Live Plague Vaccine Development: Past, Present, and Future
Abstract
:1. Introduction
2. Classical Attenuation of Yersinia pestis
- Live plague vaccines are superior to the killed ones in terms of intensity and duration of induced immunity.
- The simultaneous use of two independently attenuated Y. pestis strains potentiates the protective potency of each of them.
- Immunizing properties are dependent on more than one antigen. Different antigens fluctuate in their ability to induce immunity in diverse mammalian species. The immunogenicity of plague vaccines should be evaluated in mice, guinea pigs, and monkeys.
- Vaccines based on live attenuated Y. pestis strains may be fatal to some immunized mammal individuals with weakened immunity or metabolic disorders.
- A mixed vaccine including the strains with special efficacy in rats and in guinea pigs protects both animal species better than the monocomponent ones.
3. Discovery of Y. pestis Virulence Determinants and Subcellular Fractions Responsible for Pathogenicity and/or Immunogenicity
- The possibility of losing not only the determinant, but also some unidentified genes;
- The absence at that time of tools for genetic exchange using models that would allow complementation. As for the evidence that a particular factor plays a minor role in virulence, it suffices to show that its loss does not reduce the virulence of the pathogen [48]. Another problem he mentioned is that the overwhelming majority of researchers did not use standard operating procedures when assessing immunity to plague, which prevents a reliable comparative assessment of the results obtained in different laboratories using different vaccine strains and different test-infecting strains administered at different doses. Unfortunately, the latter situation has so far remained the same [53].
Y. pestis Strain | Virulence for (Approximate LD50 Values in cfu) | Protective Potency for | ||
---|---|---|---|---|
Mice | Guinea Pigs | Mice | Guinea Pigs | |
Subcutaneous Challenge | ||||
Biovar Microtus strain 201 | Avirulent to humans or primates | + | ND | |
Wild-type subspecies pestis | <10 | <10 | + | + |
Δpgm | >108 | >1.5 × 1010 | + | + |
pPCP− | <10 to >108 | <10 to >108 | ND | ND |
pYV− | >1.0 × 108 | >1.5 × 1010 | − | ND |
pMT1− | <10 | <10 | + ** | |
Δpgm pPCP− | >1.0 × 108 | ND | + | ND |
Δpla | <10 to >108 | <10 | + | ND |
ΔnlpD | >107 | >1.5 × 1010 | + | − |
ΔyopH | >107 | ND | ± | ND |
Δdam | 2.3 × 103 | ND | + | ND |
ΔrelA ΔspoT | 5.8 × 105 | ND | + | ND |
Δcrp | >3 × 107 | ND | + | ND |
ΔyscB | >106 | ND | + | ND |
ΔglnALG | >105 | >107 | + | + |
ΔmetQ | >105 | >108 | − | − |
ΔailC | ND | |||
Δlpp ΔmsbB Δail | >2 × 106 | ND | + | ND |
Δlpp ΔmsbB::ailL2 | >2 × 106 | ND | + | ND |
Δypo2720-2733Δhcp3 | 60% * | ND | + | ND |
ΔvasKΔhcp6 | 60% * | ND | ± | ND |
∆yscN | >3.2 × 107 | ND | + | ND |
∆surA | >2.1 × 105 | ND | + | ND |
intranasal challenge | ||||
Δlpp ΔmsbB Δpla | >2 × 106 | ND | + | ND |
ΔsmpB-ssrA | >106 | ND | + | ND |
4. Recent Progress in the Development and Use of Live Plague Vaccines
4.1. Current Plague Vaccination
4.2. Criteria for Selecting Candidate Vaccine Strains
- It must be lysed by the plague diagnostic bacteriophage L-413C [120];
- It must be typical in its cultural and morphological properties [121];
- The F1 titer of the studied strain must not be less than the similar indicator obtained with the culture of the control strain Y. pestis EV grown under similar conditions;
- The proportion of calcium-independent mutants in the population of Y. pestis cultures [122] passaged through the body of laboratory animals and not subjected to long-term storage or any physical impacts must not exceed 0.3%;
- It must not be inferior to the control strain in fibrinolysin-coagulase activity [123];
- The studied and control strains must not have the ability to pigment sorption (pigmentation) [124];
- The studied vaccine strains, similar to the reference strain EV, should have three bands of plasmid DNA on the electropherogram, corresponding to pMT1 (60 MDa), pYV (47 MDa), and pPCP (6 MDa) [121].
- Absolute safety;
- High vaccine protective efficacy.
4.3. Yersinia pestis Natural Strains Selectively Virulent or Non-Pathogenic (Conditionally Pathogenic) for Humans
- The possibility of increasing subcutaneous virulence for guinea pigs to levels similar to that of the strains of the main subspecies was shown through testicular passages [132].
4.4. Selective Protective Potency of Yersinia pestis
5. Strategies Aimed at Increasing Genetic Stability
- Comparative tests were carried out on all lines of the EV vaccine strain supported in the USSR. The freeze-dried NIIEG lineage retained a maximum protective activity and was grown and packaged as stock cultures for the subsequent production of live plague vaccine [138]. Currently, in countries where there are no licensed plague vaccines, the main efforts of researchers are aimed at developing new remedies that meet the WHO requirements [8].
- The animalization of the vaccine strain is carried out with the aim of purifying its population from mutants that have a reduced viability.
- 3.
- Stabilization of the genome of the vaccine strain by genetic engineering methods is also possible. Recombinase RecA is responsible for most acts of homologous genetic recombination in bacteria [142,143]. To overcome an unwanted homologous recombination that destabilizes the genome of the vaccine strains of various bacterial species, researchers created recA deletion mutants, since RecA is mainly involved in recombination in bacteria [144,145].
6. Synergy of Action of Multi-Strain Vaccines
7. Future of Plague Live Vaccines
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Haffkine, W.M. Concerning Inoculation against Plague and Pneumonia. Ind. Med. Gaz. 1915, 50, 121–131. [Google Scholar]
- Otten, L. Immunization against plague with live vaccine. Indian. J. Med. Res. 1936, 24, 73–101. [Google Scholar]
- Girard, G. Immunity in plague infection: Results of 30 years of work with the Pasteurella pestis EV strain (Girard and Robic). Biol. Med. 1963, 52, 631–731. [Google Scholar]
- Korobkova, E.I. Live antiplague vaccine. Medgiz Mosc. 1956, 206. [Google Scholar]
- Meyer, K.F. Effectiveness of Live or Killed Plague Vaccines in Man. Bull. World Health Organ. 1970, 42, 653–666. [Google Scholar]
- Zietz, B.P.; Dunkelberg, H. The History of the Plague and the Research on the Causative Agent Yersinia Pestis. Int. J. Hyg. Env. Health 2004, 207, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.; Kumar, S. Yersinia pestis Antibiotic Resistance: A Systematic Review. PHRP 2022, 13, 24–36. [Google Scholar] [CrossRef] [PubMed]
- WHO Workshop Meeting Report. In Efficacy Trials of Plague Vaccines: Endpoints, Trial Design, Site Selection; INSERM: Paris, France, 2018; 12p, Available online: https://www.who.int/publications/m/item/efficacy-trials-of-plague-vaccines--endpoints--trial-design--site-selection-who-workshop (accessed on 7 January 2025).
- Zepp, F. Principles of Vaccination. In Vaccine Design; Thomas, S., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2016; Volume 1403, pp. 57–84. [Google Scholar] [CrossRef]
- Smiley, S.T. Current Challenges in the Development of Vaccines for Pneumonic Plague. Expert. Rev. Vaccines 2008, 7, 209–221. [Google Scholar] [CrossRef]
- Feodorova, V.A.; Corbel, M.J. Prospects for New Plague Vaccines. Expert. Rev. Vaccines 2009, 8, 1721–1738. [Google Scholar] [CrossRef] [PubMed]
- Quenee, L.E.; Schneewind, O. Plague Vaccines and the Molecular Basis of Immunity against Yersinia Pestis. Hum. Vaccines 2009, 5, 817–823. [Google Scholar] [CrossRef]
- Titball, R.W.; Williamson, E.D. Yersinia Pestis (Plague) Vaccines. Expert. Opin. Biol. Ther. 2004, 4, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Smiley, S.T. Immune Defense against Pneumonic Plague. Immunol. Rev. 2008, 225, 256–271. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Roland, K.L.; Curtiss Iii, R. Developing Live Vaccines against Plague. J. Infect. Dev. Ctries. 2011, 5, 614–627. [Google Scholar] [CrossRef] [PubMed]
- Williamson, E.D.; Kilgore, P.B.; Hendrix, E.K.; Neil, B.H.; Sha, J.; Chopra, A.K. Progress on the Research and Development of Plague Vaccines with a Call to Action. Npj Vaccines 2024, 9, 162. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Curtiss, R. Rational Considerations about Development of Live Attenuated Yersinia pestis Vaccines. CPB 2014, 14, 878–886. [Google Scholar] [CrossRef]
- Jawetz, E.; Meyer, K.F. Avirulent Strains of Pasteurella Pestis. J. Infect. Dis. 1943, 73, 124–143. [Google Scholar] [CrossRef]
- Pollitzer, R. Plague Studies. III. Problems in Immunology. Bull. World Health Organ. 1952, 5, 165–226. [Google Scholar] [PubMed]
- Pasteur, L. De l’attenuation du virus du cholera des poules. CR Acad. Sci. Paris 1880, 91, 673–680. [Google Scholar]
- Pasteur, L.; Chamberland, C.; Roux, E. Nouvelle com-municationsur la rage. CR Acad. Sci. Paris 1884, 98, 457–463. [Google Scholar]
- Feodorova, V.A.; Sayapina, L.V.; Corbel, M.J.; Motin, V.L. Russian Vaccines against Especially Dangerous Bacterial Pathogens. Emerg. Microbes Infect. 2014, 3, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, A.; Abundo, M.C.; Ji, H.; Taylor, K.J.M.; Ngunjiri, J.M.; Lee, C.-W. Viral Subpopulation Screening Guides in Designing a High Interferon-Inducing Live Attenuated Influenza Vaccine by Targeting Rare Mutations in NS1 and PB2 Proteins. J. Virol. 2020, 95, e01722-20. [Google Scholar] [CrossRef]
- Minor, P.D. Live Attenuated Vaccines: Historical Successes and Current Challenges. Virology 2015, 479–480, 379–392. [Google Scholar] [CrossRef] [PubMed]
- Kamat, S.; Kumari, M. BCG Against SARS-CoV-2: Second Youth of an Old Age Vaccine? Front. Pharmacol. 2020, 11, 1050. [Google Scholar] [CrossRef] [PubMed]
- Fisher, C.R.; Schnell, M.J. New Developments in Rabies Vaccination: -EN- New Developments in Rabies Vaccination -FR- Les Développements Récents Dans Le Domaine de La Vaccination Antirabique -ES- Novedades En Materia de Vacunación Antirrábica. Rev. Sci. Tech. OIE 2018, 37, 657–672. [Google Scholar] [CrossRef] [PubMed]
- Frantz, P.N.; Teeravechyan, S.; Tangy, F. Measles-Derived Vaccines to Prevent Emerging Viral Diseases. Microbes Infect. 2018, 20, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Buzzola, F.R.; Barbagelata, M.S.; Caccuri, R.L.; Sordelli, D.O. Attenuation and Persistence of and Ability to Induce Protective Immunity to a Staphylococcus Aureus aroA Mutant in Mice. Infect. Immun. 2006, 74, 3498–3506. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Smith, T.G.; Rupprecht, C.E. From Brain Passage to Cell Adaptation: The Road of Human Rabies Vaccine Development. Expert. Rev. Vaccines 2011, 10, 1597–1608. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Yamamoto, T. Historical Review of BCG Vaccine in Japan. Jpn. J. Infect. Dis. 2007, 60, 331–336. [Google Scholar] [CrossRef]
- Theiler, M.; Smith, H.H. The effect of prolonged cultivation in vitro upon the pathogenicity of yellow fever virus. J. Exp. Med. 1937, 65, 767–786. [Google Scholar] [CrossRef] [PubMed]
- Meyer, K.F. Experimental Appraisal of Antiplague Vaccination with Dead Virulent and Living Avirulent Plague Bacilli. Abstr. Int. Congr. Trop. Med. Malar. 1948, 56, 16. [Google Scholar]
- Kolle, W.; Otto, R. Die aktive Immunisirung gegen Pest mittelst abgeschwächter Kulturen. Dtsch. Med. Wochenschr. 1903, 29, 493–494. [Google Scholar] [CrossRef]
- Chen, T.H.; Meyer, K.F. Studies on Immunization Against Plague XI. A Study of the Immunogenicity and Toxicity of Eleven Avirulent Variants of Virulent Strains of Pasteurella Pestis. J. Infect. Dis. 1955, 96, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Kislichkina, A.A.; Platonov, M.E.; Vagaiskaya, A.S.; Bogun, A.G.; Dentovskaya, S.V.; Anisimov, A.P. Rational Taxonomy of Yersinia pestis. Mol. Genet. Microbiol. Virol. 2019, 34, 110–117. [Google Scholar] [CrossRef]
- Tian, G.; Qi, Z.; Qiu, Y.; Wu, X.; Zhang, Q.; Yang, X.; Xin, Y.; He, J.; Bi, Y.; Wang, Q.; et al. Comparison of Virulence between the Yersinia Pestis Microtus 201, an Avirulent Strain to Humans, and the Vaccine Strain EV in Rhesus Macaques, Macaca Mulatta. Hum. Vaccin. Immunother. 2014, 10, 3552–3560. [Google Scholar] [CrossRef]
- Feodorova, V.A.; Motin, V.L. Plague vaccines. In Vaccines Against Bacterial Biothreat Pathogens; Feodorova, V.A., Motin, V.L., Eds.; Research Signpost: Kerala, India, 2011; pp. 176–233. [Google Scholar]
- Burrows, T.W.; Bacon, G.A. The Effects of Loss of Different Virulence Determinants on the Virulence and Immunogenicity of Strains of Pasteurella Pestis. Br. J. Exp. Pathol. 1958, 39, 278–291. [Google Scholar] [PubMed]
- Lindler, L.E.; Huang, X.-Z.; Chu, M.; Hadfield, T.L.; Dobson, M. Genetic Fingerprinting of Biodefense Pathogens for Epidemiology and Forensic Investigation. In Biological Weapons Defense; Lindler, L.E., Lebeda, F.J., Korch, G.W., Eds.; Humana Press: Totowa, NJ, USA, 2005; pp. 453–480. [Google Scholar] [CrossRef]
- Bugorkova, S.A.; Devdariani, Z.L.; Shchukovskaya, T.N.; Kutyrev, V.V. Historical and Modern Views on the Problem of Specific Plague Prophylaxis. Probl. Osob. Opasnykh Infektsii 2013, 3, 63–69. [Google Scholar] [CrossRef]
- Nikolaev, N.I. K istorii razvitiia profilaktiki chumy v SSSR [History of the development of plague prevention in the USSR]. Zh Mikrobiol. Epidemiol. Immunobiol. 1979, 4, 110–115. (In Russian) [Google Scholar]
- Schütze, H. Studies in B. pestis Antigens: III. The Prophylactic Value of the Envelope and Somatic Antigens of B. pestis. Br. J. Exp. Pathol. 1932, 13, 293–298. [Google Scholar]
- Schütze, H. Studies in B. pestis Antigens: I. The antigens and immunity reactions of B. pestis. Br. J. Exp. Pathol. 1932, 13, 284–288. [Google Scholar]
- Schütze, H. Studies on B. pestis antigens as prophylactic agents. Br. J. Exp. Pathol. 1939, 20, 235–244. [Google Scholar]
- Galyov, E.E.; Smirnov, O.Y.; Karlishev, A.V.; Volkovoy, K.I.; Denesyuk, A.I.; Nazimov, I.V.; Rubtsov, K.S.; Abramov, V.M.; Dalvadyanz, S.M.; Zav’yalov, V.P. Nucleotide Sequence of the Yersinia Pestis Gene Encoding F1 Antigen and the Primary Structure of the Protein: Putative T and B Cell Epitopes. FEBS Lett. 1990, 277, 230–232. [Google Scholar] [CrossRef] [PubMed]
- Anisimov, A.P.; Lindler, L.E.; Pier, G.B. Intraspecific Diversity of Yersinia Pestis. Clin. Microbiol. Rev. 2004, 17, 434–464. [Google Scholar] [CrossRef] [PubMed]
- Brubaker, R.R. The Genus Yersinia: Biochemistry and Genetics of Virulence With 3 Figures. In Modern Aspects of Electrochemistry; White, R.E., Bockris, J.O., Conway, B.E., Eds.; Modern Aspects of Electrochemistry; Springer: Boston, MA, USA, 1972; Volume 18, pp. 111–158. [Google Scholar] [CrossRef]
- Burrows, T.W. Virulence of Pasteurella pestis and immunity to plague. In Ergebnisse der Mikrobiologie Immunitätsforschung und Experimentellen Therapie; Henle, W., Kikuth, W., Meyer, K.F., Nauck, E.G., Tomcsik, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1963; pp. 59–113. [Google Scholar] [CrossRef]
- Keppie, J.; Cocking, E.C.; Smith, H. A non-toxic complex from Pasteurella pestis which immunises both guineapigs and mice. Lancet 1958, 271, 246–247. [Google Scholar] [CrossRef] [PubMed]
- Byvalov, A.A.; Konyshev, I.V.; Uversky, V.N.; Dentovskaya, S.V.; Anisimov, A.P. Yersinia Outer Membrane Vesicles as Potential Vaccine Candidates in Protecting against Plague. Biomolecules 2020, 10, 1694. [Google Scholar] [CrossRef]
- Burrows, T.W. An Antigen Determining Virulence in Pasteurella Pestis. Nature 1956, 177, 426–427. [Google Scholar] [CrossRef] [PubMed]
- Bacon, G.A.; Burrows, T.W. The Basis of Virulence in Pasteurella Pestis: An Antigen Determining Virulence. Br. J. Exp. Pathol. 1956, 37, 481–493. [Google Scholar]
- Feodorova, V.A.; Sayapina, L.V.; Motin, V.L. Assessment of Live Plague Vaccine Candidates. In Vaccine Design; Thomas, S., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2016; Volume 1403, pp. 487–498. [Google Scholar] [CrossRef]
- Andersson, J.A.; Sha, J.; Erova, T.E.; Fitts, E.C.; Ponnusamy, D.; Kozlova, E.V.; Kirtley, M.L.; Chopra, A.K. Identification of New Virulence Factors and Vaccine Candidates for Yersinia Pestis. Front. Cell Infect. Microbiol. 2017, 7, 448. [Google Scholar] [CrossRef] [PubMed]
- Cote, C.K.; Biryukov, S.S.; Klimko, C.P.; Shoe, J.L.; Hunter, M.; Rosario-Acevedo, R.; Fetterer, D.P.; Moody, K.L.; Meyer, J.R.; Rill, N.O.; et al. Protection Elicited by Attenuated Live Yersinia Pestis Vaccine Strains against Lethal Infection with Virulent Y. Pestis. Vaccines 2021, 9, 161. [Google Scholar] [CrossRef] [PubMed]
- Demeure, C.E.; Dussurget, O.; Mas Fiol, G.; Le Guern, A.-S.; Savin, C.; Pizarro-Cerdá, J. Yersinia Pestis and Plague: An Updated View on Evolution, Virulence Determinants, Immune Subversion, Vaccination, and Diagnostics. Genes. Immun. 2019, 20, 357–370. [Google Scholar] [CrossRef] [PubMed]
- Tiner, B.L.; Sha, J.; Ponnusamy, D.; Baze, W.B.; Fitts, E.C.; Popov, V.L.; Van Lier, C.J.; Erova, T.E.; Chopra, A.K. Intramuscular Immunization of Mice with a Live-Attenuated Triple Mutant of Yersinia Pestis CO92 Induces Robust Humoral and Cell-Mediated Immunity to Completely Protect Animals against Pneumonic Plague. Clin. Vaccine Immunol. 2015, 22, 1255–1268. [Google Scholar] [CrossRef] [PubMed]
- Tiner, B.L.; Sha, J.; Cong, Y.; Kirtley, M.L.; Andersson, J.A.; Chopra, A.K. Immunisation of Two Rodent Species with New Live-Attenuated Mutants of Yersinia Pestis CO92 Induces Protective Long-Term Humoral- and Cell-Mediated Immunity against Pneumonic Plague. Npj Vaccines 2016, 1, 16020. [Google Scholar] [CrossRef]
- Okan, N.A.; Mena, P.; Benach, J.L.; Bliska, J.B.; Karzai, A.W. The smpB-ssrA Mutant of Yersinia Pestis Functions as a Live Attenuated Vaccine to Protect Mice against Pulmonary Plague Infection. Infect. Immun. 2010, 78, 1284–1293. [Google Scholar] [CrossRef]
- Flashner, Y.; Mamroud, E.; Tidhar, A.; Ber, R.; Aftalion, M.; Gur, D.; Lazar, S.; Zvi, A.; Bino, T.; Ariel, N.; et al. Generation of Yersinia Pestis Attenuated Strains by Signature-Tagged Mutagenesis in Search of Novel Vaccine Candidates. Infect. Immun. 2004, 72, 908–915. [Google Scholar] [CrossRef] [PubMed]
- Ponnusamy, D.; Fitts, E.C.; Sha, J.; Erova, T.E.; Kozlova, E.V.; Kirtley, M.L.; Tiner, B.L.; Andersson, J.A.; Chopra, A.K. High-Throughput, Signature-Tagged Mutagenic Approach to Identify Novel Virulence Factors of Yersinia Pestis CO92 in a Mouse Model of Infection. Infect. Immun. 2015, 83, 2065–2081. [Google Scholar] [CrossRef] [PubMed]
- Karlyshev, A.V.; Oyston, P.C.F.; Williams, K.; Clark, G.C.; Titball, R.W.; Winzeler, E.A.; Wren, B.W. Application of High-Density Array-Based Signature-Tagged Mutagenesis to Discover Novel Yersinia Virulence-Associated Genes. Infect. Immun. 2001, 69, 7810–7819. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Ying, W.; Han, Y.; Chen, M.; Yan, Y.; Li, L.; Zhu, Z.; Zheng, Z.; Jia, W.; Yang, R.; et al. A Proteome Reference Map and Virulence Factors Analysis of Yersinia Pestis 91001. J. Proteom. 2012, 75, 894–907. [Google Scholar] [CrossRef] [PubMed]
- Thulasiraman, V.; McCutchen-Maloney, S.L.; Motin, V.L.; Garcia, E. Detection and Identification of Virulence Factors in Yersinia Pestis Using SELDI ProteinChip® System. BioTechniques 2001, 30, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-J.; Wang, A.H.-J.; Jennings, M.P. Discovery of Virulence Factors of Pathogenic Bacteria. Curr. Opin. Chem. Biol. 2008, 12, 93–101. [Google Scholar] [CrossRef]
- Kaushik, D.K.; Sehgal, D. Developing Antibacterial Vaccines in Genomics and Proteomics Era. Scand. J. Immunol. 2008, 67, 544–552. [Google Scholar] [CrossRef]
- Falkow, S. Molecular Koch’s postulates applied to microbial pathogenicity. Rev. Infect. Dis. 1988, 2, S274–S276. [Google Scholar] [CrossRef] [PubMed]
- Sun, W. Plague Vaccines: Status and Future. In Yersinia Pestis: Retrospective and Perspective; Yang, R., Anisimov, A., Eds.; Advances in Experimental Medicine and Biology; Springer: Dordrecht, The Netherlands, 2016; Volume 918, pp. 313–360. [Google Scholar] [CrossRef]
- Wang, S.; Heilman, D.; Liu, F.; Giehl, T.; Joshi, S.; Huang, X.; Chou, T.; Goguen, J.; Lu, S. A DNA Vaccine Producing LcrV Antigen in Oligomers Is Effective in Protecting Mice from Lethal Mucosal Challenge of Plague. Vaccine 2004, 22, 3348–3357. [Google Scholar] [CrossRef] [PubMed]
- Shattock, R.J.; Andrianaivoarimanana, V.; McKay, P.F.; Randriantseheno, L.N.; Murugaiah, V.; Samnuan, K.; Rogers, P.; Tregoning, J.S.; Rajerison, M.; Moore, K.M.; et al. A Self-Amplifying RNA Vaccine Provides Protection in a Murine Model of Bubonic Plague. Front. Microbiol. 2023, 14, 1247041. [Google Scholar] [CrossRef]
- Arnaboldi, P.M.; Sambir, M.; D’Arco, C.; Peters, L.A.; Seegers, J.F.M.L.; Mayer, L.; McCormick, A.A.; Dattwyler, R.J. Intranasal Delivery of a Protein Subunit Vaccine Using a Tobacco Mosaic Virus Platform Protects against Pneumonic Plague. Vaccine 2016, 34, 5768–5776. [Google Scholar] [CrossRef] [PubMed]
- Mellado-Sanchez, G.; Ramirez, K.; Drachenberg, C.B.; Diaz-McNair, J.; Rodriguez, A.L.; Galen, J.E.; Nataro, J.P.; Pasetti, M.F. Characterization of Systemic and Pneumonic Murine Models of Plague Infection Using a Conditionally Virulent Strain. Comp. Immunol. Microbiol. Infect. Dis. 2013, 36, 113–128. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, M.L.; Pinyerd, H.L.; Crisantes, J.D.; Rigano, M.M.; Pinkhasov, J.; Walmsley, A.M.; Mason, H.S.; Cardineau, G.A. Plant-Made Subunit Vaccine against Pneumonic and Bubonic Plague Is Orally Immunogenic in Mice. Vaccine 2006, 24, 2477–2490. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Singh, A.K.; Zhang, X.; Sun, W. Induction of Protective Antiplague Immune Responses by Self-Adjuvanting Bionanoparticles Derived from Engineered Yersinia Pestis. Infect. Immun. 2020, 88, e00081-20. [Google Scholar] [CrossRef] [PubMed]
- Williamson, E. Local and Systemic Immune Response to a Microencapsulated Sub-Unit Vaccine for Plague. Vaccine 1996, 14, 1613–1619. [Google Scholar] [CrossRef] [PubMed]
- Marketing Authorization from the State Research Centre for Applied Microbiology and Biotechnology of the Federal Service for the Supervision of Consumer Rights and Protection (Russia); Registration LP-004808 Microencapsulated Molecular Plague Vaccine (PMMM, 2024). Available online: https://www.rlsnet.ru/regdoc/vakcinacumnaya-molekulyarnaya-mikroinkapsulirovannaya-vcmm-lp-004808-74621 (accessed on 10 January 2025).
- Cid, R.; Bolívar, J. Platforms for Production of Protein-Based Vaccines: From Classical to Next-Generation Strategies. Biomolecules 2021, 11, 1072. [Google Scholar] [CrossRef]
- Rahalison, L.; Ranjalahy, M.; Duplantier, J.-M.; Duchemin, J.-B.; Ravelosaona, J.; Ratsifasoamanana, L.; Chanteau, S. Susceptibility to Plague of the Rodents in Antananarivo, Madagascar. In The Genus Yersinia; Skurnik, M., Bengoechea, J.A., Granfors, K., Eds.; Advances in Experimental Medicine and Biology; Kluwer Academic Publishers: Boston, MA, USA, 2004; Volume 529, pp. 439–442. [Google Scholar] [CrossRef]
- McCoy, G.W.; Smith, F.C. The Susceptibility to Plague of the Prairie Dog, the Desert Wood Rat, and the Rock Squirrel. J. Infect. Dis. 1910, 7, 374–376. [Google Scholar] [CrossRef]
- Russell, R.E.; Tripp, D.W.; Rocke, T.E. Differential Plague Susceptibility in Species and Populations of Prairie Dogs. Ecol. Evol. 2019, 9, 11962–11971. [Google Scholar] [CrossRef] [PubMed]
- Uriarte, L.; Morales Villazón, N. Susceptibility and Non-Susceptibility to Plague of Some Animals. Rev. Inst. Bacteriolog. 1936, 7, 720–726. [Google Scholar]
- Meyer, K.F.; Smith, G.; Foster, L.; Brookman, M.; Sung, M. Live, Attenuated Yersinia Pestis Vaccine: Virulent in Nonhuman Primates, Harmless to Guinea Pigs. J. Infect. Dis. 1974, 129 (Suppl. S1), S85–S120. [Google Scholar] [CrossRef]
- Mongillo, J.; Zedda, N.; Rinaldo, N.; Bellini, T.; Manfrinato, M.C.; Du, Z.; Yang, R.; Stenseth, N.C.; Bramanti, B. Differential Pathogenicity and Lethality of Bubonic Plague (1720–1945) by Sex, Age and Place. Proc. R. Soc. B 2024, 291, 20240724. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.H.; Foster, L.E.; Meyer, K.F. Comparison of the Immune Response to Three Different Yersinia Pestis Vaccines in Guinea Pigs and Langurs. J. Infect. Dis. 1974, 129 (Suppl. S1), S53–S61. [Google Scholar] [CrossRef] [PubMed]
- Chapman, S.J.; Hill, A.V.S. Human Genetic Susceptibility to Infectious Disease. Nat. Rev. Genet. 2012, 13, 175–188. [Google Scholar] [CrossRef]
- Chai, J.N.; Peng, Y.; Rengarajan, S.; Solomon, B.D.; Ai, T.L.; Shen, Z.; Perry, J.S.A.; Knoop, K.A.; Tanoue, T.; Narushima, S.; et al. Helicobacter Species Are Potent Drivers of Colonic T Cell Responses in Homeostasis and Inflammation. Sci. Immunol. 2017, 2, eaal5068. [Google Scholar] [CrossRef] [PubMed]
- Mestas, J.; Hughes, C.C.W. Of Mice and Not Men: Differences between Mouse and Human Immunology. J. Immunol. 2004, 172, 2731–2738. [Google Scholar] [CrossRef]
- Pisetsky, D.S. Of Mice, Men and Microbes: The Impact of the Microbiome on Immune Responses. Ann. Rheum. Dis. 2020, 79, 167–169. [Google Scholar] [CrossRef]
- Bjornson-Hooper, Z.B.; Fragiadakis, G.K.; Spitzer, M.H.; Chen, H.; Madhireddy, D.; Hu, K.; Lundsten, K.; McIlwain, D.R.; Nolan, G.P. A Comprehensive Atlas of Immunological Differences Between Humans, Mice, and Non-Human Primates. Front. Immunol. 2022, 13, 867015. [Google Scholar] [CrossRef] [PubMed]
- Giefing-Kröll, C.; Berger, P.; Lepperdinger, G.; Grubeck-Loebenstein, B. How Sex and Age Affect Immune Responses, Susceptibility to Infections, and Response to Vaccination. Aging Cell 2015, 14, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.L.; Biryukov, S.S.; Rill, N.O.; Klimko, C.P.; Hunter, M.; Dankmeyer, J.L.; Miller, J.A.; Shoe, J.L.; Mlynek, K.D.; Talyansky, Y.; et al. Sex Differences in Immune Protection in Mice Conferred by Heterologous Vaccines for Pneumonic Plague. Front. Immunol. 2024, 15, 1397579. [Google Scholar] [CrossRef] [PubMed]
- Anisimov, A.P.; Dentovskaya, S.V.; Panfertsev, E.A.; Svetoch, T.E.; Kopylov, P.K.; Segelke, B.W.; Zemla, A.; Telepnev, M.V.; Motin, V.L. Amino Acid and Structural Variability of Yersinia Pestis LcrV Protein. Infect. Genet. Evol. 2010, 10, 137–145. [Google Scholar] [CrossRef]
- Kopylov, P.K.; Platonov, M.E.; Ablamunits, V.G.; Kombarova, T.I.; Ivanov, S.A.; Kadnikova, L.A.; Somov, A.N.; Dentovskaya, S.V.; Uversky, V.N.; Anisimov, A.P. Yersinia Pestis Caf1 Protein: Effect of Sequence Polymorphism on Intrinsic Disorder Propensity, Serological Cross-Reactivity and Cross-Protectivity of Isoforms. PLoS ONE 2016, 11, e0162308. [Google Scholar] [CrossRef] [PubMed]
- Protsenko, O.A.; Filippov, A.A.; Kutyrev, V.V. Integration of the Plasmid Encoding the Synthesis of Capsular Antigen and Murine Toxin into Yersinia Pestis Chromosome. Microb. Pathog. 1991, 11, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Cornelius, C.A.; Quenee, L.E.; Elli, D.; Ciletti, N.A.; Schneewind, O. Yersinia Pestis IS 1541 Transposition Provides for Escape from Plague Immunity. Infect Immun 2009, 77, 1807–1816. [Google Scholar] [CrossRef] [PubMed]
- Quenee, L.E.; Cornelius, C.A.; Ciletti, N.A.; Elli, D.; Schneewind, O. Yersinia Pestis Caf1 Variants and the Limits of Plague Vaccine Protection. Infect. Immun. 2008, 76, 2025–2036. [Google Scholar] [CrossRef] [PubMed]
- Rosenzweig, J.A.; Jejelowo, O.; Sha, J.; Erova, T.E.; Brackman, S.M.; Kirtley, M.L.; Van Lier, C.J.; Chopra, A.K. Progress on Plague Vaccine Development. Appl. Microbiol. Biotechnol. 2011, 91, 265–286. [Google Scholar] [CrossRef]
- Feodorova, V.A.; Motin, V.L. Plague Vaccines: Current Developments and Future Perspectives. Emerg. Microbes Infect. 2012, 1, e36. [Google Scholar] [CrossRef] [PubMed]
- Williamson, E.D.; Packer, P.J.; Waters, E.L.; Simpson, A.J.; Dyer, D.; Hartings, J.; Twenhafel, N.; Pitt, M.L.M. Recombinant (F1+V) Vaccine Protects Cynomolgus Macaques against Pneumonic Plague. Vaccine 2011, 29, 4771–4777. [Google Scholar] [CrossRef]
- Lin, J.-S.; Szaba, F.M.; Kummer, L.W.; Chromy, B.A.; Smiley, S.T. Yersinia Pestis YopE Contains a Dominant CD8 T Cell Epitope That Confers Protection in a Mouse Model of Pneumonic Plague. J. Immunol. 2011, 187, 897–904. [Google Scholar] [CrossRef]
- van Lier, C.J.; Sha, J.; Kirtley, M.L.; Cao, A.; Tiner, B.L.; Erova, T.E.; Cong, Y.; Kozlova, E.V.; Popov, V.L.; Baze, W.B.; et al. Deletion of Braun Lipoprotein and Plasminogen-Activating Protease-Encoding Genes Attenuates Yersinia Pestis in Mouse Models of Bubonic and Pneumonic Plague. Infect. Immun. 2014, 82, 2485–2503. [Google Scholar] [CrossRef] [PubMed]
- Tiner, B.L.; Sha, J.; Kirtley, M.L.; Erova, T.E.; Popov, V.L.; Baze, W.B.; van Lier, C.J.; Ponnusamy, D.; Andersson, J.A.; Motin, V.L.; et al. Combinational Deletion of Three Membrane Protein-Encoding Genes Highly Attenuates Yersinia Pestis While Retaining Immunogenicity in a Mouse Model of Pneumonic Plague. Infect. Immun. 2015, 83, 1318–1338. [Google Scholar] [CrossRef]
- Williamson, E.D.; Flick-Smith, H.C.; Lebutt, C.; Rowland, C.A.; Jones, S.M.; Waters, E.L.; Gwyther, R.J.; Miller, J.; Packer, P.J.; Irving, M. Human Immune Response to a Plague Vaccine Comprising Recombinant F1 and V Antigens. Infect. Immun. 2005, 73, 3598–3608. [Google Scholar] [CrossRef] [PubMed]
- Sha, J.; Endsley, J.J.; Kirtley, M.L.; Foltz, S.M.; Huante, M.B.; Erova, T.E.; Kozlova, E.V.; Popov, V.L.; Yeager, L.A.; Zudina, I.V.; et al. Characterization of an F1 Deletion Mutant of Yersinia Pestis CO92, Pathogenic Role of F1 Antigen in Bubonic and Pneumonic Plague, and Evaluation of Sensitivity and Specificity of F1 Antigen Capture-Based Dipsticks. J. Clin. Microbiol. 2011, 49, 1708–1715. [Google Scholar] [CrossRef]
- Verma, S.K.; Tuteja, U. Plague Vaccine Development: Current Research and Future Trends. Front. Immunol. 2016, 7, 602. [Google Scholar] [CrossRef]
- Sun, W.; Singh, A.K. Plague Vaccine: Recent Progress and Prospects. Npj Vaccines 2019, 4, 11. [Google Scholar] [CrossRef]
- Rosenzweig, J.A.; Hendrix, E.K.; Chopra, A.K. Plague Vaccines: New Developments in an Ongoing Search. Appl. Microbiol. Biotechnol. 2021, 105, 4931–4941. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, X.; Zhou, D.; Yang, R. Live-Attenuated Yersinia Pestis Vaccines. Expert. Rev. Vaccines 2013, 12, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Mikshis, N.I.; Kutyrev, V.V. Current State of the Problem of Vaccine Development for Specific Prophylaxis of Plague. Probl. Osob. Opasnykh Infektsii 2019, 1, 50–63. [Google Scholar] [CrossRef]
- Bugorkova, S.A.; Shchukovskaya, T.N.; Mikshis, N.I.; Shcherbakova, S.A.; Kudryavtseva, O.M.; Kuklev, E.V.; Dubrovina, V.I.; Noskov, A.K.; Korytov, K.M.; Balakhonov, S.V.; et al. Scientific and Methodological Support of Activities on Carrying Out Immunological Monitoring of Vaccinated Against Plague Persons Residing in the Territories of Natural Foci of the Infection. Probl. Osob. Opasnykh Infektsii 2018, 2, 6–13. [Google Scholar] [CrossRef]
- Velimirovic, B. Investigations on the epidemiology and control of plague in South Vietnam. Part I. Zentralblatt Für Bakteriol. Orig. 1974, 4, 482–508. [Google Scholar]
- Wang, X.; Wang, Z.; Guo, Z.; Wei, B.; Tian, F.; Yu, S.; Wang, H.; Wang, H.; Yang, R. Serum Cytokine Responses in Primary Pneumonic Plague Patients. Clin. Vaccine Immunol. 2011, 18, 184–186. [Google Scholar] [CrossRef] [PubMed]
- Grasset, E. Control of Plague by Means of Live Avirulent Plague Vaccine in Southern Africa (1941–1944). Trans. R. Soc. Trop. Med. Hyg. 1946, 40, 275–294. [Google Scholar] [CrossRef] [PubMed]
- Grasset, E. Live plague vaccine as a prophylactic against plague. South. Afr. Med. J. 1941, 15, 373–375. [Google Scholar]
- Sagiyev, Z.; Berdibekov, A.; Bolger, T.; Merekenova, A.; Ashirova, S.; Nurgozhin, Z.; Dalibayev, Z. Human Response to Live Plague Vaccine EV, Almaty Region, Kazakhstan, 2014–2015. PLoS ONE 2019, 14, e0218366. [Google Scholar] [CrossRef]
- Hartley, L.; Harold, S.; Hawe, E. The Efficacy, Safety, and Immunogenicity of Plague Vaccines: A Systematic Literature Review. Curr. Res. Immunol. 2023, 4, 100072. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Mehta, S. The Clinical Development Process for a Novel Preventive Vaccine: An Overview. J. Postgrad. Med. 2016, 62, 4–11. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines on clinical evaluation of vaccines: Regulatory expectations. WHO Tech. Rep. Ser. 2004, 1004, 72. [Google Scholar]
- Anisimova, T.I.; Sayapina, L.V.; Sergeeva, G.M.; Isupov, I.V.; Beloborodov, R.A.; Samoilova, L.V.; Anisimov, A.P.; Ledvanov, M.Y.; Shvedun, G.P.; Zadumina, S.Y.; et al. [Main Requirements for Vaccine Strains of the Plague Pathogen: Methodological Guidelines MU 3.3.1.1113-02]; Federal Centre of State Epidemic Surveillance of Ministry of Health of Russian Federation: Moscow, Russia, 2002. [Google Scholar] [CrossRef]
- Garcia, E.; Chain, P.; Elliott, J.M.; Bobrov, A.G.; Motin, V.L.; Kirillina, O.; Lao, V.; Calendar, R.; Filippov, A.A. Molecular Characterization of L-413C, a P2-Related Plague Diagnostic Bacteriophage. Virology 2008, 372, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Perry, R.D.; Fetherston, J.D. Yersinia Pestis--Etiologic Agent of Plague. Clin. Microbiol. Rev. 1997, 10, 35–66. [Google Scholar] [CrossRef]
- Sample, A.K.; Fowler, J.M.; Brubaker, R.R. Modulation of the Low-Calcium Response in Yersinia Pestis via Plasmid-Plasmid Interaction. Microb. Pathog. 1987, 2, 443–453. [Google Scholar] [CrossRef]
- Sebbane, F.; Uversky, V.N.; Anisimov, A.P. Yersinia Pestis Plasminogen Activator. Biomolecules 2020, 10, 1554. [Google Scholar] [CrossRef]
- Fetherston, J.D.; Schuetze, P.; Perry, R.D. Loss of the Pigmentation Phenotype in Yersinia Pestis Is Due to the Spontaneous Deletion of 102 Kb of Chromosomal DNA Which Is Flanked by a Repetitive Element. Mol. Microbiol. 1992, 6, 2693–2704. [Google Scholar] [CrossRef] [PubMed]
- Dentovskaya, S.V.; Anisimov, A.P.; Kondakova, A.N.; Lindner, B.; Bystrova, O.V.; Svetoch, T.E.; Shaikhutdinova, R.Z.; Ivanov, S.A.; Bakhteeva, I.V.; Titareva, G.M.; et al. Functional Characterization and Biological Significance of Yersinia Pestis Lipopolysaccharide Biosynthesis Genes. Biochem. Mosc. 2011, 76, 808–822. [Google Scholar] [CrossRef] [PubMed]
- Filippov, A.A.; Sergueev, K.V.; He, Y.; Huang, X.-Z.; Gnade, B.T.; Mueller, A.J.; Fernandez-Prada, C.M.; Nikolich, M.P. Bacteriophage-Resistant Mutants in Yersinia Pestis: Identification of Phage Receptors and Attenuation for Mice. PLoS ONE 2011, 6, e25486. [Google Scholar] [CrossRef]
- Dentovskaya, S.V.; Ivanov, S.A.; Kopylov, P.K.; Shaikhutdinova, R.Z.; Platonov, M.E.; Kombarova, T.I.; Gapel’chenkova, T.V.; Balakhonov, S.V.; Anisimov, A.P. Selective protective potency of Yersinia pestis ΔnlpD mutants. Acta Nat. 2015, 7, 102–108. [Google Scholar] [CrossRef]
- Feng, J.; Deng, Y.; Fu, M.; Hu, X.; Luo, W.; Lu, Z.; Dai, L.; Yang, H.; Zhao, X.; Du, Z.; et al. Construction of a Live-Attenuated Vaccine Strain of Yersinia Pestis EV76-B-SHUΔpla and Evaluation of Its Protection Efficacy in a Mouse Model by Aerosolized Intratracheal Inoculation. Front. Cell Infect. Microbiol. 2020, 10, 473. [Google Scholar] [CrossRef]
- Li, B.; Jiang, L.; Song, Q.; Yang, J.; Chen, Z.; Guo, Z.; Zhou, D.; Du, Z.; Song, Y.; Wang, J.; et al. Protein Microarray for Profiling Antibody Responses to Yersinia Pestis Live Vaccine. Infect. Immun. 2005, 73, 3734–3739. [Google Scholar] [CrossRef] [PubMed]
- Smiley, S.T. Cell-Mediated Defense Against Yersinia Pestis Infection. In The Genus Yersinia; Perry, R.D., Fetherston, J.D., Eds.; Advances In Experimental Medicine And Biology; Springer: New York, NY, USA, 2007; Volume 603, pp. 376–386. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Q.; Tian, G.; Qi, Z.; Zhang, X.; Wu, X.; Qiu, Y.; Bi, Y.; Yang, X.; Xin, Y.; et al. Yersinia Pestis Biovar Microtus Strain 201, an Avirulent Strain to Humans, Provides Protection against Bubonic Plague in Rhesus Macaques. Hum. Vaccines Immunother. 2014, 10, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Anisimov, N.V.; Kombarova, T.I.; Platonov, M.E.; Ivanov, S.A.; Sukhova, M.A.; Dentovskaya, S.V.; Anisimov, A.P. Selection of phylogenetically closely-related Yersinia pestis strains differing in their virulence for guinea pigs. Russ. J. Infect. Immun. 2016, 5, 373–376. [Google Scholar] [CrossRef]
- Cawadias, A.P. A History of Medicine, vol. II: Early Greek, Hindu, and Persian Medicine by Henry F. Sigerist, London, Oxford University Press, 1961, pp. 333, 75s. Med. Hist. 1963, 7, 87–89. [Google Scholar] [CrossRef]
- Gesler, W.M. Illness and Health Practitione Use in Calabar, Nigeria. Soc. Sci. Medicine. Part. D Med. Geogr. 1979, 13, 23–30. [Google Scholar] [CrossRef]
- Haffkine, W.M. Concerning Inoculation against Plague and Pneumonia and the Experimental Study of Curative Methods. J. Hyg. 1915, 15, 64–101. [Google Scholar] [CrossRef]
- Supotnitsky, M.V.; Supotnitskaya, N.S. Essays of the History of Plague: In 2 Volumes. Moscow: Vuzovskaya Kniga, 2006. (Volume 1: Plague of Pre-Bacteriological Period. 468 P. ISBN 5-9502-0093-4; Volume 2: Plague of Bacteriological Period. 696 p. ISBN 5-9502-0094-2.). JSPS 2010, 5, 559–560. [Google Scholar]
- Nazarova, E.L.; Dyatlov, I.A.; Pozdeev, N.M.; Demyanova, V.T.; Paramonov, I.V.; Rylov, A.V.; Khramov, M.V.; Borzilov, A.I.; Somov, A.N.; Ablamunits, V.G.; et al. Genetic Markers of Immune Response to Yersinia pestis F1 and V Antigens–Loaded Microspheres Vaccine Against Plague. Russ. Biomed. Res. 2017, 2, 19–28. Available online: https://www.elibrary.ru/item.asp?id=29455131 (accessed on 17 December 2020).
- Saltykova, R.A.; Faĭbich, M.M. [Experience from a 30-year study of the stability of the properties of the plague vaccine strain EV in the USSR]. Zh Mikrobiol. Epidemiol. Immunobiol. 1975, 6, 3–8. [Google Scholar]
- Cui, Y.; Yang, X.; Xiao, X.; Anisimov, A.P.; Li, D.; Yan, Y.; Zhou, D.; Rajerison, M.; Carniel, E.; Achtman, M.; et al. Genetic Variations of Live Attenuated Plague Vaccine Strains (Yersinia Pestis EV76 Lineage) during Laboratory Passages in Different Countries. Infect. Genet. Evol. 2014, 26, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Ponomareva, T. The “animalization” influence on the specific activity of a live plague vaccine in the model animal experiments. J. Clin. Med. Kaz. 2016, 1, 25–29. [Google Scholar] [CrossRef]
- Teterin, V.V.; Ezhov, A.V.; Birjukov, V.V.; Mokhov, D.A.; Bagin, S.V.; Khonin, A.Z.; Logvinov, S.V. Method of Obtaining Preparation Based on Vaccine Strain of Plague Microbe. RU Patent 2510825 C2, 10 April 2014. Available online: https://www.elibrary.ru/item.asp?id=37796412 (accessed on 7 January 2025).
- Khesin, R.B. Genome Inconstancy; Nauka: Moscow, Russia, 1985; 472p. [Google Scholar]
- Jain, K.; Wood, E.A.; Romero, Z.J.; Cox, M.M. RecA-independent Recombination: Dependence on the Escherichia Coli RarA Protein. Mol. Microbiol. 2021, 115, 1122–1137. [Google Scholar] [CrossRef] [PubMed]
- Cox, M.M. Regulation of Bacterial RecA Protein Function. Crit. Rev. Biochem. Mol. Biol. 2007, 42, 41–63. [Google Scholar] [CrossRef] [PubMed]
- Cox, M.M. Motoring along with the Bacterial RecA Protein. Nat. Rev. Mol. Cell Biol. 2007, 8, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Sander, P. A recA Deletion Mutant of Mycobacterium Bovis BCG Confers Protection Equivalent to That of Wild-Type BCG but Shows Increased Genetic Stability. Vaccine 2003, 21, 4124–4127. [Google Scholar] [CrossRef] [PubMed]
- Mokrievich, A.N.; Vakhrameeva, G.N.; Titareva, G.M.; Bakhteeva, I.V.; Mironova, R.I.; Kombarova, T.I.; Kravchenko, T.B.; Dyatlov, I.A.; Pavlov, V.M. Construction and Characterization of Francisella Tularensis Vaccine Strain with a Single Copy of iglC Gene and Lacking recA Gene. Mol. Genet. Microbiol. Virol. 2015, 30, 148–156. [Google Scholar] [CrossRef]
- Biryukov, S.S.; Klimko, C.P.; Dankmeyer, J.L.; Toothman, R.G.; Shoe, J.L.; Hunter, M.; Rill, N.O.; Talyansky, Y.; Davies, M.L.; Qiu, J.; et al. Live Attenuated Vaccines and Layered Defense Strategies to Combat Infections Caused by Nonencapsulated Yersinia Pestis. Front. Bacteriol. 2023, 2, 1240698. [Google Scholar] [CrossRef]
- Wood, R.A. Allergic Reactions to Vaccines. Pediatr. Allergy Immunol. 2013, 24, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Dentovskaya, S.V.; Kopylov, P.K.; Ivanov, S.A.; Ageev, S.A.; Anisimov, A.P. Molecular Bases of Vaccine-Prevention of Plague. Mol. Genet. Microbiol. Virol. 2013, 28, 87–98. [Google Scholar] [CrossRef]
- Caballero, M.; Quirce, S. Delayed Hypersensitivity Reactions Caused by Drug Excipients: A Literature Review. J. Investig. Allergol. Clin. Immunol. 2020, 30, 400–408. [Google Scholar] [CrossRef]
- Klyueva, S.N.; Shmelkova, T.P.; Schukovskaya, T.N. Influence of CpG ODN 2006 oligodeoxynucleotide on cytokine production by blood cells of humans vaccinated against plague. Med. Imm. Rus 2015, 16, 531. [Google Scholar] [CrossRef]
- Sutyagin, V.V.; Kovaleva, G.G. Proteins of the Plague Microbe Vaccine Strain (Yersinia Pestis EV NIIEG) with Potential Allergen Properties. Probl. Osob. Opasnykh Infektsii 2019, 4, 97–101. [Google Scholar] [CrossRef]
- Pollitzer, R. Observations on the Present State of Plague and Plague Control in the Soviet Union (According to Data Available to 31 October 1960). III. (DA 18-108-405-CML-867). ICRS Med. Rep. 1961, 1–49. [Google Scholar]
- Kilgore, P.B.; Sha, J.; Hendrix, E.K.; Motin, V.L.; Chopra, A.K. Combinatorial Viral Vector-Based and Live Attenuated Vaccines without an Adjuvant to Generate Broader Immune Responses to Effectively Combat Pneumonic Plague. mBio 2021, 12, e03223-21. [Google Scholar] [CrossRef]
- Tidhar, A.; Flashner, Y.; Cohen, S.; Levi, Y.; Zauberman, A.; Gur, D.; Aftalion, M.; Elhanany, E.; Zvi, A.; Shafferman, A.; et al. The NlpD Lipoprotein Is a Novel Yersinia Pestis Virulence Factor Essential for the Development of Plague. PLoS ONE 2009, 4, e7023. [Google Scholar] [CrossRef]
- Platonov, M.E.; Lipatnikova, N.A.; Dentovskaya, S.V.; Anisimov, A.P. Bacterial Vaccines with Regulated Delayed Attenuation. Probl. Osob. Opasnykh Infektsii 2024, 1, 59–66. [Google Scholar] [CrossRef]
- Curtiss, R.; Wanda, S.-Y.; Gunn, B.M.; Zhang, X.; Tinge, S.A.; Ananthnarayan, V.; Mo, H.; Wang, S.; Kong, W. Salmonella Enterica Serovar Typhimurium Strains with Regulated Delayed Attenuation In Vivo. Infect. Immun. 2009, 77, 1071–1082. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Liu, Q.; Wang, S.; Curtiss, R.; Kong, Q. Regulated Delayed Shigella Flexneri 2a O-Antigen Synthesis in Live Recombinant Salmonella Enterica Serovar Typhimurium Induces Comparable Levels of Protective Immune Responses with Constitutive Antigen Synthesis System. Theranostics 2019, 9, 3565–3579. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Roland, K.L.; Kuang, X.; Branger, C.G.; Curtiss, R. Yersinia Pestis with Regulated Delayed Attenuation as a Vaccine Candidate to Induce Protective Immunity against Plague. Infect. Immun. 2010, 78, 1304–1313. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.; Wanda, S.-Y.; Zhang, X.; Bollen, W.; Tinge, S.A.; Roland, K.L.; Curtiss, R. Regulated Programmed Lysis of Recombinant Salmonella in Host Tissues to Release Protective Antigens and Confer Biological Containment. Proc. Natl. Acad. Sci. USA 2008, 105, 9361–9366. [Google Scholar] [CrossRef] [PubMed]
- Juárez-Rodríguez, M.D.; Yang, J.; Kader, R.; Alamuri, P.; Curtiss, R.; Clark-Curtiss, J.E. Live Attenuated Salmonella Vaccines Displaying Regulated Delayed Lysis and Delayed Antigen Synthesis to Confer Protection against Mycobacterium Tuberculosis. Infect. Immun. 2012, 80, 815–831. [Google Scholar] [CrossRef]
- Ji, Z.; Shang, J.; Li, Y.; Wang, S.; Shi, H. Live Attenuated Salmonella Enterica Serovar Choleraesuis Vaccine Vector Displaying Regulated Delayed Attenuation and Regulated Delayed Antigen Synthesis to Confer Protection against Streptococcus Suis in Mice. Vaccine 2015, 33, 4858–4867. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Mo, H.; Willingham, C.; Wang, S.; Park, J.; Kong, W.; Roland, K.L.; Curtiss, R. Protection Against Necrotic Enteritis in Broiler Chickens by Regulated Delayed Lysis Salmonella Vaccines. Avian Dis. 2015, 59, 475–485. [Google Scholar] [CrossRef]
- Silva, A.J.; Benitez, J.A.; Wu, J.-H. Attenuation of Bacterial Virulence by Quorum Sensing-Regulated Lysis. J. Biotechnol. 2010, 150, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, Y.; Scarpellini, G.; Kong, W.; Shi, H.; Baek, C.-H.; Gunn, B.; Wanda, S.-Y.; Roland, K.L.; Zhang, X.; et al. Salmonella Vaccine Vectors Displaying Delayed Antigen Synthesis in vivo to Enhance Immunogenicity. Infect. Immun. 2010, 78, 3969–3980. [Google Scholar] [CrossRef]
Y. pestis Strain | Method of Generation | Presence of Major Immunodominant Antigens and pgm Locus | Protective Efficacy | Harmless to | Author | Reference | |
---|---|---|---|---|---|---|---|
Animals | Humans | ||||||
MaV | ND | ND | ND | ND | Vaccine-related casualties were not described among 1101 vaccinated people. | P. Strong | [37] |
AMP | Treatment with a bacteriophage | ND | Inferior to EV strain | Harmless in doses up to 24 × 109 CFU for mice and gophers, but some guinea pigs died. | Harmless when administered subcutaneously or inhaled in doses up to 1.5 × 109 CFU (more than two thousand people were immunized). | M.P. Pokrovskaya | [4] |
ZhV | Treatment with a bacteriophage | ND | Eventually lost its immunogenicity and became inferior to EV strain | Doses of 50 × 109 CFU caused the death of individual guinea pigs. | ND | N.N. Zhukov-Verezhnikov | [4] |
#46-S * | Treatment with a bacteriophage | ND | Inferior to EV strain | ND | ND | E.I. Korobkova | [4] |
M # 74 * | 20 years of reseeding on artificial media | ND | Equivalent to EV strain | Avirulent for mice, guinea pigs, and rabbits in doses up to15 × 109 CFU. | Avirulent for human volunteers. | N.N. Zhukov-Verezhnikov, T.D. Fadeeva, A.P. Yashchuk | [4] |
Tjiwidej | After rat passage followed by 4-month maintenance on agar-serum medium at 5 °C, the strain was found to be avirulent. | Pgm+ V− F1+ | Protects rats better and guinea pigs worse than the EV strain | Avirulent for guinea pigs and rats; LD50 for mice is 1.5 × 108 CFU. | Extensively used as a live vaccine in human plague prophylaxis. | L. Otten | [2,37,38] |
MP23 | Tjiwidej derivative subjected to X- or ultraviolet radiation. Irradiated samples after storage for 24 h. at 5 °C on tryptic meat agar were incubated for 16 h. at 37 °C, and the resulting organisms were injected intraperitoneally into 20–50 mice (1 × 107 cells per mouse). | V− | Highly immunogenic for guinea pigs and macaques | Virulent for mice, but avirulent for guinea pigs and macaques. About 50% of vervets and 100% of langurs succumbed to the vaccination. | ND | T. Burrows, G. Bacon | [37] |
MP-40 * | Isolated from ground squirrel infected during hibernation followed by passage through cavy immunized with 300 × 106 CFU of Y. pestis vaccine strain EV and up to 20 subsequent passages at 40 °C through broth with 10% ethanol. | F1− | ND | ND | ND | Kasuga | [4] |
Harbin | ND | Δpgm F1+ | ND | ND | ND | ND | [34,39,40] |
EV | Five years of monthly reseeding (total 76) on solid artificial media at 18–20 °C. | Δpgm F1+V+ | Highly immunogenic for mice, guinea pigs, and monkeys | Avirulent for guinea pigs and rabbits. | Since 1932, more than 10 million people have been safely vaccinated without fatal plague cases due to immunization. | G. Girard, J. Robic | [3] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anisimov, A.P.; Vagaiskaya, A.S.; Trunyakova, A.S.; Dentovskaya, S.V. Live Plague Vaccine Development: Past, Present, and Future. Vaccines 2025, 13, 66. https://doi.org/10.3390/vaccines13010066
Anisimov AP, Vagaiskaya AS, Trunyakova AS, Dentovskaya SV. Live Plague Vaccine Development: Past, Present, and Future. Vaccines. 2025; 13(1):66. https://doi.org/10.3390/vaccines13010066
Chicago/Turabian StyleAnisimov, Andrey P., Anastasia S. Vagaiskaya, Alexandra S. Trunyakova, and Svetlana V. Dentovskaya. 2025. "Live Plague Vaccine Development: Past, Present, and Future" Vaccines 13, no. 1: 66. https://doi.org/10.3390/vaccines13010066
APA StyleAnisimov, A. P., Vagaiskaya, A. S., Trunyakova, A. S., & Dentovskaya, S. V. (2025). Live Plague Vaccine Development: Past, Present, and Future. Vaccines, 13(1), 66. https://doi.org/10.3390/vaccines13010066