in the field of COVID-19. Beni-Suef Univ. J. Basic Appl. Sci. 2022, 11, 35. [Google Scholar] [CrossRef] [PubMed]
- Hotez, P.J.; Bottazzi, M.E. Whole inactivated virus and protein-based COVID-19 vaccines. Annu. Rev. Med. 2022, 73, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hunter, A.K.; Mozier, N.M. Host cell proteins in biologics development: Identification, quantitation and risk assessment. Biotechnol. Bioeng. 2009, 103, 446–458. [Google Scholar] [CrossRef] [PubMed]
- Toinon, A.; Fontaine, C.; Thion, L.; Gajewska, B.; Carpick, B.; Nougarede, N.; Uhlrich, S. Host cell protein testing strategy for hepatitis B antigen in hexavalent vaccine-Towards a general testing strategy for recombinant vaccines. Biologicals 2018, 54, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Tscheliessnig, A.L.; Konrath, J.; Bates, R.; Jungbauer, A. Host cell protein analysis in therapeutic protein bioprocessing–methods and applications. Biotechnol. J. 2013, 8, 655–670. [Google Scholar] [CrossRef] [PubMed]
- Trauchessec, M.; Hesse, A.M.; Kraut, A.; Berard, Y.; Herment, L.; Fortin, T.; Bruley, C.; Ferro, M.; Manin, C. An innovative standard for LC-MS-based HCP profiling and accurate quantity assessment: Application to batch consistency in viral vaccine samples. Proteomics 2021, 21, 2000152. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Lu, H.; Lee, Y.H. Challenges and emergent solutions for LC-MS/MS based untargeted metabolomics in diseases. Mass Spectrom. Rev. 2018, 37, 772–792. [Google Scholar] [CrossRef] [PubMed]
- Vinaixa, M.; Schymanski, E.L.; Neumann, S.; Navarro, M.; Salek, R.M.; Yanes, O. Mass spectral databases for LC/MS- and GC/MS-based metabolomics: State of the field and future prospects. TrAC Trends Anal. Chem. 2016, 78, 23–35. [Google Scholar] [CrossRef]
- Lucci, P.; Saurina, J.; Núñez, O. Trends in LC-MS and LC-HRMS analysis and characterization of polyphenols in food. TrAC Trends Anal. Chem. 2017, 88, 1–24. [Google Scholar] [CrossRef]
- Rauh, M. LC–MS/MS for protein and peptide quantification in clinical chemistry. J. Chromatogr. B 2012, 883, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Zhan, L.; Dai, L.; Yao, X.; Qin, Y.; Zhu, Z.; Zhang, M.; Tong, W.; Wang, G. Evaluation of the reliability of MS1-based approach to profile naturally occurring peptides with clinical relevance in urine samples. Rapid Commun. Mass Spectrom. 2022, e9369. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Tan, M.; Zhu, J.; Tian, Y.; Liu, H.; Luo, F.; Wang, J.; Huang, Y.; Zhang, Y.; Yang, Y.; et al. Proteomic analysis of human milk reveals nutritional and immune benefits in the colostrum from mothers with COVID-19. Nutrients 2022, 14, 2513. [Google Scholar] [CrossRef] [PubMed]
- Gallien, S.; Duriez, E.; Demeure, K.; Domon, B. Selectivity of LC-MS/MS analysis: Implication for proteomics experiments. J. Proteomics 2013, 81, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Dinamarca, D.A.; Salazar, M.L.; Castillo, B.N.; Manubens, A.; Vasquez, A.E.; Salazar, F.; Becker, M.I. Protein-based adjuvants for vaccines as immunomodulators of the innate and adaptive immune response: Current knowledge, challenges, and future opportunities. Pharmaceutics 2022, 14, 1671. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.-Y.; Wang, R.-R.; Zhang, D.-W.; Chen, S.-H.; Tan, Y.-Y.; Zhang, W.-T.; Han, M.-F.; Fei, G.-H. Differential characteristics of patients for hospitalized severe COVID-19 infected by the omicron variants and wild type of SARS-CoV-2 in China. J. Inflamm. Res. 2023, 16, 3063–3078. [Google Scholar] [CrossRef] [PubMed]
t/min | Mobile Phase A/% | Mobile Phase B/% |
---|---|---|
0 | 95 | 5 |
5 | 90 | 10 |
47 | 65 | 35 |
54 | 55 | 45 |
55 | 10 | 90 |
60 | 10 | 90 |
Vaccine Sample. | Batch No. 1 | Batch No. 2 | Batch No. 3 | Average | RSD |
---|---|---|---|---|---|
AW | 1.595 | 1.166 | 1.498 | 1.420 | 15.8% |
AG | 0.6993 | 1.648 | 0.5262 | 0.9578 | 63.1% |
AO | 0.6078 | 1.388 | 0.9796 | 0.9918 | 39.3% |
BW | 3.116 | 2.920 | 2.778 | 2.938 | 5.8% |
BO | 0.9307 | 0.6546 | 0.4811 | 0.6888 | 32.9% |
Vaccine Sample | Batch No. 1 | Batch No. 2 | Batch No. 3 | Average | RSD |
---|---|---|---|---|---|
CW | 600.2 | 529.6 | 539.9 | 556.6 | 6.9% |
CB | 509.1 | 443.7 | 500.3 | 484.4 | 7.3% |
CD | 470.9 | 468.8 | 488.4 | 476.0 | 2.3% |
CO | 247.4 | 253.6 | 254.6 | 251.9 | 1.5% |
Total Content (Unit, µg) | Species Number | |||||||
---|---|---|---|---|---|---|---|---|
Vaccine Sample | Batch No. 1 | Batch No. 2 | Batch No. 3 | Average | Batch No. 1 | Batch No. 2 | Batch No. 3 | Average |
AW | 141.3 | 162.7 | 109.7 | 137.9 | 3571 | 3633 | 3623 | 3609 |
AG | 86.57 | 25.20 | 60.84 | 57.54 | 2986 | 3007 | 3041 | 3011 |
AO | 94.70 | 118.7 | 88.26 | 100.6 | 3575 | 3598 | 3543 | 3572 |
BW | 687.0 | 1085 | 513.6 | 761.9 | 4105 | 4098 | 4090 | 4098 |
BO | 1306 | 490.1 | 932.9 | 909.7 | 4128 | 4123 | 4122 | 4124 |
CW | 45.67 | 47.47 | 53.01 | 48.72 | 240 | 344 | 504 | 363 |
CB | 55.40 | 70.97 | 27.48 | 51.28 | 465 | 247 | 236 | 316 |
CD | 28.38 | 43.41 | 80.69 | 50.83 | 258 | 282 | 527 | 356 |
CO | 61.62 | 56.16 | 45.75 | 54.51 | 326 | 304 | 237 | 289 |
Vaccine Sample | AW | AG | AO | BW | BO |
---|---|---|---|---|---|
HCP | 137.9 | 57.54 | 100.6 | 761.9 | 909.7 |
S protein | 1.420 | 0.9578 | 0.9918 | 2.938 | 0.6888 |
Ratio | 97 | 60 | 101 | 259 | 1321 |
Vaccine Sample | CW | CB | CD | CO |
---|---|---|---|---|
HCP | 48.72 | 51.28 | 50.83 | 54.51 |
S protein | 556.6 | 484.4 | 476.0 | 251.9 |
Ratio | 0.08753 | 0.1059 | 0.1068 | 0.2164 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Li, W.; Liu, J.; Li, X.; Ji, H.; Hu, M.; Li, M. Label-Free Quantitative Proteomics Analysis of COVID-19 Vaccines by Nano LC-HRMS. Vaccines 2024, 12, 1055. https://doi.org/10.3390/vaccines12091055
Zhao H, Li W, Liu J, Li X, Ji H, Hu M, Li M. Label-Free Quantitative Proteomics Analysis of COVID-19 Vaccines by Nano LC-HRMS. Vaccines. 2024; 12(9):1055. https://doi.org/10.3390/vaccines12091055
Chicago/Turabian StyleZhao, Hengzhi, Wendong Li, Jingjing Liu, Xiao Li, Hong Ji, Mo Hu, and Min Li. 2024. "Label-Free Quantitative Proteomics Analysis of COVID-19 Vaccines by Nano LC-HRMS" Vaccines 12, no. 9: 1055. https://doi.org/10.3390/vaccines12091055
APA StyleZhao, H., Li, W., Liu, J., Li, X., Ji, H., Hu, M., & Li, M. (2024). Label-Free Quantitative Proteomics Analysis of COVID-19 Vaccines by Nano LC-HRMS. Vaccines, 12(9), 1055. https://doi.org/10.3390/vaccines12091055