Pfizer-BioNTech (BNT162b2) Vaccine Effectiveness against Symptomatic Laboratory-Confirmed COVID-19 Infection among Outpatients in Sentinel Sites, Lebanon, July–December 2021
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Inclusion and Exclusion Criteria
2.4. Data Collection
2.5. Outcome
2.6. Exposure Assessment
2.7. Covariates
2.8. Sampling Procedure
2.9. Statistical Analysis
2.10. Ethical Considerations
3. Results
3.1. Summary of Enrolment
3.2. Patient Characteristics
3.3. Behavioral Factors
3.4. COVID-19 Vaccination
3.5. Vaccine Effectiveness against Laboratory-Confirmed SARS-CoV-2
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministry of Public Health. Lebanon National Deployment and Vaccination Plan for COVID-19 Vaccines. 2021. Available online: https://www.moph.gov.lb/userfiles/files/Prevention/COVID-19%20Vaccine/Lebanon%20NDVP-%20Feb%2016%202021.pdf (accessed on 10 March 2022).
- Kudlay, D.; Svistunov, A. COVID-19 Vaccines: An Overview of Different Platforms. Bioengineering 2022, 9, 72. [Google Scholar] [CrossRef]
- Kashte, S.; Gulbake, A.; El-Amin, S.F., III; Gupta, A. COVID-19 Vaccines: Rapid Development, Implications, Challenges, and Future Prospects. Hum. Cell 2021, 34, 711–733. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.M. COVID-19 Vaccines for Low- and Middle-Income Countries. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Merhi, G.; Trotter, A.J.; de Oliveira Martins, L.; Koweyes, J.; Le-Viet, T.; Abou Naja, H.; Al Buaini, M.; Prosolek, S.J.; Alikhan, N.F.; Lott, M.; et al. Replacement of the Alpha Variant of SARS-CoV-2 by the Delta Variant in Lebanon between April and June 2021. Microb. Genom. 2022, 8, 838. [Google Scholar] [CrossRef]
- Pormohammad, A.; Zarei, M.; Ghorbani, S.; Mohammadi, M.; Aghayari Sheikh Neshin, S.; Khatami, A.; Turner, D.L.; Djalalinia, S.; Mousavi, S.A.; Mardani-Fard, H.A.; et al. Effectiveness of COVID-19 Vaccines against Delta (B.1.617.2) Variant: A Systematic Review and Meta-Analysis of Clinical Studies. Vaccines 2022, 10, 23. [Google Scholar] [CrossRef]
- Chang, S.; Liu, H.; Wu, J.; Xiao, W.; Chen, S.; Qiu, S.; Duan, G.; Song, H.; Zhang, R. Effectiveness of BNT162b2 and mRNA-1273 Vaccines against COVID-19 Infection: A Meta-Analysis of Test-Negative Design Studies. Vaccines 2022, 10, 469. [Google Scholar] [CrossRef] [PubMed]
- Sobczak, M.; Pawliczak, R. COVID-19 Vaccination Efficacy in Numbers Including SARS-CoV-2 Variants and Age Comparison: A Meta-Analysis of Randomized Clinical Trials. Ann. Clin. Microbiol. Antimicrob. 2022, 21, 32. [Google Scholar] [CrossRef]
- Patel, M.M.; Jackson, M.L.; Ferdinands, J. Postlicensure Evaluation of COVID-19 Vaccines. JAMA 2020, 324, 1939–1940. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Protocol for a COVID-19 Vaccine Effectiveness Study Using Health DataRegistries. Stockholm. 2023. Available online: https://www.ecdc.europa.eu/en/publications-data/protocol-covid-19-vaccine-effectiveness-study-using-health-data-registries (accessed on 12 March 2022).
- Centers for Disease Control and Prevention. COVID-19 Vaccine Effectiveness. 2023. Available online: https://www.cdc.gov/covid/php/surveillance/vaccine-effectiveness-studies.html (accessed on 14 July 2023).
- World Health Organization. WHO Surveillance Case Definitions for ILI and SARI. Geneva. 2021. Available online: https://www.who.int/teams/global-influenza-programme/surveillance-and-monitoring/case-definitions-for-ili-and-sari (accessed on 10 March 2022).
- World Health Organization. WHO COVID-19 Case Definitions. Geneva. 2020. Available online: https://apps.who.int/iris/rest/bitstreams/1322790/retrieve (accessed on 20 March 2021).
- World Health Organization. Evaluation of COVID-19 Vaccine Effectiveness. Interim Guidance. March 2021. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-vaccine_effectiveness-VE_evaluations-2022.1 (accessed on 15 February 2022).
- Chung, H.; He, S.; Nasreen, S.; Sundaram, M.E.; Buchan, S.A.; Wilson, S.E.; Chen, B.; Calzavara, A.; Fell, D.B.; Austin, P.C.; et al. Effectiveness of BNT162b2 and mRNA-1273 COVID-19 Vaccines against Symptomatic SARS-CoV-2 Infection and Severe COVID-19 Outcomes in Ontario, Canada: Test Negative Design Study. BMJ 2021, 374, 1943–1955. [Google Scholar]
- Lopez, B.J.; Andrews, N.; Gower, C.; Robertson, C.; Stowe, J.; Tessier, E.; Simmons, R.; Cottrell, S.; Roberts, R.; O’Doherty, M.; et al. Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca Vaccines on COVID-19 Related Symptoms, Hospital Admissions, and Mortality in Older Adults in England: Test Negative Case-Control Study. BMJ 2021, 373, 1088–1099. [Google Scholar]
- Martínez-Baz, I.; Miqueleiz, A.; Casado, I.; Navascués, A.; Trobajo-Sanmartín, C.; Burgui, C.; Guevara, M.; Ezpeleta, C.; Castilla, J.; Working Group for the Study of COVID-19 in Navarra. Effectiveness of COVID-19 Vaccines in Preventing SARS-CoV-2 Infection and Hospitalisation, Navarre, Spain, January to April 2021. Euro Surveill. 2021, 26, 2100438. [Google Scholar] [PubMed]
- Chemaitelly, H.; Tang, P.; Hasan, M.R.; AlMukdad, S.; Yassine, H.M.; Benslimane, F.M.; Al Khatib, H.A.; Coyle, P.; Ayoub, H.H.; Al Kanaani, Z.; et al. Waning of BNT162b2 Vaccine Protection against SARS-CoV-2 Infection in Qatar. N. Engl. J. Med. 2021, 385, e83. [Google Scholar] [PubMed]
- Fabiani, M.; Puopolo, M.; Morciano, C.; Spuri, M.; Spila Alegiani, S.; Filia, A.; D’Ancona, F. Effectiveness of mRNA Vaccines and Waning of Protection against SARS-CoV-2 Infection and Severe COVID-19 during Predominant Circulation of the Delta Variant in Italy: Retrospective Cohort Study. BMJ 2022, 376, e069052. [Google Scholar] [PubMed]
- Tan, S.T.; Kwan, A.T.; Rodríguez-Barraquer, I.; Singer, B.J.; Park, H.J.; Lewnard, J.A.; Sears, D.; Lo, N.C. Infectiousness of SARS-CoV-2 Breakthrough Infections and Reinfections during the Omicron Wave. Nat. Med. 2023, 29, 358–365. [Google Scholar] [PubMed]
- Tenforde, M.W.; Olson, S.M.; Self, W.H.; Talbot, H.K.; Lindsell, C.J.; Steingrub, J.S.; Shapiro, N.I.; Ginde, A.A.; Douin, D.J.; Prekker, M.E.; et al. Effectiveness of Pfizer-BioNTech and Moderna Vaccines against COVID-19 among Hospitalized Adults Aged ≥65 Years—United States, January–March 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 674–679. [Google Scholar] [PubMed]
- Farah, Z.; Haddad, N.; Abou El Naja, H.; Saleh, M.; Mrad, P.; Ghosn, N. Effectiveness of the Pfizer-BioNTech Vaccine against COVID-19-Associated Hospitalizations among Lebanese Adults ≥75 Years Old-Lebanon, April–May 2021. Epidemiologia 2023, 4, 212–222. [Google Scholar] [CrossRef] [PubMed]
Cases (n = 150) | Controls (n = 307) | |||||
---|---|---|---|---|---|---|
Characteristics | Options | Number | % | Number | % | p-Value |
Age groups | 50–60 | 84 | 56 | 184 | 61 | 0.501 |
61–70 | 45 | 30 | 91 | 29 | ||
>70 | 21 | 14 | 32 | 10 | ||
Sex | Male | 66 | 44 | 124 | 40 | 0.462 |
Female | 84 | 56 | 183 | 60 | ||
Nationality | Lebanese | 100 | 70 | 235 | 77 | 0.117 |
Non-Lebanese | 44 | 30 | 72 | 23 | ||
Place of residence | Beirut/ML | 59 | 41 | 118 | 39 | 0.803 |
Nabatieh/South | 37 | 26 | 91 | 30 | ||
Akkar/North | 35 | 24 | 73 | 24 | ||
Bekaa/BH | 13 | 9 | 23 | 7 | ||
Smoking status | Current smoker | 82 | 57 | 120 | 39 | 0.001 |
Noncurrent smoker | 63 | 43 | 185 | 61 | ||
Health conditions in the previous 12 months | ||||||
Presence of comorbidities | No comorbidities | 61 | 41 | 115 | 37 | 0.5 |
At least one comorbidity | 89 | 59 | 192 | 63 | ||
GP consultation for any condition | Yes | 87 | 63 | 202 | 68 | 0.362 |
No | 52 | 37 | 93 | 32 | ||
Hospital admission for any conditions | Yes | 31 | 22 | 60 | 20 | 0.666 |
No | 109 | 78 | 235 | 80 | ||
Living conditions | ||||||
Covering basic needs | Yes | 72 | 50 | 136 | 45 | 0.314 |
No | 73 | 50 | 169 | 55 | ||
Main income source | Work income | 60 | 41 | 131 | 43 | 0.824 |
Family help | 58 | 40 | 109 | 36 | ||
Financial help | 10 | 7 | 23 | 7 | ||
Others | 17 | 13 | 42 | 14 |
Cases (n = 150) | Controls (n = 307) | |||||
---|---|---|---|---|---|---|
Variables | Options | Number | % | Number | % | p-Value |
COVID-19 vaccination status a | Not vaccinated | 86 | 57 | 145 | 47 | 0.127 |
Partially vaccinated | 12 | 8 | 29 | 10 | ||
Fully vaccinated | 52 | 35 | 133 | 43 | ||
For those vaccinated, Median delays of symptom onset in days (IQR) | From first vaccine dose | 25 (4–47) | 44.5 (29–70) | 0.17 | ||
From second vaccine dose | 116 (42–156) | 98 (50–136) | 0.47 | |||
Adverse reactions following first dose | No side effect | 40 | 54 | 84 | 41 | 0.102 |
Minor side effect | 0 | 0 | 115 | 57 | ||
Moderate side effect | 34 | 46 | 4 | 2 | ||
Adverse reactions following second dose | No side effect | 36 | 52 | 69 | 40 | 0.18 |
Minor side effect | 34 | 48 | 103 | 59 | ||
Moderate side effect | 0 | 0 | 2 | 1 |
Cases | Controls | |||||||
---|---|---|---|---|---|---|---|---|
COVID-19 Vaccination Status | Number | % | Number | % | Unadjusted OR [95% CI] | Unadjusted VE % [95% CI] | Adjusted OR [95% CI] | Adjusted VE % [95% CI] |
Partially vaccinated | 11 | 8.4 | 25 | 9.33 | 0.74 [0.34, 1.6] | 26 [−60, 66] | 0.78 [0.35, 1.7] | 22 [−70, 65] |
Fully vaccinated | 45 | 34 | 116 | 43 | 0.65 [0.44, 1.02] | 35 [−2, 56] | 0.56 [0.33, 0.94] | 44 [6, 67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaito, L.; Stefanoff, P.; Baruch, J.; Farah, Z.; Albuaini, M.; Ghosn, N. Pfizer-BioNTech (BNT162b2) Vaccine Effectiveness against Symptomatic Laboratory-Confirmed COVID-19 Infection among Outpatients in Sentinel Sites, Lebanon, July–December 2021. Vaccines 2024, 12, 954. https://doi.org/10.3390/vaccines12090954
Chaito L, Stefanoff P, Baruch J, Farah Z, Albuaini M, Ghosn N. Pfizer-BioNTech (BNT162b2) Vaccine Effectiveness against Symptomatic Laboratory-Confirmed COVID-19 Infection among Outpatients in Sentinel Sites, Lebanon, July–December 2021. Vaccines. 2024; 12(9):954. https://doi.org/10.3390/vaccines12090954
Chicago/Turabian StyleChaito, Lina, Pawel Stefanoff, Joaquin Baruch, Zeina Farah, Mona Albuaini, and Nada Ghosn. 2024. "Pfizer-BioNTech (BNT162b2) Vaccine Effectiveness against Symptomatic Laboratory-Confirmed COVID-19 Infection among Outpatients in Sentinel Sites, Lebanon, July–December 2021" Vaccines 12, no. 9: 954. https://doi.org/10.3390/vaccines12090954
APA StyleChaito, L., Stefanoff, P., Baruch, J., Farah, Z., Albuaini, M., & Ghosn, N. (2024). Pfizer-BioNTech (BNT162b2) Vaccine Effectiveness against Symptomatic Laboratory-Confirmed COVID-19 Infection among Outpatients in Sentinel Sites, Lebanon, July–December 2021. Vaccines, 12(9), 954. https://doi.org/10.3390/vaccines12090954